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associated with stromal cells abundance 
in tumor microenvironment improve prognostic 
risk classification for gastric cancer
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Abstract 

Background:  Stromal cells play an important role in the process of tumor progression, but the relationship between 
stromal cells and metabolic reprogramming is not very clear in gastric cancer (GC).

Methods:  Metabolism-related genes associated with stromal cells were identified in The Cancer Genome Atlas 
(TCGA) and GSE84437 datasets, and the two datasets with 804 GC patients were integrated into a training cohort to 
establish the prognostic signature. Univariate Cox regression analysis was used to screen for prognosis-related genes. 
A risk score was constructed by LASSO regression analysis combined with multivariate Cox regression analysis. The 
patients were classified into groups with high and low risk according to the median value. Two independent cohorts, 
GSE62254 (n = 300) and GSE15459 (n = 191), were used to externally verify the risk score performance. The CIBERSORT 
method was applied to quantify the immune cell infiltration of all included samples.

Results:  A risk score consisting of 24 metabolic genes showed good performance in predicting the overall survival 
(OS) of GC patients in both the training (TCGA and GSE84437) and testing cohorts (GSE62254 and GSE15459). As 
the risk score increased, the patients’ risk of death increased. The risk score was an independent prognostic indicator 
in both the training and testing cohorts suggested by the univariate and multivariate Cox regression analyses. The 
patients were clustered into four subtypes according to the quantification of 22 kinds of immune cell infiltration (ICI). 
The proportion of ICI Cluster C with the best prognosis in the low-risk group was approximately twice as high as that 
in the high-risk group, and the risk score of ICI Cluster C was significantly lower than that of the other three subtypes.

Conclusion:  Our study proposed the first scheme for prognostic risk classification of GC from the perspective of 
tumor stromal cells and metabolic reprogramming, which may contribute to the development of therapeutic strate-
gies for GC.
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Background
Tumor tissue has a complex microenvironment. The oxy-
gen content, lactic acid concentration and nutrient sup-
ply in different regions of tumor tissue are different, but 
tumor cells can adapt to adversity and maintain rapid 
growth. This adaptation is achieved by changing the 
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energy metabolism of tumor cells, which is called energy 
metabolism reprogramming [1].

In recent years, studies have found that the occur-
rence and development of tumors are not only related to 
changes in the gene structure and phenotype of tumor 
cells but also closely related to the tumor microenviron-
ment [2]. Tumor stromal cells account for approximately 
50% of the total number of cells in tumor tissue [3] and 
play an important role in tumor metabolism, growth, 
metastasis, immune escape and chemotherapy resistance 
[4–6]. On one hand, stromal cells are induced by tumor 
cells to undergo metabolic reprogramming, increase 
aerobic glycolysis, produce a large number of metabo-
lites, generate nutrients, provide energy and nutrition for 
tumors, and maintain tumor biosynthesis; on the other 
hand, stromal cells can regulate the metabolic repro-
gramming of tumor cells to cope with the nutritional 
pressure of the tumor microenvironment [7, 8]. At pre-
sent, the metabolic reprogramming of stromal cells and 
the mechanism of promoting tumor metastasis and drug 
resistance are still unclear. However, blocking the inter-
action between stromal cells, tumors and the immune 
microenvironment provides a new research direction for 
tumor therapy.

The incidence of digestive system tumors is the high-
est in the world, approximately 50–60%, and the phe-
nomenon of metabolic reprogramming of tumor cells 
is widespread [9]. Gastric cancer (GC) accounts for the 
initiation of all kinds of digestive tract tumors and ranks 
third among all tumors [10]. In-depth study of the char-
acteristics and molecular mechanism of tumor metabolic 
reprogramming and the development of effective means 
to regulate metabolic reprogramming may provide new 
ideas for the comprehensive treatment of GC.

In this study, we attempted to explore the relationship 
between metabolic reprogramming and stromal cells, 
especially their effect on the prognosis of GC and discuss 
the possible mechanism to provide new directions for the 
treatment of GC.

Materials and methods
Data collection
The gene expression data and clinical information were 
obtained from The Cancer Genome Atlas (https://​por-
tal.​gdc.​cancer.​gov/) and the Gene Expression Omnibus 
(GEO) database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). 
We obeyed the access rules of the TCGA and GEO data-
bases during the process of data acquisition. The data uti-
lized in this work were acquired from public databases, 
and approval from the local ethics committee was not 
needed. The clinical data of the included samples are 
shown in Table 1. The workflow of the study is displayed 
in Additional file 1: Fig. S1.

Identification of metabolism‑related genes associated 
with the StromalScore
The ESTIMATE (Estimation of STromal and Immune 
cells in MAlignant Tumor tissues using Expression data) 
algorithm generates the stromal score by analyzing the 
specific gene expression characteristics of stromal cells 
to quantify the stromal components in the tumor tissues 
[11, 12]. We calculated the stromal score with the ESTI-
MATE algorithm to estimate the stromal cell abundance 
of the TCGA and GSE84437 datasets. Patients were 
assigned to high- and low-stromal score groups accord-
ing to the optimal cutoff determined by the R package 
“survminer” in the two independent cohorts. The metab-
olism-related genes that encoded all the known meta-
bolic enzymes and human transporters were obtained 
from a previously published paper [13]. The differentially 
expressed metabolism-related genes (DEMRGs) between 
the high- and low-StromalScore groups were identified 

Table 1  The clinical data of the included samples

TCGA​ GSE84437 GSE62254 GSE15459

Survival status

 Alive 226 224 148 96

 Dead 145 209 152 95

Gender

 Female 133 137 100 67

 Male 238 294 195 124

Age

 ≤ 65 163 282 172 87

 > 65 205 149 123 104

Stage

 I 30 31

 II 94 29

 III 95 72

 IV 76 59

Lauren classification

 Diffuse 134 75

 Intestinal 144 98

 Mixed 17 18

Stage T

 T1–2 96 49

 T3 167 92

 T4 100 290

Stage N

 N0 108 80

 N1 97 187

 N2 74 132

 N3 74 32

Lymphovascular

 Yes 171

 No 62

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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by the R package “limma” in the two independent data-
sets. A false discovery rate (FDR) < 0.001 was considered 
statistically significant.

Metabolic gene cluster analysis
The TCGA cohort with 371 GC patients and the 
GSE84437 with 433 GC patients were merged into a 
training cohort (n = 804). The batch effects between the 
TCGA and GSE84437 datasets were removed by the 
combat function in the R package “sva”. Cluster analysis 
was performed on the intersection DEMRGs of the two 
datasets based on the R package “consensusclusterplus”.

Development and validation of a metabolic‑related gene 
prognostic signature for GC
First, univariate Cox regression analysis was applied to 
screen DEMRGs associated with prognosis (p value < 0.05 
was considered significant). Next, the least absolute 
shrinkage and selection operator (LASSO) algorithm 
with penalty parameter tuning performed via tenfold 
cross‐validation was used to remove overfitting between 
the prognosis-related genes. Finally, genes with nonzero 
regression coefficients were included in multivariate 
Cox regression analyses. The formula of a risk score was 
formed by the multivariate Cox regression coefficient 
of each mRNA multiplied by each normalized mRNA 
expression level [14]. According to the median risk score, 
patients were divided into the low-risk group and the 
high-risk group. The R package "glmnet" was used to per-
form LASSO regression analysis. The R packages "sur-
vminer" and "survivalROC" were utilized to generate the 
Kaplan–Meier survival curve and the time-dependent 
ROC curve for assessing the predictive ability of the risk 
score. Two independent cohorts, GSE62254 (n = 300) 
and GSE15459 (n = 191), were used to externally verify 
the risk score performance.

The quantification of immune cell infiltration (ICI)
The CIBERSORT method was applied to quantify the 
immune cell infiltration of all included samples, and 
samples with p < 0.05 were clustered into different sub-
types according to the results of ICI with the R package 
“consensusclusterplus”.

Results
GC patients with a higher StromalScore had a poor 
prognosis
In terms of clinicopathological features, GC patients who 
were younger (age no more than 65 years old), had died, 
or had advanced stage disease (T3–4 and N1–3) exhib-
ited elevated stromal scores (Fig.  1A). The high stro-
mal score group had significantly lower overall survival 
(OS) than the low stromal score group in the TCGA and 

GSE84437 cohorts (Fig.  1B, C). We obtained 553 inter-
section genes by identifying the DEMRGs between the 
low- and high stromal score groups of the two independ-
ent cohorts (Fig. 1D).

The prognosis of GC was associated with the metabolic 
gene cluster
Using the K-means clustering algorithm, the CDF plot 
showed that the optimal number of clusters was 2 
(Fig. 2A) when the consensus matrix (k) varied from 2 to 
9. At this point, the intragroup showed the highest corre-
lation, and the intergroup showed the lowest correlation 
(Fig.  2B). Therefore, the training cohort was clustered 
into two subtypes based on the 553 intersecting meta-
bolic genes (Fig. 2C). The OS of subtype A was obviously 
worse than that of subtype B (Fig.  2D), indicating that 
these 553 intersection metabolic genes had a significant 
correlation with the OS of GC.

A 24‑metabolic gene prognostic signature established 
in the training cohort
Using a p value < 0.05 as a screening criterion, 179 genes 
were predicted to be prognostic candidate biomarkers 
by univariate Cox regression analysis (Additional file  3: 
Table  S1). Thirty-seven genes with nonzero LASSO 
regression coefficients were retained for multivariate Cox 
regression analysis (Additional file 2: Fig S2A). A model 
was chosen based on the Akaike information criterion 
(AIC) [15] using a stepwise algorithm, and 24 genes from 
the formula were used to calculate the risk score (Addi-
tional file  2: Fig S2B, Table  2). A total of 402 patients 
with a risk score greater than the median value (0.995) 
were assigned to the high-risk group, which showed sig-
nificantly reduced overall survival (OS) compared to the 
402 patients with a risk score less than the median value 
(0.995) (Fig. 3A). The area under the curve (AUC) values 
for the risk score predicting OS at 1, 3 and 5 years were 
0.694, 0.711 and 0.743, respectively (Fig. 3B). As the risk 
score increased, the patients’ risk of death increased 
(Fig. 3C–E).

The risk score was an independent prognostic indicator 
for GC
By analyzing 756 cases with complete clinical data in 
the training cohort, we found that risk score, T stage 
and N stage were independent prognostic indicators 
in univariate and multivariate Cox regression analysis 
(Fig.  4A, B). Next, the patients were divided into 11 
subgroups for verification according to age, sex, T stage 
and N stage. We found that the OS of the high-risk 
group was significantly lower than that of the low-risk 
group in each subgroup (Fig.  4C), indicating that the 
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risk score has universal applicability to the prognosis 
classification of GC patients.

Internal validation of the prognostic signature in the TCGA 
and GSE84437 cohorts
In the TCGA and GSE84437 cohorts, the high-risk 
patients showed significantly worse OS than the low-
risk patients (Fig.  5A, C). The AUC values of the risk 
score predicting the OS of GC patients in the TCGA 
cohort at 1, 3 and 5 years were 0.668, 0.717 and 0.709, 
respectively (Fig. 5B). The AUC values of the risk score 

predicting the OS of GC patients in the GSE84437 
cohort at 1, 3 and 5 years were 0.732, 0.719 and 0.761, 
respectively (Fig. 5D).

External validation of the prognostic signature 
in the GSE15459 and GSE62254 cohorts
Compared to the high-risk group, the low-risk group 
had better clinical outcomes in the GSE15459 and 
GSE62254 cohorts (Fig.  6A, D). As suggested by the 
univariate and multivariate Cox regression analyses, 
the risk score independently predicted the OS of GC 
patients (Fig. 6B, C, E, F).

Fig. 1  Identification of metabolism-related genes associated with the StromalScore. A Association between the StromalScore and 
clinicopathological features. B Kaplan–Meier survival analysis based on the StromalScore and OS in the TCGA cohort and the heatmap of DEMRGs 
between the high and low StromalScores in the TCGA cohort. C Kaplan–Meier survival analysis regarding the StromalScore and OS in the GSE84437 
cohort and the heatmap of DEMRGs between the high and low StromalScores in the GSE84437 cohort. D Venn plot of intersection genes
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Exploration of the relationship between immune cell 
infiltration characterization and the prognostic signature
To determine the underlying mechanism of the prog-
nostic signature, we identified differentially expressed 
genes (DEGs) between the high- and low-risk groups 
(Fig. 7A). GO term annotation showed that these DEGs 
were mainly involved in immune response-related bio-
logical processes (Fig. 7B). Thus, we hypothesized that 
the metabolic reprogramming signature may reshape 
the immune microenvironment of GC and attempted 

to investigate the association between the signa-
ture and immune cell infiltration (ICI). Patients were 
clustered into four subtypes according to the quanti-
fication of 22 kinds of ICIs. In terms of immune infil-
tration characteristics, the infiltration proportion of 
naïve B cells, resting memory CD4 T cells, and rest-
ing mast cells in ICI-A was the highest; ICI-B was 
accompanied by a large number of regulatory T cells 
(Tregs) and infiltrating M0 macrophages. The propor-
tion of M1 macrophages and CD8 T cells in ICI-C was 

Fig. 2  Metabolic gene cluster analysis. A CDF plot. B Clustering heatmap. C Heatmap of metabolic gene clusters. D Kaplan–Meier survival analysis 
regarding metabolic gene clusters and OS in the training cohort
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significantly higher than that in the other three sub-
types. ICI-D had the highest infiltration of plasma cells 
and the lowest infiltration of Tregs (Fig. 7C). Interest-
ingly, the expression levels of signature-related genes 
varied among different ICI subtypes (Fig.  7D), indi-
cating that the metabolic pattern of different ICI sub-
types also changed. Four ICI subtypes were distributed 
in both the high-risk and low-risk groups (Fig.  7E). 
Among them, the prognosis of ICI-C was significantly 
better than that of the other three subtypes (Fig.  7F). 
Furthermore, the risk score of ICI-C was significantly 
lower than that of the other three subtypes (Fig. 7G). It 
is worth mentioning that the ICI-C subtype accounted 
for 24% of the low-risk group, which was twice as high 
as that in the high-risk group (Fig. 7H).

Discussion
Tumors are composed of tumor cells and their microen-
vironment. Under the environmental selection pressure 
of the microenvironment and genetic factors, tumors 

evolve internally. At the same time, within the restriction 
of the genotype, the metabolic characteristics of tumors 
change adaptively. This process is called metabolic repro-
gramming [1, 16]. Numerous studies have shown that the 
presence of stromal cells induces tumor metabolic repro-
gramming, promotes tumor adaptation to nutritional 
deficiency, and maintains the occurrence and develop-
ment of tumors [7, 8, 17].

Due to in-depth study of tumor mechanisms and 
energy metabolism characteristics, a large number of 
antitumor drugs have been applied in the clinic. In the 
research and application of targeted tumor therapy, how 
to obtain long-term and effective therapeutic effects or 
find a better therapeutic strategy that can specifically kill 
tumor cells is a difficult problem in the clinic [18, 19]. The 
study of the tumor cell microenvironment and energy 
metabolism will be conducive to the targeted therapy of 
antitumor drugs. From the perspective of energy metab-
olism, we can explore the mechanism of tumor formation 
and formulate specific tumor treatment methods from 
the perspective of energy blocking to inhibit tumor pro-
liferation [20, 21].

Although the overall survival rate of gastric cancer 
(GC) has significantly improved with the diversification 
of treatment methods, as the malignant digestive tract 
tumor has the highest incidence in the world, the pre-
cise treatment of GC still faces some obstacles. A precise 
prognostic evaluation system is undoubtedly the key to 
determining the success or failure of GC treatment strat-
egies. The tumor microenvironment (TME) has become 
a new target for investigating tumor pathogenesis and 
curbing tumor progression. However, in the field of GC, 
related research is not sufficient, especially with regard to 
the role of stromal cells in the TME.

In this paper, we focused on tumor stromal cells and 
metabolic reprogramming as clues. We first found that 
the abundance of stromal cells had a significant effect on 
the OS of GC, and the expression pattern of GC meta-
bolic genes changed with the abundance of stromal cells. 
Based on cluster analysis of 553 overlapping metabolic 
genes from two independent datasets (TCGA, n = 371; 
GSE84437, n = 433), we found that the expression pat-
terns of metabolic genes related to the abundance of 
tumor stromal cells had a significant impact on the clini-
cal outcome of GC. As an independent prognostic indica-
tor for GC verified internally and externally, the 24-gene 
signature identified by univariate Cox regression analysis, 
lasso regression analysis and multivariate Cox regres-
sion analysis showed good performance in prognostic 
risk stratification of GC. By quantifying the infiltration 

Table 2  The gene name and coef

Gene name Coef

A4GALT − 0.14487

ABCA8 0.189365

ABCG4 0.405526

AGPAT4 − 0.20345

AKR1B1 0.037458

ATP8B2 − 0.10627

CHST3 0.060912

COX15 − 0.10802

CYP1B1 0.047021

ENTPD6 − 0.0271

NFS1 − 0.15496

NOS3 0.086105

NOX4 0.213579

NPR2 − 0.14221

ODC1 − 0.01242

PAPSS2 0.039518

PC 0.171004

PDE8B 0.158436

PTGIS − 0.06516

SDC2 0.02765

SFXN4 − 0.06339

SLC15A4 0.1562

SLC35A3 − 0.06357

SLC39A4 0.017992
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of immune cells, we found that differences in prognosis 
between the high- and low-risk groups may be related 
to immune cell infiltration characterization, and further 
confirmed that there is a complex interaction between 
metabolic reprogramming and the immune microenvi-
ronment of GC. At present, only a few gene functions in 
this signature have been clarified during the process of 
GC progression. For example, NOX4 regulates the prolif-
eration and apoptosis of GC cells through the generation 
of ROS and subsequent activation of GLI1 signaling [22]. 

The high expression of PTGIS could promote the infil-
tration of TAMs and Treg cells in the GC TME and lead 
to poor prognosis [23]. As there are few studies on the 
above molecules in GC, their specific biological effects 
need to be verified by large sample, multicenter trials in 
the future. However, the gradual deepening of the under-
standing of these new biomarkers will effectively promote 
the development of individualized and precise treatment 
for GC.

Fig. 3  Prognostic assessment of the risk score in the training cohort. A Kaplan–Meier survival analysis regarding risk score and OS in the training 
cohort. B Time-dependent ROC analysis of the risk score predicting the OS of patients in the training cohort. C–E Heatmap, risk score distribution 
and survival status of patients in the training cohort
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Using TCGA as a reference cohort, we compared the 
predictive value of the signature with previously pub-
lished GC metabolic prognostic signatures [24, 25]. 
Survival curves based on Luo’s metabolism signature 

[24] showed that that the median survival time of 
the high-risk group was 2  years and that of the low-
risk group was approximately 4  years, while survival 
curves based on our signature revealed that the median 

Fig. 4  Clinical subgroup validation of the prognostic risk score. A The forest plot of the univariate Cox analysis. B The forest plot of the multivariate 
Cox analysis. C Clinical subgroup survival analysis
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survival time of the high-risk group was significantly 
less than 2  years, and that of the low-risk group was 
more than 6 years. Obviously, our signature has better 
distinction in the prognosis of GC. The time-depend-
ent ROC curves showed that the AUC values for Yu’s 
seven-gene metabolic signature predicting OS at 3 and 
5  years were 0.694 and 0.674, respectively [25], while 

those for our signature was 0.717 and 0.709, respec-
tively. Therefore, compared with the results of previous 
studies, our signature improved the risk stratification of 
GC prognosis based on metabolic genes.

By analyzing high-throughput sequencing data from 
a public database, this study provides new insights into 

Fig. 5  Internal validation of the risk score in the TCGA and GSE84437 cohorts. A, B Kaplan–Meier survival analysis and time-dependent ROC analysis 
of the signature for predicting the OS of patients in the TCGA cohort. C, D Kaplan–Meier survival analysis and time-dependent ROC analysis of the 
signature predicting the OS of patients in the GSE84437 cohort
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the prognostic assessment of GC from the perspec-
tive of tumor stromal cells and metabolic reprogram-
ming. The results of internal and external validation 
showed that the prognostic model has great potential 

for clinical transformation. However, as a retrospective 
study, further prospective experiments and clinical tri-
als are urgently needed to verify the prognostic value of 
these metabolic genes.

Fig. 6  External validation of the risk score in the GSE15459 and GSE62254 cohorts. A–C Kaplan–Meier survival analysis, the forest plot of the 
univariate Cox analysis and the multivariate Cox analysis in the GSE15459 cohort. D–F Kaplan–Meier survival analysis, the forest plot of the 
univariate Cox analysis and the multivariate Cox analysis in the GSE62254 cohort
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Discussion
Our study proposed a scheme for prognostic risk classi-
fication of gastric cancer from the perspective of tumor 
stromal cells and metabolic reprogramming for the first 
time, which may contribute to the development of thera-
peutic strategies for gastric cancer.

Abbreviations
GC: Gastric cancer; TCGA​: The Cancer Genome Atlas; GEO: Gene Expression 
Ominibus; TME: Tumor microenvironment; ESTIMATE: Estimation of STromal 
and Immune cells in MAlignant Tumor tissues using Expression data; DEMRGs: 
Differential expressed metabolic-related genes; LASSO: Least absolute shrink-
age and selection operator; ROC: Receiver operating characteristic; AUC​: Area 
under curve; OS: Overall survival; ICI: Immune cell infiltration.

Fig. 7  Relationship between the risk score and immune cell infiltration (ICI) characterization. A Heatmap of DEGs between high- and low-risk 
groups. B GO term annotation of DEGs. C Boxplot of the four ICI clusters. D Distribution of four ICI clusters in high- and low-risk groups. 
E Distribution of ICI clusters in different risk groups F Kaplan–Meier survival analysis of different ICI clusters. G Boxplot of the risk score difference 
among the four ICI clusters. H Bar plot of proportions of the four ICI clusters in high- and low-risk groups
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