The L. Organ donor research: towards a more effective system. Lancet (Lond, Engl). 2017;390(10106):1928.
Article
Google Scholar
Rodrigue JR, Feng S, Johansson AC, Glazier AK, Abt PL. Deceased donor intervention research: a survey of transplant surgeons, organ procurement professionals, and institutional review board members. Am J Transpl. 2016;16(1):278–86.
Article
CAS
Google Scholar
Van Pilsum Rasmussen SE, Henderson ML, Kahn J, Segev D. Considering tangible benefit for interdependent donors: extending a risk-benefit framework in donor selection. Am J Transpl. 2017;17(10):2567–71.
Article
Google Scholar
Slakter JS, Yannuzzi LA, Guyer DR, Sorenson JA, Orlock DA. Indocyanine-green angiography. Curr Opin Ophthalmol. 1995;6(3):25–32.
Article
CAS
PubMed
Google Scholar
Kaibori M, Kosaka H, Matsui K, Ishizaki M, Matsushima H, Tsuda T, Hishikawa H, Okumura T, Sekimoto M. Near-Infrared Fluorescence Imaging and Photodynamic Therapy for Liver Tumors. Frontiers in oncology. 2021;11:638327.
Article
PubMed
PubMed Central
Google Scholar
Charalampaki P, Nakamura M, Athanasopoulos D, Heimann A. Confocal-assisted multispectral fluorescent microscopy for brain Tumor surgery. Front Oncol. 2019;9:583.
Article
PubMed
PubMed Central
Google Scholar
Lee JYK, Pierce JT, Thawani JP, Zeh R, Nie S, Martinez-Lage M, Singhal S. Near-infrared fluorescent image-guided surgery for intracranial meningioma. J Neurosurg. 2018;128(2):380–90.
Article
CAS
PubMed
Google Scholar
Cho SS, Jeon J, Buch L, Nag S, Nasrallah M, Low PS, Grady MS, Singhal S, Lee JYK. Intraoperative near-infrared imaging with receptor-specific versus passive delivery of fluorescent agents in pituitary adenomas. J Neurosurg. 2018;131(6):1974–84.
Article
PubMed
Google Scholar
Guan T, Shang W, Li H, Yang X, Fang C, Tian J, Wang K. From detection to resection: photoacoustic tomography and surgery guidance with indocyanine green loaded gold nanorod@liposome core-shell nanoparticles in liver cancer. Bioconjug Chem. 2017;28(4):1221–8.
Article
CAS
PubMed
Google Scholar
Jimenez-Lillo J, Villegas-Tovar E, Momblan-Garcia D, Turrado-Rodriguez V, Ibarzabal-Olano A, De Lacy B, Diaz-Giron-Gidi A, Faes-Petersen R, Martinez-Portilla RJ, Lacy A. Performance of indocyanine-green imaging for sentinel lymph node mapping and lymph node metastasis in esophageal cancer: systematic review and meta-analysis. Ann Surg Oncol. 2021;28:4869–77.
Article
PubMed
Google Scholar
Zhang X, Li Y, Zhou Y, Mao F, Lin Y, Guan J, Sun Q. Diagnostic performance of indocyanine green-guided sentinel lymph node biopsy in breast cancer: a meta-analysis. PLOS ONE. 2016;11(6):e0155597.
Article
PubMed
PubMed Central
Google Scholar
Sugie T, Kinoshita T, Masuda N, Sawada T, Yamauchi A, Kuroi K, Taguchi T, Bando H, Yamashiro H, Lee T, et al. Evaluation of the clinical utility of the ICG fluorescence method compared with the radioisotope method for sentinel lymph node biopsy in breast cancer. Ann Surg Oncol. 2016;23(1):44–50.
Article
PubMed
Google Scholar
Buda A, Crivellaro C, Elisei F, Di Martino G, Guerra L, De Ponti E, Cuzzocrea M, Giuliani D, Sina F, Magni S, et al. Impact of indocyanine green for sentinel lymph node mapping in early stage endometrial and cervical cancer: comparison with conventional radiotracer (99m)Tc and/or blue dye. Ann Surg Oncol. 2016;23(7):2183–91.
Article
PubMed
Google Scholar
Toh U, Iwakuma N, Mishima M, Okabe M, Nakagawa S, Akagi Y. Navigation surgery for intraoperative sentinel lymph node detection using Indocyanine green (ICG) fluorescence real-time imaging in breast cancer. Breast Cancer Res Treat. 2015;153(2):337–44.
Article
CAS
PubMed
Google Scholar
De Nardi P, Elmore U, Maggi G, Maggiore R, Boni L, Cassinotti E, Fumagalli U, Gardani M, De Pascale S, Parise P, et al. Intraoperative angiography with indocyanine green to assess anastomosis perfusion in patients undergoing laparoscopic colorectal resection: results of a multicenter randomized controlled trial. Surg Endosc. 2020;34(1):53–60.
Article
PubMed
Google Scholar
Rausa E, Zappa MA, Kelly ME, Turati L, Russo A, Aiolfi A, Bonitta G, Sgroi LG. A standardized use of intraoperative anastomotic testing in colorectal surgery in the new millennium: is technology taking over? A systematic review and network meta-analysis. Tech Coloproctol. 2019;23(7):625–31.
Article
CAS
PubMed
Google Scholar
Buxey K, Lam F, Muhlmann M, Wong S. Does indocyanine green improve the evaluation of perfusion during laparoscopic colorectal surgery with extracorporeal anastomosis? ANZ J Surg. 2019;89(11):E487-e491.
Article
PubMed
Google Scholar
Spartalis E, Ntokos G, Georgiou K, Zografos G, Tsourouflis G, Dimitroulis D, Nikiteas NI. Intraoperative indocyanine green (ICG) angiography for the identification of the parathyroid glands: current evidence and future perspectives. In vivo (Athens, Greece). 2020;34(1):23–32.
CAS
Google Scholar
Gerken ALH, Nowak K, Meyer A, Weiss C, Krüger B, Nawroth N, Karampinis I, Heller K, Apel H, Reissfelder C et al: Quantitative assessment of intraoperative laser fluorescence angiography with indocyanine green predicts early graft function after kidney transplantation. Ann Surg 2020, Publish Ahead of Print.
Forcione M, Chiarelli AM, Davies DJ, Perpetuini D, Sawosz P, Merla A, Belli A. Cerebral perfusion and blood-brain barrier assessment in brain trauma using contrast-enhanced near-infrared spectroscopy with indocyanine green: A review. J Cereb Blood Flow Metab. 2020;40(8):1586–98.
Article
PubMed
PubMed Central
Google Scholar
Ellebrecht DB, Warns T, Bürk CG, Thomaschewski M, Keck T, Bausch D. Quantitative intraoperative measurement of tissue perfusion of transplanted kidneys by indocyanine green angiography. Zentralbl Chir. 2020;145(1):57–63.
PubMed
Google Scholar
Dousse D, Vibert E, Nicolas Q, Terasawa M, Cano L, Allard MA, Salloum C, Ciacio O, Pittau G, Sa Cunha A, et al. Indocyanine green fluorescence imaging to predict graft survival after orthotopic liver transplantation: a pilot study. Liver Transpl. 2020;26(10):1263–74.
Article
PubMed
Google Scholar
Saidi RF, Kenari SK. Liver ischemia/reperfusion injury: an overview. J Investig Surg. 2014;27(6):366–79.
Article
Google Scholar
Serracino-Inglott F, Habib NA, Mathie RT. Hepatic ischemia-reperfusion injury. Am J Surg. 2001;181(2):160–6.
Article
CAS
PubMed
Google Scholar
Montalvo-Jave EE, Escalante-Tattersfield T, Ortega-Salgado JA, Piña E, Geller DA. Factors in the pathophysiology of the liver ischemia-reperfusion injury. J Surg Res. 2008;147(1):153–9.
Article
CAS
PubMed
Google Scholar
Bellanti F. Ischemia-reperfusion injury: evidences for translational research. Ann Transl Med. 2016;4(Suppl 1):S55.
Article
PubMed
PubMed Central
Google Scholar
Peralta C, Jiménez-Castro MB, Gracia-Sancho J. Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J Hepatol. 2013;59(5):1094–106.
Article
PubMed
Google Scholar
Behrends M, Martinez-Palli G, Niemann CU, Cohen S, Ramachandran R, Hirose R. Acute hyperglycemia worsens hepatic ischemia/reperfusion injury in rats. J Gastrointest Surg. 2010;14(3):528–35.
Article
PubMed
Google Scholar
Saeed WK, Jun DW, Jang K, Chae YJ, Lee JS, Kang HT. Does necroptosis have a crucial role in hepatic ischemia-reperfusion injury? PLOS ONE. 2017;12(9):e0184752.
Article
PubMed
PubMed Central
Google Scholar
Dip F, Lo Menzo E, White KP, Rosenthal RJ. Does near-infrared fluorescent cholangiography with indocyanine green reduce bile duct injuries and conversions to open surgery during laparoscopic or robotic cholecystectomy? A meta-analysis. Surgery. 2021;169(4):859–67.
Article
PubMed
Google Scholar
Bleszynski MS, DeGirolamo KM, Meneghetti AT, Chiu CJ, Panton ON. Fluorescent cholangiography in laparoscopic cholecystectomy: an updated Canadian experience. Surgical innovation. 2020;27(1):38–43.
Article
PubMed
Google Scholar
Dip F, LoMenzo E, Sarotto L, Phillips E, Todeschini H, Nahmod M, Alle L, Schneider S, Kaja L, Boni L, et al. Randomized trial of near-infrared incisionless fluorescent cholangiography. Ann Surg. 2019;270(6):992–9.
Article
PubMed
Google Scholar
Gangemi A, Danilkowicz R, Bianco F, Masrur M, Giulianotti PC. Risk factors for open conversion in minimally invasive cholecystectomy. JSLS J Soc Laparoendosc Surg. 2017;21(4):e2017.00062.
Article
Google Scholar
Osayi SN, Wendling MR, Drosdeck JM, Chaudhry UI, Perry KA, Noria SF, Mikami DJ, Needleman BJ, Muscarella P 2nd, Abdel-Rasoul M, et al. Near-infrared fluorescent cholangiography facilitates identification of biliary anatomy during laparoscopic cholecystectomy. Surg Endosc. 2015;29(2):368–75.
Article
PubMed
Google Scholar
Lee Z, Sterling ME, Keehn AY, Lee M, Metro MJ, Eun DD. The use of indocyanine green during robotic ureteroenteric reimplantation for the management of benign anastomotic strictures. World J Urol. 2019;37(6):1211–6.
Article
CAS
PubMed
Google Scholar
Ahmadi N, Ashrafi AN, Hartman N, Shakir A, Cacciamani GE, Freitas D, Rajarubendra N, Fay C, Berger A, Desai MM, et al. Use of indocyanine green to minimise uretero-enteric strictures after robotic radical cystectomy. BJU Int. 2019;124(2):302–7.
Article
CAS
PubMed
Google Scholar
Lee Z, Moore B, Giusto L, Eun DD. Use of indocyanine green during robot-assisted ureteral reconstructions. Eur Urol. 2015;67(2):291–8.
Article
PubMed
Google Scholar
Chen Q, Shang W, Zeng C, Wang K, Liang X, Chi C, Liang X, Yang J, Fang C, Tian J. Theranostic imaging of liver cancer using targeted optical/MRI dual-modal probes. Oncotarget. 2017;8(20):32741–51.
Article
PubMed
PubMed Central
Google Scholar
Lee JY, Thawani JP, Pierce J, Zeh R, Martinez-Lage M, Chanin M, Venegas O, Nims S, Learned K, Keating J, et al. Intraoperative near-infrared optical imaging can localize gadolinium-enhancing gliomas during surgery. Neurosurgery. 2016;79(6):856–71.
Article
PubMed
Google Scholar
Kaibori M, Matsui K, Ishizaki M, Iida H, Sakaguchi T, Tsuda T, Okumura T, Inoue K, Shimada S, Ohtsubo S, et al. Evaluation of fluorescence imaging with indocyanine green in hepatocellular carcinoma. Cancer Imaging. 2016;16:6.
Article
PubMed
PubMed Central
Google Scholar
Hoffmann C, Compton F, Schäfer JH, Steiner U, Fuller TF, Schostak M, Zidek W, van der Giet M, Westhoff TH. Intraoperative assessment of kidney allograft perfusion by laser-assisted indocyanine green fluorescence videography. Transpl Proc. 2010;42(5):1526–30.
Article
CAS
Google Scholar
Kawaguchi Y, Akamatsu N, Ishizawa T, Kaneko J, Arita J, Sakamoto Y, Hasegawa K, Kokudo N. Evaluation of hepatic perfusion in the liver graft using fluorescence imaging with indocyanine green. Int J Surg Case Rep. 2015;14:149–51.
Article
PubMed
PubMed Central
Google Scholar
Narasaki H, Noji T Fau - Wada H, Wada H Fau - Ebihara Y, Ebihara Y Fau - Tsuchikawa T, Tsuchikawa T Fau - Okamura K, Okamura K Fau - Tanaka E, Tanaka E Fau - Shichinohe T, Shichinohe T Fau - Hirano S, Hirano S: Intraoperative real-time assessment of liver function with near-infrared fluorescence imaging (1421–9921 Electronic)
Ma Y, Wang GD, Wu LW, Hu RD. Dynamical changing patterns of histological structure and ultrastructure of liver graft undergoing warm ischemia injury from non-heart-beating donor in rats. World J Gastroenterol. 2006;12(30):4902–5.
Article
PubMed
PubMed Central
Google Scholar
He XS, Ma Y, Ju WQ, Wu LW, Wu JL, Liang YJ, Hu RD, Chen GH, Huang JF. Dynamic microcirculatory changes in liver graft from non-heart-beating donor with warm ischemia injury in rat. Hepatob Pancreat Dis Int HBPD INT. 2004;3(2):179–82.
PubMed
Google Scholar
He XS, Ma Y, Wu LW, Ju WQ, Chen GH, Hu RD, Huang JF. Influence of warm ischemia injury on hepatic functional status and survival of liver graft in rats. Hepatobi Pancreat Dis Int HBPD INT. 2003;2(4):504–8.
PubMed
Google Scholar