Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.
Article
Google Scholar
Cao L-L, Lu J, Li P, Xie J-W, Wang J-B, Lin J-X, et al. Evaluation of the eighth edition of the American Joint Committee on Cancer TNM staging system for gastric cancer: an analysis of 7371 patients in the SEER database. Gastroenterol Res Pract. 2019;2019:6294382. https://doi.org/10.1155/2019/6294382.
Article
PubMed
PubMed Central
Google Scholar
Wang F-H, Shen L, Li J, Zhou Z-W, Liang H, Zhang X-T, et al. The Chinese Society of Clinical Oncology (CSCO): clinical guidelines for the diagnosis and treatment of gastric cancer. Cancer Commun. 2019. https://doi.org/10.1186/s40880-019-0349-9.
Article
Google Scholar
Smyth EC, Verheij M, Allum W, Cunningham D, Cervantes A, Arnold D. Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27:v38–49. https://doi.org/10.1093/annonc/mdw350.
Article
CAS
PubMed
Google Scholar
Jaffer AA, Thomas ADA, Khaldoun A, David JB, Joseph C, Prajnan D, et al. Gastric Cancer, Version 3.2016, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw. 2016;14(10):1286–312. https://doi.org/10.6004/jnccn.2016.0137.
Article
Google Scholar
Vergadis C, Schizas D. Is accurate N—staging for gastric cancer possible? Front Surg. 2018;5:41. https://doi.org/10.3389/fsurg.2018.00041.
Article
PubMed
PubMed Central
Google Scholar
Li L, Zhu Z, Zhao Y, Zhang Q, Wu X, Miao B, et al. FN1, SPARC, and SERPINE1 are highly expressed and significantly related to a poor prognosis of gastric adenocarcinoma revealed by microarray and bioinformatics. Sci Rep. 2019;9(1):1–9.
Google Scholar
Luo T, Li Y, Nie R, Liang C, Liu Z, Xue Z, et al. Development and validation of metabolism-related gene signature in prognostic prediction of gastric cancer. Comput Struct Biotechnol J. 2020;18:3217–29. https://doi.org/10.1016/j.csbj.2020.09.037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nie K, Shi L, Wen Y, Pan J, Li P, Zheng Z, et al. Identification of hub genes correlated with the pathogenesis and prognosis of gastric cancer via bioinformatics methods. Minerva Med. 2019. https://doi.org/10.23736/S0026-4806.19.06166-4.
Article
PubMed
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9(1):559. https://doi.org/10.1186/1471-2105-9-559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47-e. https://doi.org/10.1093/nar/gkv007.
Article
CAS
Google Scholar
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545-d51. https://doi.org/10.1093/nar/gkaa970.
Article
CAS
Google Scholar
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–51. https://doi.org/10.1002/pro.3715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences. 2005;102(43):15545–50. https://doi.org/10.1073/pnas.0506580102.
Article
CAS
Google Scholar
Peng D, Gu B, Ruan L, Zhang X, Shu P. Integrated analysis identifies an immune-based prognostic signature for the mesenchymal identity in gastric cancer. Biomed Res Int. 2020;2020:9780981. https://doi.org/10.1155/2020/9780981.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang H, Gu J, Du J, Qi X, Qian C, Fei B. A 21–gene Support Vector Machine classifier and a 10–gene risk score system constructed for patients with gastric cancer. Mol Med Rep. 2020;21(1):347–59. https://doi.org/10.3892/mmr.2019.10841.
Article
CAS
PubMed
Google Scholar
Guan E, Tian F, Liu Z. A novel risk score model for stomach adenocarcinoma based on the expression levels of 10 genes. Oncol Lett. 2020;19(2):1351–67. https://doi.org/10.3892/ol.2019.11190.
Article
CAS
PubMed
Google Scholar
Dai J, Li ZX, Zhang Y, Ma JL, Zhou T, You WC, et al. Whole genome messenger RNA profiling identifies a novel signature to predict gastric cancer survival. Clin Transl Gastroenterol. 2019;10(1):e00004. https://doi.org/10.14309/ctg.0000000000000004.
Article
PubMed
PubMed Central
Google Scholar
Yuzhalin AE, Urbonas T, Silva MA, Muschel RJ, Gordon-Weeks AN. A core matrisome gene signature predicts cancer outcome. Br J Cancer. 2018;118(3):435–40. https://doi.org/10.1038/bjc.2017.458.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng PL, Zhou XY, Yi GD, Chen PF, Wang F, Dong WG. Identification of a novel gene pairs signature in the prognosis of gastric cancer. Cancer Med. 2018;7(2):344–50. https://doi.org/10.1002/cam4.1303.
Article
CAS
PubMed
Google Scholar
Liu X, Wu J, Zhang D, Bing Z, Tian J, Ni M, et al. Identification of potential key genes associated with the pathogenesis and prognosis of gastric cancer based on integrated bioinformatics analysis. Front Genet. 2018;9:265. https://doi.org/10.3389/fgene.2018.00265.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou JY, Wang YG, Ma SJ, Yang BY, Li QP. Identification of a prognostic 5-Gene expression signature for gastric cancer. J Cancer Res Clin Oncol. 2017;143(4):619–29. https://doi.org/10.1007/s00432-016-2324-z.
Article
CAS
PubMed
Google Scholar
Cho JY, Lim JY, Cheong JH, Park YY, Yoon SL, Kim SM, et al. Gene expression signature-based prognostic risk score in gastric cancer. Clin Cancer Res. 2011;17(7):1850–7. https://doi.org/10.1158/1078-0432.Ccr-10-2180.
Article
CAS
PubMed
PubMed Central
Google Scholar
Venkatraman ES, Begg CB. A distribution-free procedure for comparing receiver operating characteristic curves from a paired experiment. Biometrika. 1996;83(4):835–48.
Article
Google Scholar
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3. https://doi.org/10.1093/bioinformatics/bts034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98-w102. https://doi.org/10.1093/nar/gkx247.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fleming ID. AJCC cancer staging manual. American Joint Committee on Cancer; 1997.
Greene FL, Balch C, Fleming ID, April F. Eztnm for the Ajcc Cancer Staging Manual. Berlin: Springer; 2003.
Google Scholar
Fang W-L, Huang K-H, Chen J-H, Lo S-S, Hsieh M-C, Shen K-H, et al. Comparison of the survival difference between AJCC 6th and 7th editions for gastric cancer patients. World J Surg. 2011;35:2723–9. https://doi.org/10.1007/s00268-011-1275-4.
Article
PubMed
Google Scholar
Ji X, Bu Z-D, Yan Y, Li Z-Y, Wu A-W, Zhang L-H, et al. The 8th edition of the American Joint Committee on Cancer tumor-node-metastasis staging system for gastric cancer is superior to the 7th edition: results from a Chinese mono-institutional study of 1663 patients. Gastric Cancer. 2018;21(4):643–52. https://doi.org/10.1007/s10120-017-0779-5.
Article
PubMed
Google Scholar
Pan S, Wang P, Xing Y, Li K, Wang Z, Xu H, et al. Retrieved lymph nodes from different anatomic groups in gastric cancer: a proposed optimal number, comparison with other nodal classification strategies and its impact on prognosis. Cancer Commun (Lond). 2019;39(1):49. https://doi.org/10.1186/s40880-019-0394-4.
Article
CAS
Google Scholar
Deng J, Yamashita H, Seto Y, Liang H. Increasing the number of examined lymph nodes is a prerequisite for improvement in the accurate evaluation of overall survival of node-negative gastric cancer patients. Ann Surg Oncol. 2017;24(3):745–53. https://doi.org/10.1245/s10434-016-5513-8.
Article
PubMed
Google Scholar
Qiu M, Wang Z, Ds Z, Liu Q, Luo H, Zhou Z-w, et al. Comparison of 6th and 7th AJCC TNM staging classification for carcinoma of the stomach in China. Ann Surg Oncol. 2010;18:1869–76.
Article
Google Scholar
Zhou Y, Zhang J, Cao S, Li Y. The evaluation of metastatic lymph node ratio staging system in gastric cancer. Gastric Cancer. 2013;16(3):309–17. https://doi.org/10.1007/s10120-012-0190-1.
Article
PubMed
Google Scholar
Wang G, Zhan T, Li F, Shen J, Gao X, Xu L, et al. The prediction of survival in Gastric Cancer based on a Robust 13-Gene Signature. J Cancer. 2021;12(11):3344–53. https://doi.org/10.7150/jca.49658.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang B, Wu P, Kwan B, Tu XM, Feng C. Simpson’s paradox: examples. Shanghai Arch Psychiatry. 2018;30(2):139–43. https://doi.org/10.11919/j.issn.1002-0829.218026.
Article
PubMed
PubMed Central
Google Scholar
Ouyang G, Yi B, Pan G, Chen X. A robust twelve-gene signature for prognosis prediction of hepatocellular carcinoma. Cancer Cell Int. 2020;20(1):207. https://doi.org/10.1186/s12935-020-01294-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song L-B, Zhang Q-J, Hou X-Y, Xiu Y-Y, Chen L, Song N-H, et al. A twelve-gene signature for survival prediction in malignant melanoma patients. Ann Transl Med. 2020;8(6):312. https://doi.org/10.21037/atm.2020.02.132.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCart Reed A, Song S, Kutasovic J, Reid L, Valle J, Vargas A, et al. Thrombospondin-4 expression is activated during the stromal response to invasive breast cancer. Virchows Archiv Int J Pathol. 2013. https://doi.org/10.1007/s00428-013-1468-3.
Article
Google Scholar
Förster S, Gretschel S, Jöns T, Yashiro M, Kemmner W. THBS4, a novel stromal molecule of diffuse-type gastric adenocarcinomas, identified by transcriptome-wide expression profiling. Mod Pathol. 2011;24(10):1390–403. https://doi.org/10.1038/modpathol.2011.99.
Article
CAS
PubMed
Google Scholar
Pyo JH, Lee H, Min B-H, Lee JH, Choi MG, Lee JH, et al. Early gastric cancer with a mixed-type Lauren classification is more aggressive and exhibits greater lymph node metastasis. J Gastroenterol. 2017;52(5):594–601. https://doi.org/10.1007/s00535-016-1254-5.
Article
CAS
PubMed
Google Scholar
Guo D, Zhang D, Ren M, Lu G, Zhang X, He S, et al. THBS4 promotes HCC progression by regulating ITGB1 via FAK/PI3K/AKT pathway. FASEB J. 2020;34(8):10668–81. https://doi.org/10.1096/fj.202000043R.
Article
CAS
PubMed
Google Scholar
Hou Y, Li H, Huo W. THBS4 silencing regulates the cancer stem cell-like properties in prostate cancer via blocking the PI3K/Akt pathway. Prostate. 2020;80(10):753–63. https://doi.org/10.1002/pros.23989.
Article
CAS
PubMed
Google Scholar
Vijayasaradhi S, Bouchard B, Houghton AN. The melanoma antigen gp75 is the human homologue of the mouse b (brown) locus gene product. J Exp Med. 1990;171(4):1375–80. https://doi.org/10.1084/jem.171.4.1375.
Article
CAS
PubMed
Google Scholar
Zhang C, Jing L, Li Z, Chang Z, Liu H, Zhang Q, et al. Identification of a prognostic 28-gene expression signature for gastric cancer with lymphatic metastasis. Biosci Rep. 2019. https://doi.org/10.1042/bsr20182179.
Article
PubMed
PubMed Central
Google Scholar
Najem A, Krayem M, Salès F, Hussein N, Badran B, Robert C, et al. P53 and MITF/Bcl-2 identified as key pathways in the acquired resistance of NRAS-mutant melanoma to MEK inhibition. Eur J Cancer. 2017;83:154–65. https://doi.org/10.1016/j.ejca.2017.06.033.
Article
CAS
PubMed
Google Scholar
Khlgatian MK, Hadshiew IM, Asawanonda P, Yaar M, Eller MS, Fujita M, et al. Tyrosinase gene expression is regulated by p53. J Invest Dermatol. 2002;118(1):126–32. https://doi.org/10.1046/j.0022-202x.2001.01667.x.
Article
CAS
PubMed
Google Scholar
Phung B, Sun J, Schepsky A, Steingrimsson E, Rönnstrand L. C-KIT signaling depends on microphthalmia-associated transcription factor for effects on cell proliferation. PLoS ONE. 2011;6(8):e24064-e. https://doi.org/10.1371/journal.pone.0024064.
Article
CAS
Google Scholar
Gilot D, Migault M, Bachelot L, Journé F, Rogiers A, Donnou-Fournet E, et al. A non-coding function of TYRP1 mRNA promotes melanoma growth. Nat Cell Biol. 2017;19(11):1348–57. https://doi.org/10.1038/ncb3623.
Article
CAS
PubMed
Google Scholar
Ren C, Chen H, Han C, Fu D, Wang D, Shen M. High expression of miR-16 and miR-451 predicating better prognosis in patients with gastric cancer. J Cancer Res Clin Oncol. 2016;142(12):2489–96. https://doi.org/10.1007/s00432-016-2243-z.
Article
CAS
PubMed
Google Scholar
McMahon BJ, Kwaan HC. Components of the plasminogen-plasmin system as biologic markers for cancer. Adv Exp Med Biol. 2015;867:145–56. https://doi.org/10.1007/978-94-017-7215-0_10.
Article
CAS
PubMed
Google Scholar
Santibanez JF. Urokinase type plasminogen activator and the molecular mechanisms of its regulation in cancer. Protein Pept Lett. 2017;24(10):936–46. https://doi.org/10.2174/0929866524666170818161132.
Article
CAS
PubMed
Google Scholar
Mekkawy AH, Pourgholami MH, Morris DL. Involvement of urokinase-type plasminogen activator system in cancer: an overview. Med Res Rev. 2014;34(5):918–56.
Article
CAS
Google Scholar
Poettler M, Unseld M, Mihaly-Bison J, Uhrin P, Koban F, Binder BR, et al. The urokinase receptor (CD87) represents a central mediator of growth factor-induced endothelial cell migration. Thromb Haemost. 2012;108(2):357–66. https://doi.org/10.1160/th11-12-0868.
Article
CAS
PubMed
Google Scholar
Harris NLE, Vennin C, Conway JRW, Vine KL, Pinese M, Cowley MJ, et al. SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer. Oncogene. 2017;36(30):4288–98. https://doi.org/10.1038/onc.2017.63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X-M, Wang T, Hu P, Li B, Liu H, Cheng Y-F. SERPINB2 overexpression inhibited cell proliferation, invasion and migration, led to G2/M arrest, and increased radiosensitivity in nasopharyngeal carcinoma cells. J Radiat Res. 2019;60(3):318–27. https://doi.org/10.1093/jrr/rrz003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee N-H, Park S-R, Lee JW, Lim S, Lee S-H, Nam S, et al. SERPINB2 is a novel indicator of cancer stem cell tumorigenicity in multiple cancer Types. Cancers (Basel). 2019;11(4):499. https://doi.org/10.3390/cancers11040499.
Article
CAS
Google Scholar
Koyuturk M, Sacan O, Karabulut S, Turk N, Bolkent S, Yanardag R, et al. The role of ghrelin on apoptosis, cell proliferation and oxidant-antioxidant system in the liver of neonatal diabetic rats. Cell Biol Int. 2015;39(7):834–41. https://doi.org/10.1002/cbin.10464.
Article
CAS
PubMed
Google Scholar
Graf AV, Khirazova EE, Maslova MV, Sokolova NA. Obestatin and its fragments: a new approach to the regulation of body weight under normal and pathological conditions. Mosc Univ Biol Sci Bull. 2020;75(2):50–64. https://doi.org/10.3103/s0096392520020042.
Article
Google Scholar
Lien G-S, Lin C-H, Yang Y-L, Wu M-S, Chen B-C. Ghrelin induces colon cancer cell proliferation through the GHS-R, Ras, PI3K, Akt, and mTOR signaling pathways. Eur J Pharmacol. 2016;776:124–31. https://doi.org/10.1016/j.ejphar.2016.02.044.
Article
CAS
PubMed
Google Scholar
Lin TC, Liu YP, Chan YC, Su CY, Lin YF, Hsu SL, et al. Ghrelin promotes renal cell carcinoma metastasis via Snail activation and is associated with poor prognosis. J Pathol. 2015;237(1):50–61.
Article
CAS
Google Scholar
Chopin LK, Seim I, Walpole CM, Herington AC. The ghrelin axis—does it have an appetite for cancer progression? Endocr Rev. 2012;33(6):849–91. https://doi.org/10.1210/er.2011-1007.
Article
CAS
PubMed
Google Scholar
Murphy G, Kamangar F, Dawsey SM, Stanczyk FZ, Weinstein SJ, Taylor PR, et al. The relationship between serum ghrelin and the risk of gastric and esophagogastric junctional adenocarcinomas. J Natl Cancer Inst. 2011;103(14):1123–9.
Article
CAS
Google Scholar
Sadjadi A, Yazdanbod A, Lee YY, Boreiri M, Samadi F, Alizadeh BZ, et al. Serum ghrelin; a new surrogate marker of gastric mucosal alterations in upper gastrointestinal carcinogenesis. PLoS ONE. 2013;8(9):e74440.
Article
CAS
Google Scholar
Soleyman-Jahi S, Sadeghi F, Pastaki Khoshbin A, Khani L, Roosta V, Zendehdel K. Attribution of Ghrelin to Cancer; attempts to unravel an apparent controversy. Front Oncol. 2019. https://doi.org/10.3389/fonc.2019.01014.
Article
PubMed
PubMed Central
Google Scholar
Dron M, Dandoy-Dron F, Guillo F, Benboudjema L, Hauw J-J, Lebon P, et al. Characterization of the human analogue of a Scrapie-responsive gene. J Biol Chem. 1998;273(29):18015–8.
Article
CAS
Google Scholar
Dron M, Bailly Y, Beringue V, Haeberlé A-M, Griffond B. SCRG1, a potential marker of autophagy in TSE. Autophagy. 2006;2(1):58–60.
Article
CAS
Google Scholar
Song Z, Zhao W, Cao D, Zhang J, Chen S. Elementary screening of lymph node metastatic-related genes in gastric cancer based on the co-expression network of messenger RNA, microRNA and long non-coding RNA. Braz J Med Biol Res. 2018. https://doi.org/10.1590/1414-431x20176685.
Article
PubMed
PubMed Central
Google Scholar
Aomatsu E, Takahashi N, Sawada S, Okubo N, Hasegawa T, Taira M, et al. Novel SCRG1/BST1 axis regulates self-renewal, migration and osteogenic differentiation potential in mesenchymal stem cells. Sci Rep. 2015. https://doi.org/10.1038/srep03652.
Article
Google Scholar
Chosa N, Ishisaki A. Two novel mechanisms for maintenance of stemness in mesenchymal stem cells: SCRG1/BST1 axis and cell-cell adhesion through N-cadherin. Jpn Dent Sci Rev. 2018;54(1):37–44. https://doi.org/10.1016/j.jdsr.2017.10.001.
Article
Google Scholar
Klebe M, Fremd C, Kriegsmann M, Kriegsmann K, Albrecht T, Thewes V, et al. Frequent molecular subtype switching and gene expression alterations in lung and pleural metastasis from Luminal A-Type Breast Cancer. JCO Precis Oncol. 2020;4:848–59. https://doi.org/10.1200/po.19.00337.
Article
Google Scholar
Bartoschek M, Oskolkov N, Bocci M, Lövrot J, Larsson C, Sommarin M, et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun. 2018;9(1):5150. https://doi.org/10.1038/s41467-018-07582-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian Z, Zhang G, Song G, Shi J, Gong L, Mou Y, et al. Integrated analysis of genes associated with poor prognosis of patients with colorectal cancer liver metastasis. Oncotarget. 2017;8(15).
Yao F, Zhang C, Du W, Liu C, Xu Y. Identification of gene-expression signatures and protein markers for breast cancer grading and staging. PLoS ONE. 2015;10(9):e0138213. https://doi.org/10.1371/journal.pone.0138213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abbaszadegan MR, Moghbeli M. Genetic and molecular origins of colorectal Cancer among the Iranians: an update. Diagn Pathol. 2018;13(1):97. https://doi.org/10.1186/s13000-018-0774-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiu X, Feng JR, Wang F, Chen PF, Chen XX, Zhou R, et al. Profiles of differentially expressed genes and overexpression of NEBL indicates a positive prognosis in patients with colorectal cancer. Mol Med Rep. 2017. https://doi.org/10.3892/mmr.2017.8210.
Article
PubMed
PubMed Central
Google Scholar
Wang B, Zhang L, Zhao L, Zhou R, Ding Y, Li G, et al. LASP2 suppresses colorectal cancer progression through JNK/p38 MAPK pathway meditated epithelial-mesenchymal transition. Cell Commun Signaling. 2017. https://doi.org/10.1186/s12964-017-0179-9.
Article
Google Scholar
Lee L, Bounds D, Paterson J, Herledan G, Sully K, Seestaller-Wehr LM, et al. Evaluation of B cell maturation antigen as a target for antibody drug conjugate mediated cytotoxicity in multiple myeloma. Br J Haematol. 2016;174(6):911–22. https://doi.org/10.1111/bjh.14145.
Article
CAS
PubMed
Google Scholar
Chae SC, Yu JI, Uhm TB, Lee SY, Kang DB, Lee JK, et al. The haplotypes of TNFRSF17 polymorphisms are associated with colon cancer in a Korean population. Int J Colorectal Dis. 2012;27(6):701–7. https://doi.org/10.1007/s00384-011-1364-8.
Article
PubMed
Google Scholar
Pelekanou V, Notas G, Athanasouli P, Alexakis K, Kiagiadaki F, Peroulis N, et al. BCMA (TNFRSF17) induces APRIL and BAFF mediated breast cancer cell stemness. Front Oncol. 2018;8:301. https://doi.org/10.3389/fonc.2018.00301.
Article
PubMed
PubMed Central
Google Scholar
Yan S, Fang J, Chen Y, Xie Y, Zhang S, Zhu X, et al. Comprehensive analysis of prognostic gene signatures based on immune infiltration of ovarian cancer. BMC Cancer. 2020. https://doi.org/10.1186/s12885-020-07695-3.
Article
PubMed
PubMed Central
Google Scholar
Hernández-Prieto S, Romera A, Ferrer M, Subiza JL, López-Asenjo JA, Jarabo JR, et al. A 50-gene signature is a novel scoring system for tumor-infiltrating immune cells with strong correlation with clinical outcome of stage I/II non-small cell lung cancer. Clin Transl Oncol. 2015;17(4):330–8. https://doi.org/10.1007/s12094-014-1235-1.
Article
CAS
PubMed
Google Scholar
Bedognetti D, Hendrickx W, Marincola FM, Miller LD. Prognostic and predictive immune gene signatures in breast cancer. Curr Opin Oncol. 2015;27(6).
Budczies J, Kirchner M, Kluck K, Kazdal D, Glade J, Allgäuer M, et al. A gene expression signature associated with B cells predicts benefit from immune checkpoint blockade in lung adenocarcinoma. OncoImmunology. 2021;10(1):1860586. https://doi.org/10.1080/2162402X.2020.1860586.
Article
PubMed
PubMed Central
Google Scholar
Largeot A, Pagano G, Gonder S, Moussay E, Paggetti J. The B-side of cancer immunity: the underrated tune. Cells. 2019;8(5):449. https://doi.org/10.3390/cells8050449.
Article
CAS
PubMed Central
Google Scholar
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32(19–20):1267–84. https://doi.org/10.1101/gad.314617.118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu R, Gao Q, Foltz SM, Fowles JS, Yao L, Wang JT, et al. Co-evolution of tumor and immune cells during progression of multiple myeloma. Nat Commun. 2021;12(1):2559. https://doi.org/10.1038/s41467-021-22804-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ni J, Lang Q, Bai M, Zhong C, Chen X, Wan B, et al. Cloning and characterization of a human LYPD7, a new member of the Ly-6 superfamily. Mol Biol Rep. 2009;36(4):697–703. https://doi.org/10.1007/s11033-008-9231-6.
Article
CAS
PubMed
Google Scholar
Vastrad C, Vastrad B. Investigation into the underlying molecular mechanisms of non-small cell lung cancer using bioinformatics analysis. Gene Rep. 2019;15:100394. https://doi.org/10.1016/j.genrep.2019.100394.
Article
Google Scholar
Koroknai V, Szász I, Hernandez-Vargas H, Fernandez-Jimenez N, Cuenin C, Herceg Z, et al. DNA hypermethylation is associated with invasive phenotype of malignant melanoma. Exp Dermatol. 2020;29(1):39–50. https://doi.org/10.1111/exd.14047.
Article
CAS
PubMed
Google Scholar
Milyavsky M, Shats I, Cholostoy A, Brosh R, Buganim Y, Weisz L, et al. Inactivation of myocardin and p16 during malignant transformation contributes to a differentiation defect. Cancer Cell. 2007;11(2):133–46. https://doi.org/10.1016/j.ccr.2006.11.022.
Article
CAS
PubMed
Google Scholar
Zhou Q, Chen W, Fan Z, Chen Z, Liang J, Zeng G, et al. Targeting hyperactive TGFBR2 for treating MYOCD deficient lung cancer. Theranostics. 2021;11(13):6592–606. https://doi.org/10.7150/thno.59816.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y-C, Cui X-B, Chuang Y-H, Chen S-Y. Arteriosclerosis. Janus Kinase 3, a novel regulator for smooth muscle proliferation and vascular remodeling. Thromb Vascular Biology. 2017;37(7):1352–60. https://doi.org/10.1161/atvbaha.116.308895.
Article
Google Scholar
Derksen S, Keselman HJ. Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. Br J Math Stat Psychol. 1992;45(2):265–82. https://doi.org/10.1111/j.2044-8317.1992.tb00992.x.
Article
Google Scholar
Zhang Z. Variable selection with stepwise and best subset approaches. Ann Transl Med. 2016;4(7):136. https://doi.org/10.21037/atm.2016.03.35.
Article
PubMed
PubMed Central
Google Scholar
Graham MH. Confronting, multicollinearity in ecological multiple regression. Ecology. 2003;84(11):2809–15. https://doi.org/10.1890/02-3114.
Article
Google Scholar
Fukagawa T, Katai H, Mizusawa J, Nakamura K, Sano T, Terashima M, et al. A prospective multi-institutional validity study to evaluate the accuracy of clinical diagnosis of pathological stage III gastric cancer (JCOG1302A). Gastric Cancer. 2018;21(1):68–73. https://doi.org/10.1007/s10120-017-0701-1.
Article
PubMed
Google Scholar
Kinami S, Saito H, Takamura H. Significance of lymph node metastasis in the treatment of gastric cancer and current challenges in determining the extent of metastasis. Front Oncol. 2022. https://doi.org/10.3389/fonc.2021.806162.
Article
PubMed
PubMed Central
Google Scholar
Wang Z, Ma L, Zhang XM, Zhou ZX. Risk of lymph node metastases from early gastric cancer in relation to depth of invasion: experience in a single institution. Asian Pac J Cancer Prev. 2014;15(13):5371–5. https://doi.org/10.7314/apjcp.2014.15.13.5371.
Article
PubMed
Google Scholar
Chen J, Zhao G, Wang Y. World J Surg Oncol. 2020. https://doi.org/10.1186/s12957-020-01834-7.
Article
PubMed
PubMed Central
Google Scholar
Liang Y, Cui J, Cai Y, Liu L, Zhou J, Li Q, et al. “D2 plus” lymphadenectomy is associated with improved survival in distal gastric cancer with clinical serosa invasion: a propensity score analysis. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-55535-7.
Article
PubMed
PubMed Central
Google Scholar
Songun I, Putter H, Kranenbarg EM, Sasako M, van de Velde CJ. Surgical treatment of gastric cancer: 15-year follow-up results of the randomised nationwide Dutch D1D2 trial. Lancet Oncol. 2010;11(5):439–49. https://doi.org/10.1016/s1470-2045(10)70070-x.
Article
PubMed
Google Scholar