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Abstract 

Background:  Colon cancer remains one of the most common malignancies across the world. Thus far, a biomarker, 
which can comprehensively predict the survival outcomes, clinical characteristics, and therapeutic sensitivity, is still 
lacking.

Methods:  We leveraged transcriptomic data of colon cancer from the existing datasets and constructed immune-
related lncRNA (irlncRNA) pairs. After integrating with clinical survival data, we performed differential analysis and 
identified 11 irlncRNAs signature using Lasso regression analysis. We next plotted the 1-, 5-, and 10-year curve lines 
of receiver operating characteristics, calculated the areas under the curve, and recognized the optimal cutoff point. 
Then, we validated the pair-risk model in terms of the survival outcomes of the patients involved. Moreover, we tested 
the reliability of the model for predicting tumor aggressiveness and therapeutic susceptibility of colon cancer. Addi-
tionally, we reemployed the 11 of irlncRNAs involved in the pair-risk model to construct an expression-risk model to 
predict the prognostic outcomes of the patients involved.

Results:  We recognized a total of 377 differentially expressed irlncRNAs (DEirlcRNAs), including 28 low-expressed and 
349 high-expressed irlncRNAs in colon cancer patients. After performing a univariant Cox analysis, we identified 115 
risk irlncRNAs that were significantly correlated with survival outcomes of patients involved. By taking the overlap of 
the DEirlcRNAs and the risk irlncRNAs, we ultimately recognized 55 irlncRNAs as core irlncRNAs. Then, we established 
a Cox HR model (pair-risk model) as well as an expression HR model (exp-risk model) based on 11 of the 55 core 
irlncRNAs. We found that both of the two models significantly outperformed the commonly used clinical characteris-
tics, including age, T, N, and M stages when predicting survival outcomes. Moreover, we validated the pair-risk model 
as a potential tool for studying the tumor microenvironment of colon cancer and drug susceptibility. Additionally, 
we noticed that combinational use of the pair-risk model and the exp-risk model yielded a more robust approach for 
predicting the survival outcomes of patients with colon cancer.

Conclusions:  We recognized 11 irlncRNAs and created a pair-risk model and an exp-risk model, which have the 
potential to predict clinical characteristics of colon cancer, either solely or conjointly.
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Background
Although remarkable progress has been achieved in 
tackling colorectal cancer over the past decades, it 
remains the second in terms of mortality and the third 
in terms of incidence [1]. It is reported that colorectal 
cancer takes a toll on almost 700,000 people every year 
[2]. The global burden of colorectal cancer is projected 
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to be 2.2 million new cases by 2030, with 1.1 million 
deaths from the disease [3]. It is well established that 
both genetic predisposition and environmental factors 
play a role in developing colorectal cancer [4]. Nearly 
a fifth of patients with colorectal cancer might have a 
positive family history of gene-related diseases like 
familial adenomatous polyposis and hereditary non-
polyposis colorectal cancer [5]. Environmental fac-
tors, such as smoking, excessive alcohol consumption, 
and increased red meat intake, are mostly considered 
contributors to colorectal cancer [6]. While the high-
est rates of incidence are found in developed countries, 
the incidence of colorectal cancer appears to rapidly 
increase in developing nations due to more people 
shifting to Western dietary patterns and lifestyles [7].

Surgical resection of the tumor is still considered the 
cornerstone of curative-intent treatment. Benefiting from 
the improving surgical performance and equipment, 
some patients, especially those who are at early stages, 
can be cured without further interventions like radio-
therapy and chemotherapy [8]. By contrast, for those 
who are diagnosed with a local advanced or distant meta-
static tumor, systemic treatment, like adjuvant chemo-
therapy and immune therapy, should be considered or 
even prioritized [9]. However, the hard hurdle facing 
gastroenterologists and oncologists during the treat-
ment of colorectal cancer is how to stratify patients who 
are suitable to a specific regimen. Therefore, it is urgently 
required a parameter to robustly predict the clinical char-
acteristics and drug sensitivity of patients with colorectal 
cancer.

Long non-coding RNA (lncRNA), referred to as tran-
scripts larger than 200 nucleotides, are transcribed by 
RNA polymerase II but not translated into proteins [10]. 
Biologically, lncRNA exerts a variety of functions at dif-
ferent levels of gene expression, including transcription, 
post-transcription, and chromatin modification [11]. 
When it comes to their role in cancer, lncRNA plays 
important roles in the process of tumorigenesis and can-
cer cell evolution via their influence on gene expression, 
immune response, and drug resistance [12]. For exam-
ple, Carpenter et  al. reported that LincRNA-Cox2 acts 
as an essential mediator regulating both activation and 
repression of a series of immune gene expression in mac-
rophages [13]. Huang et al. found that lncRNA Morrbid 
subtly controls the life expectancy of neutrophils, eosin-
ophils, and monocytes through regulating the expres-
sion of Bim in response to extracellular stimulation [14]. 
In the context of the tumor, Li et  al. performed a com-
prehensive examination of the landscape of lncRNAs 
across 33 cancer types and found that the expression of 
lncRNAs tended to show a cancer-type specific pattern. 
Moreover, the perturbated transcription of lncRNA was 

significantly associated with the signature of immune cell 
infiltration [15].

However, the influence of irlncRNA expression profiles 
on colorectal cancer is rarely evaluated. In this study, the 
irlncRNA expression signature in colorectal cancer was 
analyzed from the TCGA dataset. After a series of analy-
ses and validation processes, we eventually established 
an 11 irlncRNA pairs-based risk assessment model that 
is closely associated with tumor aggressiveness, survival, 
and drug resistance of colon cancer. Additionally, based 
on the same pool of the core irlncRNAs, we constructed 
an expression risk (exp-risk) model that is indicative of 
clinical traits and prognostic outcomes. Importantly, 
by integrating those two risk models, we could more 
robustly foresee the survival outcomes of patients with 
colon cancer.

Methods
Data download and processing
The overall workflow is shown in Fig. 1. Briefly, after col-
lecting transcriptional profiles, 473 tumor samples and 
41 para-cancer normal samples with their clinical mate-
rials were downloaded from the TCGA-COAD dataset 
(https://​portal.​gdc.​cancer.​gov/). For subsequent analyses, 
the lncRNAs and mRNAs were distinguished into two 
separate matrices according to GTF files obtained from 
the Ensemble (http://​asia.​ensem​bl.​org).

Immune‑related genes and irlncRNAs
A total of 2483 immune-related genes were identified 
from the IMMPORT (https://​www.​immpo​rt.​org) and the 
corresponding expression matrix was extracted by Perl 
language. Then a co-expression analysis was conducted 
between the immune-related genes and the lncRNAs 
through the R package “limma”. The lncRNAs with the fil-
tering conditions of Pearson correlation coefficient > 0.5 
and P value < 0.001 were considered closely related to the 
immune-related genes and regarded as irlncRNAs.

Differential and survival analysis of irlncRNAs 
and construction of irlncRNA pairs
Differential analysis of the irlncRNAs was conducted 
by “limma”. The thresholds were set as logFC > 2 and P 
value < 0.05. Focusing on the irlncRNAs, a univariate Cox 
analysis was conducted. The overlap between the DEirl-
ncRNA and RISKirlncRNA was identified. R packages 
“pheatmap” and “survival” were utilized for the opera-
tion. To reduce the complex calculations caused by data 
correction and the relevant bias, the core irlncRNAs were 
circularly selected, and a 0-or-1 matrix was constructed. 
For each cycle, every two lncRNAs were selected and 
their expression levels were compared. Assuming C 
is defined as 1 if the expression level of irlncRNA A is 
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higher than irlncRNA B, otherwise, C is defined as 0. The 
irlncRNA pair was regarded as a valid match only when 
the proportion of irlncRNA pairs with an expression of 0 
or 1 accounted for more than 20% of the total pairs.

Establishment of irlncRNA‑pairs signature
After merging the irlncRNA pairs with clinical pro-
files, a uniCox survival analysis of irlncRNA pairs 
was performed using the R package “survival”. P 

value < 0.05 were considered as prognostically relevant. 
After obtaining the prognosis-related irlncRNA pairs, 
we further cross-validated the model and conducted a 
1000-times-repeated Lasso regression analysis to filter 
the ultimate irlncRNA pairs without redundant infor-
mation and construct the irlncRNA pairs in cross-
validation by R package “glmnet”. Then the package 
“survminer” was used to construct the uni- and multi-
Cox analysis to obtain the optimized risk formula.

Fig. 1  The process flow of the present study
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Validation of the model and clinical relevance
To verify the stability of the signature, we potted the 1-, 
5-, and 10-year overall survival (OS) ROC curves using 
R package “survivalROC”, following which the best cut-
off point based on the 5-year OS was identified using the 
riskScore formula: RiskScore =

∑
k

i=1
βiSi . The colon 

cancer patients involved were divided into high- and 
low-risk groups based on the cutoff that maximizes the 
area under the curve (AUC). To further visualize the risk 
model, we arranged the patients in terms of their risk 
values and presented their survival statuses with differ-
ent color dots. Then we generated the 12-year K-M sur-
vival curves for the two groups of patients by R package 
“survival” and “survminer” to compare the survival dif-
ferences. The package “survival” in R language was used 
to calculate the risk value, OS, and survival status of 
the individual patients, and P value < 0.05 was consid-
ered statistically significant. We then used the package 
“survivalROC” to input both the clinical information 
and the risk model to compare the accuracy of the risk 
model versus other clinical traits. Using R packages 
“limma” and “ggpubr”, we further revealed the correla-
tion between the risk scores and clinical traits. Clini-
cal traits were also charted between high- and low-risk 
groups by virtue of chi-square tests, and the results were 
shown in the clinical correlation heat map by R package 
“ComplexHeatmap”.

Immune correlation analysis
To explore the correlation between TME and the pair-risk 
model, we evaluated the stromal and immune infiltrating 
cells among the colon cancer patients by seven acknowl-
edged algorithms, including XCELL, TIMER, QUAN-
TISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and 
CIBERSORT. R packages “limma”, “scales”, “ggplot2”, and 
“ggtext” were utilized to visualize these results. Then, 
a Wilcoxon signed-rank test was performed to analyze 
the differences between high- and low-risk groups by 
“limma” and “ggpubr” packages.

Correlation analysis of immune genes
TGFB1 and LAG3 were typical immune checkpoints, 
which were well documented playing a critical role 
in immune therapy. The distinct expressions of them 
between the high- and low-risk groups were analyzed by 
“limma” and visualized by “ggpubr”. We labeled *** if the 
P value was less than 0.001, ** if the P value was less than 
0.01, and * if the P value was less than 0.05.

Drug sensitivity analysis
To identify the relationship between the pair-risk model 
and therapeutic efficacy, we performed a therapeutic 
response analysis of the colon cancer patients involved by 

calculating the IC50 which has a strong relationship with 
drug sensitivity. With the packages “limma”, “ggpubr”, 
“pRRophetic”, and “ggplot2”, drug sensitivities between 
the high- and low-risk groups were calculated by Wil-
coxon signed-rank test and the statistically significant 
results were shown as box drawings.

Expression risk model construction
After identifying the irlncRNAs in the context of colon 
cancer, we constructed an exp-risk model to obtain the 
risk values of each patient and divided them into high-
risk and low-risk groups. By using “survival” and “sur-
vminer”, we investigated whether there were differences 
in survival outcomes between the two groups. We also 
drew the ROC curves to predict the accuracy of our 
models. Next, we used the “pheatmap” in R package to 
plot risk curves. To make our study more convincing, we 
combined pair-risk score and expression-risk score, and 
divided the patients into 4 subgroups according to their 
different risk values in the two groups, and used the “sur-
vminer” and “survival” packages for statistical analysis. 
The presentation of the survival of patients in each sub-
group was performed using the “survminer” and “sur-
vival” packages.

Independent prognostic analysis
Next, with the "survival" in R package, we performed 
an independent prognostic analysis. We compared this 
model with our patient’s clinical traits to determine if 
the lncRNA-based model can be used as an independent 
prognostic indicator for colon cancer.

GSEA enrichment analysis
Finally, the GSEA enrichment analysis was conducted in 
the lncRNA-pair model and exp-model to demonstrate 
the activated KEGG pathways between the high- and 
low-risk groups.

Results
Identification of differentially expressed irlncRNAs 
(DEirlncRNAs) and risk irlncRNA in colon cancer
Based on Pearson Correlation Analysis, 739 irlncRNAs 
were met on our selection criteria (Additional file  1: 
Table S1). Among them, 28 low-expressed and 349 high-
expressed DEirlncRNAs were selected for further analy-
sis (Fig.  2A). Then a univariant cox analysis identified 
115 risk irlncRNAs that were significantly correlated 
with survival outcomes of patients with colon cancer 
(Fig. 2B, Additional file 2: Table S2). By taking the overlap 
of the DEirlcRNAs and the risk irlncRNAs, 55 irlncRNAs 
were recognized as core irlncRNAs (Fig.  2C, Additional 
file  3: Table  S3). Furthermore, we constructed a Cox 
HR model (pair-risk model) as well as an expression HR 



Page 5 of 18Xue et al. BMC Gastroenterology          (2022) 22:127 	

Fig. 2  Identification of differentially expressed irlncRNAs. A The heatmap represents a total of irlncRNAs in colon cancer using TCGA datasets and 
annotated by Ensembl. B The forest map shows the relationship between DEirlncRNAs and the survival outcomes of patients with colon cancer. C 
The core irlncRNAs were determined by intersecting DEirlncRNA and RISKirlncRNA



Page 6 of 18Xue et al. BMC Gastroenterology          (2022) 22:127 

model (exp-risk model) using a set of 11 core irlncRNAs 
(Tables  1, 2). Finally, we, separately, examined the rela-
tionship between the risk scores obtained from the two 
models and disease-related characteristics including clin-
ical traits, survival statuses, TME, chemotherapeutic sen-
sitivity, and signaling pathways.

Construction of core irlncRNA pairs and establish 
of a pair‑risk model
To develop a model being adopted without considering 
the differences between the profiles, we paired those core 
irlncRNAs and then correlated them with the survival 
outcomes. With a threshold of P value < 0.05 in the uni-
variate cox analysis, a total of 55 pairs of core irlncRNAs 
were determined to further construct the risk assessment 
model. After Lasso regression analysis of these 55 core 
irlncRNA pairs, 11 of them were finally selected for con-
structing the pair-risk model (Fig.  3A, B). We next per-
formed univariate and multivariate Cox analyses of these 

11 core irlncRNA pairs to corroborate their performance 
as independent clinical prognostic factors (Fig. 3C, D).

Evaluation of the clinical predictivity of the pair‑risk model
We drew the 1-year ROC curve and found the area under 
the curve (AUC) was 0.789, indicating that the model 
can be employed with high accuracy to reflect the short-
term overall survival outcomes of the patients involved 
(Fig. 4A). To further validate the stability and generaliz-
ability of the model, we plotted the 1-, 5-, and 10-year 
ROC curves (Fig.  4B). We noticed that the 5-year ROC 
curve was optimal with the best cutoff value of 0.843 
(Fig.  4C). Based on this optimal cutoff value, we then 
categorized the colon cancer patients involved into two 
high- and low-risk groups. Of these, 237 patients were 
classified into the high-risk group, while the remaining 
209 patients were allocated to the low-risk group. Next, 
by virtue of multi-metric ROC curves, we plotted the 
ROC curve of the risk model together with that of clini-
cal characteristics including age, T, N, and M stages, in 

Table 1  The risk model of immune lncRNA pairs

ID coef HR HR.95L HR.95H p value

AC105460.1|AL590483.1 0.434869442 1.544761365 0.972868122 2.45283777 0.065275621

AP001469.3|AL137782.1 1.173749307 3.234095554 1.349471659 7.750717832 0.008487151

LINC00941|AL590483.1 0.412896035 1.511187907 0.968800939 2.357232325 0.068723513

AP001453.2|AC027796.4  − 0.773706228 0.461300212 0.284593551 0.747725607 0.001691186

AC007128.1|AL590483.1 0.704647609 2.023133626 1.276459379 3.206580434 0.002711144

AC124067.4|SNHG7  − 0.467395261 0.626632358 0.39248827 1.000458211 0.050224749

LINC00513|AC010973.2  − 0.801575511 0.448621599 0.279579346 0.719871986 0.000893026

LINC00513|LENG8-AS1  − 0.518086862 0.595659037 0.324938192 1.091929779 0.093828869

FENDRR|NKILA  − 0.781365548 0.457780463 0.299833856 0.698930252 0.000295668

AL451050.2|AL137782.1 0.544271131 1.723351826 1.046348925 2.838385406 0.032522231

AL137782.1|AL354993.2  − 0.554021701 0.57463415 0.367625261 0.898209241 0.015056368

Table 2  The risk model of immune lncRNA expression

ID coef HR HR.95L HR.95H p value

AP001469.3 0.574505872 1.776252615 0.998051245 3.161233822 0.050780302

AP001453.2  − 0.363495071 0.695242154 0.432289518 1.118143358 0.133783345

AC007128.1 0.427241742 1.533023213 0.924508885 2.542063371 0.097768947

AC124067.4  − 0.269272158 0.763935316 0.611645819 0.954142331 0.017606639

LINC00513  − 0.419186774 0.657581365 0.470812319 0.918440818 0.013930483

FENDRR  − 0.310222378 0.733283872 0.517954308 1.038132571 0.080294969

AL137782.1  − 0.74476217 0.474847219 0.231960611 0.972061078 0.041601358

NKILA 0.514359624 1.672567087 1.217886075 2.296997001 0.001484107

AL590483.1  − 0.773741406 0.461283985 0.268857903 0.79143262 0.004966124

AC010973.2 1.34334251 3.831830054 2.112475134 6.950577227 9.80E−06

AL354993.2 0.422350358 1.525542918 0.972653578 2.392713343 0.065882942
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the identical diagram for comparison. The results showed 
that the AUC value of the risk model dramatically out-
performed that of clinical parameters, indicative of the 
high performance of this model (Fig. 4D).

The risk score of individual patients and their sur-
vival statuses were illustrated in Fig.  5A–B, from which 
we can recognize apparent differences in survival out-
comes between the two subgroups of the patients. Con-
cordantly, we conducted the Kaplan–Meier analysis 
and observed that the life expectancy of patients in the 
high-risk group was substantially decreased when com-
pared to patients in the low-risk group (P value < 0.001) 

(Fig.  5C). To estimate the relationship between the risk 
model and the clinical traits, we charted a clinical-related 
heat map. Our findings suggested that the T grade and N 
grade were significantly different between the two groups 
(Fig.  5D). We next examined the risk score of patients 
across clinical traits including tumor stage, T grade, and 
N grade, respectively. We observed that the differences 
across tumor stages, T grades, as well as N grades were 
all of statistical significance (Fig. 5E–G). Finally, we con-
ducted the univariate and multivariate cox analyses and 
found the pair-risk model can serve as an independent 
prognostic predictor (Fig. 5H and I).

Fig. 3  Construction of differentially expressed irlncRNA pairs. A Lasso coefficient profiles of the irlncRNAs were determined for establishing a 
pair-risk model. B The selection of the tuning parameter was performed via 10 times cross-validation in the Lasso model. C, D Forest maps show the 
clinical link of the 11 individual irlncRNA pairs identified by Cox proportional hazard regression to prognosis
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Taken together, the irlncRNAs-based pair-risk assess-
ment model not least can be utilized as a robust predictor 
of survival outcomes, but also serve as a reliable indicator 
of tumor aggressiveness of colon cancer.

Assessment of the pair‑risk model with tumor immune 
microenvironment
To develop a risk model to reflect the landscape of 
the immune microenvironment of patients with colon 
cancer, we first performed the correlation analysis of 
immune cells via 7 different algorithms, which are illus-
trated with distinct colors (Fig. 6, Additional file 4: Figure 
S1). Of note, the infiltrating patterns of B cells, dendritic 
cells, neutrophils, NK resting cells, CD4 + T memory 
cells, CD8 + T cells, T cell follicular helper were over-
lapped by more the two distinct algorithms, providing 
strong evidence for the risk model to predict the infiltra-
tion of certain types of immune cells (Fig. 6A–O).

Estimation of the chemotherapeutic responsiveness 
of colon cancer by the pair‑risk model
To investigate whether this risk model can be employed 
to predict the chemotherapeutic sensitivity for colon 
cancer patients, we examined the capacity of our pair-
risk model for forecasting drug sensitivity by analyz-
ing the immune-related gene expression as well as the 
differences of IC50 between the high- and low-risk 
groups. Our observations indicated that some immune-
correlative genes, such as TGFB2 and LAG3, were 
shown a significantly positive correlation with risk 
score value (Fig. 7A and B). Moreover, we explored the 
relation of this model to the expression levels of other 
immune checkpoints like LAIR1, CD300A, TIGIT, 
LILRB1, KIR3DL1, HAVCR2, CD274 and CTLA4. Our 
observations revealed that these immune checkpoints 
tended to be upregulated in the high-risk group ver-
sus the low-risk group, although the differences did not 

Fig. 4  Establishment of a pair-risk assessment model by differentially expressed lncRNA pairs. A Plot shows the maximum AUC value of the model 
based on the core irlncRNA pairs. B The 1-, 5-, and 10-year ROC curves of the model suggest that all AUC values are over 0.70. C The maximum 
inflection point is recognized by the AIC. D Comparing risk score ROC curves with other common clinical characteristics indicate the superiority of 
this pair-risk model
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Fig. 5  Survival predictability and clinical values of the risk model. A The risk plot shows the risk scores of individual patients in the high- and low-risk 
groups. B The scatter plot represents the survival status distribution of individual patients in the high- and low-risk groups. C Kaplan–Meier curves 
indicate patients in the low-risk group experiencing a longer survival time. D–G The strip chart (D) together with the box plots revealed that tumor 
grade (E), T stage (F), and N stage (G) were statistically significantly related to the risk score. H The univariate Cox regression analysis demonstrated 
that the T stage, N stage, M stage, and risk score were statistically different. I The multivariate Cox regression analyses indicated that the T stage, N 
stage, M stage, and risk score can serve as the independent prognostic predictor
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reach statistical significance (Additional file  5: Figure 
S2).

Additionally, we identified 5 chemotherapeutic 
drugs, including CCT007093, CCT018159, CGP.60474, 
CGP.082996, JNK.9L, that appeared to have an inverse cor-
relation between risk score and IC50 value (Fig.  8A–E), 
implicating that our risk model can serve as a tool to assist 
the chemotherapeutic medication.

Construction and validation of an exp‑risk model based 
on the selected core irlncRNAs
We next constructed an irlncRNA exp-risk model 
based on the 11 core irlncRNAs. Again, we divided the 
patients into a high-risk group and a low-risk group 
according to the median risk value of the expression 
risk model (Fig. 9A). Notably, patients in the high-risk 
group tended to have shorter life expectancy when 
compared to those in the low-risk group (Fig.  9B). 

Fig. 6  Investigation of tumor-related immune infiltrates by the pair-risk model. A–O The scatter chart and box plots revealed the relationship 
between the pair-risk model and the overlapped immune infiltrates by multiple algorithms
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Moreover, we illustrated the expression levels of the 
core lncRNAs involved in those risk groups (Fig.  9C). 
Additionally, we plotted the Kaplan–Meier curves 
comparing the survival outcomes of the groups and 
observed consistent results (Fig. 9D).

Independent prognostic analysis of the exp‑risk model
To evaluate whether this exp-risk model can be applied 
to predict prognostic outcomes of patients with colon 
cancer, we performed univariate independent prognos-
tic analysis. Our observations suggested that the risk 

Fig. 7  Evaluation of the relationship of the pair-risk model with certain immune-related genes. A, B The violin plots represent the relation of the 
pair-risk model with TGF-β and LAG3 expression

Fig. 8  Evaluation of the relationship of the pair-risk model with certain immune-related genes and therapeutics. A–E The box plots reflect the 
association of the pair-risk model with certain therapeutics
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Fig. 9  Illustration of the prognostic predictability of the exp-risk model. A The risk score distribution of individual colon cancer patients according 
to the exp-risk model. B The survival status of colon cancer patients involved based on the exp-risks core. C Expression heatmap of the eleven core 
irlncRNAs among the low-risk and high-risk groups. D Kaplan–Meier curve of the overall survival between the low-risk and high-risk groups
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score, alongside tumor stage, T grade, N grade, and M 
grade, was significantly associated with survival out-
comes of colon cancer patients (Fig.  10A). Moreover, 
we performed the multifactorial independent prog-
nostic analysis and recognized that only the risk score 
could serve as an independent high-risk factor for pre-
dicting the prognosis of colon cancer (Fig. 10B). Then, 
we plotted the curve of the exp-risk model together 
with the curves of other clinic traits. By comparing 
the AUC of the exp-risk model to those of the clinical 
traits, we found the AUC value of the exp-risk model is 
0.751, while the AUC values obtained from other clini-
cal traits were less than 0.75, indicating that this model 

outperforms clinical traits for predicting the survival 
outcomes of colon cancer patients (Fig. 10C).

Additionally, to explore whether combining the 
pair-risk model with the exp-risk model could pro-
duce a more robust prognostic predictability, we 
categorized the patients involved into four groups: 
high pair score + high expression score; high pair 
score + low expression score; low pair score + high 
expression score; low pair score + low expression 
score. As expected, we found patients in the high pair 
score + high expression score group had the remarkably 
worst life expectancy, with a 5-year survival rate of only 
around 25% (Fig. 10D).

Fig. 10  Evaluation of the relationship between the exp-risk model and clinical traits of colon cancer patients. A The univariate cox analysis revealed 
that age, stage, T, N, M, and exp-risk score can be regarded as risk factors. B The multiple cox analysis demonstrated that the exp-risk score remained 
as a risk factor when considering the whole characters. C The multiple ROC curves exhibited that the exp-risk score was the most optimal parameter 
to predict the prognosis of the colon cancer patients. D The evaluation of the exp-risk score and the pair-risk score shows robust predictability for 
the survival status of colon cancer patients
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GSEA enrichment analysis
Finally, we performed a GSEA enrichment analysis on 
both the pair-risk model and the exp-risk model. Our 
findings demonstrated that immune-related signaling 
and cancer-associated signaling pathways were signifi-
cantly overactivated in the high-risk group of both of the 
two models (Figs. 11A–L; 12A–L). These results further 
confirmed the accuracy and reliability of both the pair-
risk model and the exp-risk model.

Discussion
The advent of high-throughput technologies and the 
evolution of conventional approaches have left a burst of 
non-coding RNA recognition and exploration. Accumu-
lating studies have indicated that lncRNA participates in 
the development of malignant tumors via orchestrating 
the landscape of the tumor immune microenvironment 
[16]. Furthermore, a wealth of scientists has engaged in 
building up a model to predict the prognosis of cancer 

patients based on quantifying the expression levels of 
lncRNA. For example, Hong and colleagues constructed 
a risk assessment model based on the expression pattern 
of irlncRNA to predict the immune landscape and sur-
vival outcomes of hepatocellular carcinoma [17]. Zhong 
et  al. investigated RNA sequencing profiles and identi-
fied a prognostic irlncRNA-scoring system and three 
molecular subtypes in clear cell renal cell carcinoma [18]. 
Similarly, Zhou et al. discovered an irlncRNA biomarker 
that can be utilized not least to predict prognostic out-
comes of patients with diffuse large B cell lymphoma but 
can distinguish germinal center B-cell-like and activated 
B-cell-like subtypes [19]. However, due to the discrep-
ancy of samples among different databases, the lncRNA-
based risk assessment models mentioned above can 
hardly be transplanted to wider clinical practice. In the 
present study, we explored setting up a risk assessment 
model based on the irlncRNA pairing approach that cir-
cumvents the external interference among individual 

Fig. 11  GSEA enrichment analysis according to the pair-risk model. A–L GSEA enrichment analysis of signal pathway based on the exp-risk model
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patients and, simultaneously, has the potential to foresee 
the aggressiveness, immune signature, and drug sensitiv-
ity of colon cancer. Growing evidence suggests that lncR-
NAs participate in a variety of immune-related biological 
activities [20, 21].

Our efforts provided additive evidence on the impli-
cation of irlncRNAs in the process of tumor evolution. 
Indeed, amassing studies have narrated the immune-
related functions of some of the lncRNAs included in our 
risk model constructs. For example, FENDRR facilitates 
colorectal cancer growth and metastasis through inter-
action with miR-424-5p [22]. AC124067.4 was reported 
to affect the immunotherapy and prognosis outcomes 
of colon cancer patients via impacting genome insta-
bility [23]. lncRNA NKILA plays a crucial role in con-
straining tumor progression in a variety of cancer types, 
including colorectal cancer [24]. However, the role of 
several other lncRNAs involved in our risk models is not 
reported, which necessitates and navigates future studies 
to uncover their contribution to tumor progression.

It is well documented that the TME plays a crucial 
role in the development and progression of malignant 
carcinoma [25]. Immune infiltrates make up an essen-
tial part of the TME, exerting various functions that 
impact a series of bioactivities of cancer cells, such as 
promoting immune escape, accelerating tumor pro-
gression, and boosting drug resistance [26]. The com-
position of the TME is closely associated with the 
dynamics of tumorigenesis, malignant progression, 
and chemotherapeutic response [25, 27]. Intratumoral 
immune cells and fibroblasts constitute the major part 
of the TME and play crucial roles in determining the 
biological activities of cancer cells [28–30]. Therefore, 
improved knowledge of the architecture of tumor com-
ponents, such as immune cells and fibroblasts, can help 
oncologists to choose a suitable therapeutic regimen 
to treat cancer patients [31]. To determine the rela-
tionship between risk scores and TME components, 
we used seven distinct computational methods. Our 
observations indicated that the pair-risk score was 

Fig. 12  GSEA enrichment analysis according to the exp-risk model. A–L GSEA enrichment analysis of signal pathway based on the exp-risk model
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robustly indicative of the landscape of immune infiltra-
tion of colon cancer.

Additionally, we reused the 11 core lncRNAs to 
develop an exp-risk model, which also displayed a robust 
role in predicting the clinical and prognostic traits of 
colon cancer patients. Intriguingly, we found that the 
5-year-survival AUC value in the pair-risk model is 0.843 
and 0.751 in the exp-risk model, indicating the outper-
formance of the pair-risk model. Furthermore, our pair-
risk model showed superior over the previously reported 
lncRNA-based risk-assessment model. For example, Wu 
et  al. developed an irlncRNA-based model utilized to 
predict prognosis and therapeutic response in bladder 
cancer with a 5-year AUC value of merely 0.75 [32]. Lin 
et al. used 9 irlncRNAs to develop a risk model to predict 
the prognostic outcomes of colon cancer in the light of a 
5-year AUC value of 0.78 [33].

Finally, we scrutinized the performance of this model 
to predict immune-related gene expression between 
high- and low-risk groups. Increased TGF-β expression 
and activation of the TGF-β receptor-initiated signaling 
pathway are observed in various cancers [34]. Patients 
with a higher level of TGF-β gene expression are associ-
ated with a worse prognosis [35]. Mechanically, TGF-β 
signaling facilitates tumor progression via inducing epi-
thelial-to-mesenchymal transition and immune surveil-
lance evasion [36, 37]. In the light of our model, the level 
of TGF-β was higher in the high-risk model compared 
to the low-risk model, implying the overactivation of the 
TGF-related pathway in the high-risk model. Proposed 
as the next immune checkpoint, LAG3 is expressed on 
multiple cell types including CD4 + and CD8 + T cells 
and plays crucial roles in T cell regulation and homeosta-
sis [38]. As shown in Fig. 7, the level of LAG3 expression 
was higher in the high-risk group compared to the low-
risk group, demonstrating the potential effect of LAG3 
on shaping the tumor immune microenvironment. This 
finding is consistent with a recently published study dem-
onstrating that the expression level of LAG3 in colorectal 
cancer is tightly associated with the levels of AC124067.4, 
AL137782.1 and AC010973.2 which are involved in our 
models [39]. These results indicate a potential functional 
link of those lncRNAs to LAG3 expression.

Finally, we examined our model to predict the drug 
susceptibility between high- and low-risk groups. Acti-
vation of JNK signaling has been confirmed to render 
chemotherapy resistance in a variety of malignancies, 
including hepatocellular carcinoma [40], gastric cancer 
[41], and pancreatic cancer [42]. In the setting of colon 
cancer, activating JNK signaling pathway contributes 
to 5-fluorouracil resistance in p53-defective or mutant 
colon cancer cells by inducing pro-survival autophagy 
[43]. Our findings suggest that a high score of irlncRNA 

pairs is positively associated with JNN inhibitor resist-
ance. CCT007093 selectively and potently inhibits the 
activity of PPM1D, which overexpress on various cancers 
via activating p38 kinase activity [44]. CCT018159 works 
as an effective anticancer agent by inhibiting heat shock 
protein 90 (Hsp90) ATPase activity [45]. CGP.60474 and 
CGP.082996 are cyclin-dependent kinase-associated 
inhibitors and confer tumor cell death via modulating cell 
cycle arrest. Compensatory to previous investigations, 
this irlncRNA-based risk assessment model can serve as 
a chemotherapeutics-selecting tool to assist clinicians in 
determining suitable regimens.

Additionally, we reconstructed an exp-risk model by 
using the same pool of core irlncRNAs and found that the 
exp-risk model was also predictive of survival outcomes 
of patients with colon cancer with high performance. 
Importantly, the combination of the pair-risk model and 
exp-risk model can yield a more robust strategy to fore-
cast the prognostic outcomes of colon cancer patients. 
Those results mean that the irlncRNAs involved might 
play a vital role in the progression of colon cancer, which 
further highlights the potential of studying those irlncR-
NAs to obtain deeper insight into the evolution of the 
disease.

However, the present study has some shortcomings 
and limitations. For example, the risk assessment mod-
els were constructed entirely based on the raw dataset 
from TCGA, but not validated by the clinical samples, 
implying the lack of clinical evidence. Additionally, this 
lncRNA pairs-based risk model can merely be acted as a 
biomarker to predict survival outcomes, tumor aggres-
siveness, and therapeutic resistance, whereas it failed to 
figure out the specific biological function of individual 
lncRNAs involved in this model.

Conclusion
In conclusion, this study suggested a pair-risk assessment 
model, which was built based on 11 pairs of irlncRNAs. 
This risk model is not merely associated with the sur-
vival outcomes of the patients with colon cancer, but also 
linked to the tumor grade, tumor microenvironment, and 
chemotherapeutic resistance as well. We reused the core 
irlncRNAs involved to establish an exp-risk model, which 
is also indicative of survival outcomes of colon cancer 
patients. The identification of those models provides 
alternative measures to predict the biological characteris-
tics of colon cancer and guide the treatment scheme.

Abbreviations
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