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Abstract 

Background:  Accumulating studies have demonstrated that lncRNAs play vital roles in the prognosis of gastric 
cancer (GC); however, the prognostic value of N6-methyladenosine-related lncRNAs has not been fully reported in 
GC. This study aimed to construct and validate an m6A-related lncRNA pair signature (m6A-LPS) for predicting the 
prognosis of GC patients.

Methods:  GC cohort primary data were downloaded from The Cancer Genome Atlas. We analysed the coexpression 
of m6A regulators and lncRNAs to identify m6A-related lncRNAs. Based on cyclical single pairing along with a 0-or-1 
matrix and least absolute shrinkage and selection operator-penalized regression analyses, we constructed a novel 
prognostic signature of m6A-related lncRNA pairs with no dependence upon specific lncRNA expression levels. All 
patients were divided into high-risk and low-risk group based on the median risk score. The predictive reliability was 
evaluated in the testing dataset and whole dataset with receiver operating characteristic (ROC) curve analysis. Gene 
set enrichment analysis was used to identify potential pathways.

Results:  Fourteen m6A-related lncRNA pairs consisting of 25 unique lncRNAs were used to construct the m6A-LPS. 
Kaplan–Meier analysis showed that the high-risk group had poor prognosis. The area under the curve for 5-year 
overall survival was 0.906, 0.827, and 0.882 in the training dataset, testing dataset, and whole dataset, respectively, 
meaning that the m6A-LPS was highly accurate in predicting GC patient prognosis. The m6A-LPS served as an inde‑
pendent prognostic factor for GC patients after adjusting for other clinical factors (p < 0.05). The m6A-LPS had more 
accuracy and a higher ROC value than other prognostic models for GC. Functional analysis revealed that high-risk 
group samples mainly showed enrichment of extracellular matrix receptor interactions and focal adhesion. Moreover, 
N-cadherin and vimentin, known biomarkers of epithelial–mesenchymal transition, were highly expressed in high-risk 
group samples. The immune infiltration analysis showed that resting dendritic cells, monocytes, and resting memory 
CD4 T cells were significantly positively related to the risk score. Thus, m6A-LPS reflected the infiltration of several 
types of immune cells.

Conclusions:  The signature established by pairing m6A-related lncRNAs regardless of expression levels showed high 
and independent clinical prediction value in GC patients.
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Introduction
Gastric cancer (GC) is a major global disease, and it is 
the fifth most common cancer and the fourth most lethal 
malignancy. There were more than one million new cases 
and an estimated 769,000 deaths in 2020 [1], and more 
than 40% of the new cases and deaths occurred in China 
[2, 3]. In addition, 80% of patients with GC are diagnosed 
at an advanced stage [4]. Notably, the 5-year mortality 
rate for advanced GC is between 30 and 50% [5]. Overall, 
the prognosis of GC is not very optimistic, and it is nec-
essary to identify novel biomarkers to reliably predict the 
survival outcomes of GC patients.

Of the over 160 RNA post-transcriptional regulatory 
marks in multiple RNA species, N6-methyladenosine 
(m6A) is the most common form modification on mRNA 
in higher eukaryotes, and it plays a vital role in RNA 
splicing, export, stability and translation [6]. Recently, 
accumulating studies have revealed that m6A modifi-
cation is involved in multiple processes of tumorigen-
esis [7–11], and m6A modification, which is a reversible 
and dynamic process, is regulated by m6A regulators, 
including “writers” (methyltransferases), “readers” (sig-
nal transducers) and “erasers” (demethylases) [12]. Writ-
ers, including METTL3, METTL16, KIAA1429, WTAP, 
RBM15, RBM15B, and ZC3H13, mediate the RNA 
methylation modification process. Erasers include FTO 
and ALKBH5, and mediate the RNA demethylation pro-
cess. In addition, signal transducers, including YT521-B 
homology (YTH) domain family members (YTHDF1, 
YTHDF2, and YTHDF3), YTH domain-containing 
proteins (YTHDC1 and YTHDC2), heterogeneous 
nuclear ribonucleoproteins family members (HNRNP 
and HNRNPA2B1), and insulin-like growth factor 2 
mRNA-binding proteins (IGF2BPs; including IGF2BP1, 
IGF2BP2, and IGF2BP3), affect the reading of RNA 
methylation information, translation, stability and deg-
radation of downstream RNAs [4, 13, 14]. In summary, 
m6A RNA methylation has a significant impact on RNA 
production and metabolism and is involved in the patho-
genesis of multiple diseases, including GC [15].

Long non-coding RNAs (lncRNAs) represent the 
largest group of non-coding RNAs produced from the 
genome [16], and they are more than 200 nucleotides in 
length. Accumulating evidence has revealed that vari-
ous lncRNAs contribute to gene expression at both the 
post-transcriptional and transcriptional levels. Addition-
ally, aberrant lncRNA expression is strongly related to 
multiple cancers [12, 17] and serves as a diagnostic and 

prognostic marker for tumours [18]. Furthermore, lncR-
NAs can direct the expression of genes related to the 
activation of immune cells, thus altering the immune 
microenvironment and further contributing to the malig-
nant phenotypes of some cancers [17, 19]. m6A-related 
lncRNAs are potential biomarkers for predicting the 
overall survival (OS) of lower-grade glioma patients and 
might be novel therapeutic targets [12]. However, m6A-
related lncRNA signatures in GC patients need further 
exploration.

Epithelial–mesenchymal transition (EMT) is a pro-
cess that enables polarized epithelial cells to transition 
towards a mesenchymal phenotype with increased cel-
lular motility, and EMT occurs in many types of cancers 
[20]. In GC, the loss of E-cadherin expression stimulates 
cell transformation into a more invasive and less differ-
entiated state through the EMT process [21]. However, 
the association between m6A-related lncRNAs and EMT 
factors in GC is not entirely clear.

In the present study, we analysed the value of a m6A-
related lncRNA pair signature (m6A-LPS) in predicting 
the OS of GC patients and further validated the m6A-
LPS in the testing dataset and the whole dataset. Notably, 
m6A-LPS served as an independent prognostic marker 
for GC independent of other clinical variables. Addition-
ally, we identified differences in the expression of EMT 
biomarkers and immune cell infiltration between the 
high-risk and low-risk groups.

Materials and methods
Data collection and preparation, correlation analysis 
and differential expression analysis
All data, including the RNA-seq reads per kilobase per 
million (FPKM) data and clinical information of GC 
samples, were downloaded from The Cancer Genome 
Atlas (TCGA) database. By using GTF file annotation, 
mRNAs and lncRNAs were distinguished. m6A-related 
lncRNAs were defined as those with Pearson correlation 
coefficient > 0.4 and p < 0.001. Additionally, differential 
expression analysis of m6A-related lncRNAs between 
normal and adjacent tissue was performed using the R 
package limma, including thresholds of |log fold change 
(FC)| > 1.5 and false discovery rate (FDR) < 0.05.

lncRNA pairs
The differentially expressed m6A-related lncRNAs were 
cyclically single paired, and a lncRNA pair matrix was 
constructed. Briefly, if the expression level of the first 
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lncRNA was higher than that of the second lncRNA, 
the expression was assigned as 1; otherwise, the output 
was 0. In addition, the lncRNA pair was identified as a 
valid match when the number of pairs with an expression 
quantity of 0 or 1 accounted for more than 20% of the 
total lncRNA pairs.

Construction of a m6A‑LPS and evaluation of the relative 
risk score
First, we utilized univariate survival analysis based on 
the Kaplan–Meier method with the log-rank test to 
identify prognostic m6A-related lncRNA pairs, and a p 
value < 0.05 was considered to indicate statistical signifi-
cance. To avoid overfitting, least absolute shrinkage and 
selection operator (LASSO)-penalized regression analy-
sis was used to construct the best model. The following 
formula was used to calculate the risk score of each GC 
patient.

where “n” means the total number of lncRNA pairs 
included in the signature, “Expr” is the matrix value of 
the lncRNA (either 1 or 0), and “Coef” is the coefficient 
of the lncRNA pair estimated from the LASSO regression 
model. All of the GC patients were randomly divided into 
a training dataset and a testing dataset. Then, the patients 
were divided into a high-risk group and a low-risk group 
based on the median risk score. Kaplan–Meier analysis 
and ROC curve analysis were used to evaluate the OS 
prediction ability and prognostic accuracy of m6A-LPS 
in the training dataset, the testing dataset, and the whole 
dataset. The sensitivity and specificity of m6A-LPS for 
GC patients was compared with those of other clinico-
pathological characteristics using ROC curve analysis 
and decision curve analysis (DCA) [22].

Validation of the model and predictive nomogram
The chi-square test was used to confirm the relation-
ship between the m6A-LPS and clinicopathological 
characteristics, and univariate and multivariate Cox 
regression analyses were used to determine whether 
the m6A-LPS was an independent prognostic predictor. 
Kaplan–Meier analysis was used to confirm the predic-
tive value of the risk score in different clinicopathologi-
cal feature subgroups. Additionally, a nomogram was 
constructed by integrating the m6A-LPS and clinico-
pathological features to predict the 1-, 3-, and 5-year 
OS of GC patients.

m6A− LPS =

(

Exprgenepair - 1 × Coefgenepair - 1

)

+

(

Exprgenepair - 2 × Coef−genepair - 2

)

+ · · · + (Exprgenepair - n × Coefgenepair - n),

Investigation of tumour‑infiltrating immune cells
We used CIBERSORT to analyse the relationship 
between the risk score and immune cells. The relation-
ships were analysed by Spearman correlation analysis, 
and p < 0.05 was considered to indicate statistical signifi-
cance. The procedure used the R ggplot 2 package.

Gene set enrichment analysis (GSEA)
GSEA was used to quantify the underlying Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways asso-
ciated with the m6A-LPS, and p < 0.05 and FDR < 0.05 
were used as the criteria to identify significant pathways.

Statistical analysis
All primary data were downloaded from TCGA, and 
all statistical analyses were performed using R (version 
4.0.4) and PERL (version 5.32.1). Survival differences 
were determined using Kaplan–Meier curve and log-
rank test analyses, and the survival curves were plotted 
with the R package survmine. Multivariate analyses were 
conducted using the Cox proportional hazard regression 
model. Clinical data were analysed using the chi-square 
test or Fisher’s exact test. For all results, a p value < 0.05 
was considered to indicate statistical significance.

Result
Identification of differentially expressed m6A‑related 
lncRNAs
The transcriptome profiling data of GC samples, includ-
ing 32 adjacent and 375 tumour tissue samples, were 
downloaded from TCGA. We identified 14,086 lncRNAs 
in the GC dataset. A total of 23 m6A regulators were 
acquired from published studies (Table 1), and 10 of 23 
m6A regulators with hazard ratio (HR) > 1 and p < 0.05 in 
GC patients were further screened in Kaplan–Meier Plot-
ter (Table 2). Their expression in GC patients is shown in 
Fig. 1. Heatmap analysis showed that 10 m6A regulators 
were significantly more highly expressed in tumour tis-
sue than in normal tissue (p < 0.05), except for FTO and 
ALKBH5. Furthermore, 491 lncRNAs related to 23 m6A 
regulators were identified, and 444 m6A-related lncR-
NAs were further selected based on 10 m6A regulators 
for the next part of the study. A total of 85 differentially 

Table 1  The 23 known m6A regulators

Writers Readers Erasers

METTL3, METTL16 YTHDF1, YTHDF2, YTHDF3  FTO

RBM15, RBM15B HNRNPC, HNRNPA2B1 ALKBH5

ZC3H13, VIRMA IGF2BP1, IGF2BP2, IGF2BP3

KIAA1429 YTHDC1, YTHDC2

WTAP FMR1, LRPPRC, RBMX
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expressed m6A-related lncRNAs were identified (Fig. 2a), 
with filter conditions of| log FC| > 1.5 and FDR < 0.05; of 
these, 60 were upregulated and 25 were downregulated 
(Fig. 2b).

Establishment of m6A‑related lncRNA pairs and a risk 
assessment model
First, among the 85 differentially expressed m6A-related 
lncRNAs, 2069 valid m6A-related lncRNA pairs were 
identified by using an iteration loop and a 0-or-1 matrix. 
We randomly divided 347 patients into a training data-
set (N = 174) and a testing dataset (N = 173) (training 

dataset: test dataset = 1:1). We then used univariate Cox 
regression analysis and LASSO-penalized regression 
analysis to construct the m6A-LPS in the training data-
set (Fig. 3). Finally, we identified 14 m6A-related lncRNA 
pairs and their corresponding coefficients (Table 3). The 
risk scores of each patient in the training dataset, testing 
dataset, and the whole dataset were calculated based on 
the following risk formula:

Patients in the three datasets were further divided 
into a high-risk group and a low-risk group based on 

Riskscore =
(

− 0.313282155226672 ∗ AC004637.1|AP001107.5
)

+
(

0.533289565196042 ∗ AC010976.1|AC012020.1
)

+
(

0.358601343882613 ∗ AC073575.4|LINC01409
)

+
(

0.60937495396205 ∗ AC084083.1|IGBP1 - AS1
)

+
(

−0.38096026056395 ∗ AC091057.1|Z98884.2
)

+
(

−0.169592838571592 ∗ AL117379.1|AL662797.2
)

+
(

0.218483698750099 ∗ AL121832.3|AL512506.1
)

+
(

−0.321964769101311 ∗ AL353622.1|PART1
)

+
(

0.151028401592232 ∗ AL356489.2|IGBP1 - AS1
)

+
(

0.762974482208771 ∗ AL356489.2|PART1
)

+
(

0.296036005477854 ∗ AL357054.4|NALT1
)

+
(

−0.360994796555978 ∗ AL512506.1|MIR17HG
)

+
(

−0.268165795011373 ∗ AP001001.1|BVES - AS1
)

+
(

0.333810275163147 ∗ CARMN|NALT1
)

.

Table 2  The 10 selected m6A regulators from Kaplan–Meier 
Plotter

m6A regulators HR p

IGF2BP1 1.49 (1.16–1.91) 0.0015

IGF2BP2 1.38 (1.16–1.64) 0.00023

IGF2BP3 1.58 (1.33–1.88) 1.1e−07

METTL3 1.81 (1.53–2.15) 4.8e−12

METTL16 1.28 (1.03–1.59) 0.027

YTHDC1 1.61 (1.34–1.94) 2.1e−07

YTHDF1 1.33 (1.1–1.61) 0.0037

ZC3H13 1.69 (1.42–2.01) 1.9e−09

FTO 1.81 (1.46–2.22) 1.3e−08

ALKBH5 1.4 (1.11–1.75) 0.0036

Fig. 1  Expression of the 10 m6A regulators in GC patients. (***p < 0.001, **p < 0.01, *p < 0.05)
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Fig. 2  The 85 differently expressed lncRNAs in GC patients (a heatmap; b volcano plot)

Fig. 3  Characterization of the m6A-LPS. a LASSO coefficients of the 14 lncRNA pairs in GC patients. b Selection of the best parameters for GC 
patients on the basis of the LASSO model
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the median risk score. The Kaplan–Meier curve analy-
sis results showed that the low-risk group had a better 
prognosis than the high-risk group in the three data-
sets (p < 0.001) (Fig. 4a–c). Moreover, the area under the 
curve (AUC) for 5-year OS was 0.906, 0.827, and 0.882 
in the training dataset, testing dataset, and whole dataset, 
respectively (Fig. 4d–f). Furthermore, the AUC of m6A-
LPS was 0.882, exhibiting superior performance com-
pared to traditional clinicopathological characteristics in 
predicting the prognosis of GC patients (Fig. 4g–h).

Prognostic value of m6A‑LPS and its relationship 
with clinicopathological features
The distribution of m6A-LPS was plotted along with the 
corresponding survival status based on the risk curve 
in Fig.  5a–c. The results showed that as the risk score 
increased, the number of deaths and the proportion of 
high-risk patients increased in the three datasets. Sub-
sequently, to verify the clinical application value of the 
m6A-LPS, we performed univariate Cox regression 
analysis and multivariate Cox regression analysis of 
the m6A-LPS and clinicopathological characteristics, 
such as age, sex, grade and stage. The results revealed 
that m6A-LPS was an independent factor for predict-
ing the prognosis of GC (p < 0.001) (Fig. 5d, e). Finally, 
to determine the predictive value of the m6A-LPS in 
different clinicopathological feature subgroups, we 

performed a stratified survival analysis. The survival 
curve revealed that m6A-LPS was a stable prognos-
tic marker (p < 0.001) for GC patients stratified by age 
(<= 65 or > 65), sex (male or female), grade (G1-2 or 
G3), and stage (I–II or III–IV), as shown in Fig. 6. Fur-
thermore, we compared our m6A-LPS with three pub-
lished representative gene prognostic markers [23–25] 
using ROC curves for 1-, 3-, and 5-year OS, as shown in 
Fig. 7. The results showed that the 5-year AUC value of 
our prognostic model (the m6A-LPS) was 0.882, show-
ing obviously higher predictive value and accuracy than 
the existing prognostic models Lv.signature (5-year 
AUC = 0.630), Liu.signature (5-year AUC = 0.675), and 
Mao. signature (5-year AUC = 0.577). Finally, the hybrid 
nomogram incorporating clinicopathological features 
and the m6A-LPS was also found to be stable and accu-
rate, suggesting that it has potential value in the clinical 
management of GC patients (Fig. 8).

GSEA
GSEA was used to explore the potential functions or 
pathways of the m6A-LPS. We defined the high-risk 
group as cluster 2 and the low-risk group as cluster 1. We 
found that patients in the high-risk group mainly showed 
enrichment of the terms extracellular matrix (ECM) 
receptor interactions and focal adhesion, while the low-
risk group was characterized by enriched homologous 
recombination, oxidative phosphorylation and base exci-
sion repair (Fig. 9).

Association between tumour‑infiltrating immune cells 
and the prognostic model
To explore the potential relationship between m6A-LPS 
and infiltrating immune cells, the Wilcoxon signed-
rank test was utilized. The results revealed that mono-
cytes (R = 0.18, p = 0.0095), M2 macrophages (R = 0.15, 
p = 0.034), resting dendritic cells (R = 0.15, p = 0.0029), 
and resting memory CD4 T cells (R = 0.16, p = 0.017) 
were positively correlated with the risk score, while acti-
vated memory CD4 T cells (R = − 0.14, p = 0.044) were 
inversely correlated with the risk score in the CIBER-
SORT dataset (Fig. 10).

EMT biomarkers
Increasing evidence has revealed that EMT is the basis 
of invasion and metastatic cancer cell spreading [20]. 
Therefore, we further determined EMT biomarkers that 

Table 3  The 14 m6A-related lncRNA pairs in the prognostic 
signature

Signature pair Gene A Gene B Coef

Pair 1 AC004637.1 AP001107.5 − 0.313282155226672

Pair 2 AC010976.1 AC012020.1 0.533289565196042

Pair 3 AC073575.4 LINC01409 0.358601343882613

Pair 4 AC084083.1 IGBP1-AS1 0.60937495396205

Pair 5 AC091057.1 Z98884.2 − 0.38096026056395

Pair 6 AL117379.1 AL662797.2 − 0.169592838571592

Pair 7 AL121832.3 AL512506.1 0.218483698750099

Pair 8 AL353622.1 PART1 − 0.321964769101311

Pair 9 AL356489.2 IGBP1-AS1 0.151028401592232

Pair 10 AL356489.2 PART1 0.762974482208771

Pair 11 AL357054.4 NALT1 0.296036005477854

Pair 12 AL512506.1 MIR17HG − 0.360994796555978

Pair 13 AP001001.1 BVES-AS1 − 0.268165795011373

Pair 14 CARMN NALT1 0.333810275163147



Page 7 of 16Wang et al. BMC Gastroenterology           (2022) 22:76 	

were differentially expressed in the high-risk and low-
risk groups, and the results showed that N-cadherin 
and vimentin, which are markers of mesenchymal cells, 
were highly expressed in the high-risk group (p < 0.05); 

however, E-cadherin, a marker of epithelial cells, was 
not significantly different between the groups (p > 0.05) 
(Fig. 11).

Fig. 4  Kaplan–Meier survival curve (a–c) and ROC curve (d–f) analysis of the m6A-LPS between the high-risk group and low-risk group in 
the training dataset (a, d), testing dataset (b, e), and whole dataset (c, f). g Comparison of the 5-year ROC curves of the m6A-LPS and other 
clinicopathological features. h DCA of the risk factors



Page 8 of 16Wang et al. BMC Gastroenterology           (2022) 22:76 

Discussion
With the rapid development of high-throughput 
sequencing and bioinformatics analyses, we are enter-
ing a new era of biological big data. A tremendous 
amount of genomic information, including potential 
biomarkers, can be detected in clinical samples, pro-
moting the diagnosis, prognostication and predic-
tion of diseases [26]. Genomic signatures are novel 
biomarkers in which genomic data are combined in 
a defined manner and have been proven to be able 
to predict the prognosis of patients with diseases, 
especially those with malignant tumours [27]. GC 
remains one of the most prevalent and deadly can-
cers worldwide, especially in China. Due to the lack 
of diagnostic biomarkers, most patients are diag-
nosed at an advanced stage, and not all patients ben-
efit equally from surgical resection, chemotherapy or 

chemoradiotherapy because of disease heterogeneity 
[28]. In recent years, an increasing number of stud-
ies have focused on establishing signatures with both 
coding genes and noncoding RNAs to evaluate the 
prognosis of patients with cancer [29]. Several stud-
ies have revealed that m6A-related lncRNAs partici-
pate in the development of various cancers, including 
GC. Thus, exploring the role of lncRNAs in the prog-
nosis and diagnosis of GC will contribute to a better 
understanding of the molecular mechanism of GC 
[13]. However, most prognostic signatures published 
to date [13, 23–25, 30, 31] require proper standardiza-
tion of gene expression profile data for further analy-
sis, which is a major limitation in clinical application. 
In the current study, we employed a strategy consid-
ering immune-related gene pairs [28] and attempted 
to construct an efficient model with two-lncRNA 

Fig. 5  The distributions of the m6A-LPS along with the corresponding survival status based on the risk curve and the independence of the 
m6A-LPS in OS. (a the training dataset, b testing dataset, c whole dataset, d Univariate cox regression analysis, e Multivariate cox regression analysis)
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combinations regardless of exact expression levels 
[32]; this strategy not only eliminates batch effects 
among different platforms but also lacks the need for 
the normalization and scaling of data, thus success-
fully solving the problems surrounding the use of dif-
ferent data platforms to determine expression [33, 34].

First, raw lncRNA data were downloaded from the 
GC project of TCGA. By performing Pearson correla-
tion coefficient analysis, iteration loop, 0-or-1 matrix, 
univariate Cox regression and LASSO-penalized 
regression analyses, we constructed an m6A-LPS (con-
taining 14 m6A-related lncRNA pairs consisting of 

Fig. 6  Kaplan–Meier survival curves for the high-risk and low-risk groups stratified by clinical factors including age (a, b), sex (c, d), grade (e, f), and 
stage (g, h) in the whole dataset
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25 unique lncRNAs). Based on the median risk score, 
patients were divided into high-risk and low-risk 
groups, and Kaplan–Meier curve analysis revealed that 
the high-risk group had shorter OS. Further ROC anal-
ysis revealed that the m6A-LPS had a higher accuracy 
in predicting the 5-year OS of GC than other tradi-
tional clinicopathological features. Moreover, multi-
variate Cox regression analysis revealed that m6A-LPS 
was an independent risk factor for GC. Notably, we 
also compared the accuracy of our model with that 
of other reported models. The AUC values of the Lv 

et  al. seven-mRNA signature in predicting the 1-, 3-, 
and 5-year OS were 0.682, 0.603, and 0.630, respec-
tively, and the AUC values of the Liu et  al. four-gene 
signature in predicting the 1-, 3-, and 5-year OS were 
0.535, 0.617, and 0.675, respectively. The AUC values 
of the Mao et  al. six-gene signature in predicting the 
1-, 3-, and 5-year OS were 0.557, 0.615, and 0.577, 
respectively, while the AUCs for our m6A-LPS model 
in predicting the OS at 1, 3, and 5  years were 0.795, 
0.818, and 0.882, respectively. All of the above results 
demonstrate that our m6A-LPS provides efficient and 

Fig. 7  ROC analysis of different prognostic signatures. The 5-year overall survival AUC value of m6A-LPS model, Lv.signature model, Liu.signature 
model and Mao.signature model were 0.882, 0.630, 0.675 and 0.577, respectively
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robust prognostic prediction and might serve as an 
efficient biomarker for the prognosis of GC. In addi-
tion, a nomogram based on the m6A-LPS and clin-
icopathological factors may be applied in the clinical 
management of GC patients.

Furthermore, the GSEA results showed that patients 
in the high-risk group mainly showed enrichment of 
ECM receptor interactions and focal adhesion. Nota-
bly, previous studies have demonstrated that the ECM 
plays a vital role in cancer progression, and focal adhe-
sion kinase (FAK) is often associated with poor clinical 
outcome, highlighting FAK as a potential determinant 
of tumour progression and metastasis [35]. The above 
results provide new directions for exploring the poten-
tial molecular mechanisms of GC.

Moreover, previous studies revealed that tumour-
infiltrating immune cells can be used as independ-
ent prognostic markers in GC [36]. Therefore, we 
used CIBERSORT to explore the relationship between 
the risk score and tumour-infiltrating immune cells. 
The results showed that resting memory CD4 T cells, 

resting dendritic cells, monocytes, and M2 mac-
rophages were positively related to the risk score, while 
activated memory CD4 T cells were inversely corre-
lated with the risk score. Published studies have shown 
that increased monocytes and activated memory CD4 
T cells are related to the poor prognosis of GC [37, 38], 
which is consistent with our research.

Finally, we also analysed the differential expression of 
EMT biomarkers between the high-risk and low-risk 
groups because the EMT process is a key molecular step 
in distant metastasis and is associated with poor progno-
sis [39]. The results showed that N-cadherin and vimen-
tin, biomarkers of mesenchymal cells, were abundantly 
expressed in the high-risk group of patients. These results 
may provide new ideas for individualized treatment of 
GC patients.

Overall, we developed a prognostic model based on 14 
m6A-related lncRNA pairs, and only the relative expres-
sion of the pairs had to be detected instead of examining 
specific expression values of every lncRNA, significantly 
lowering the cost of sequencing and carrying high 

Fig. 8  A nomogram including both clinicopathological factors and the m6A-LPS (**p < 0.05, ***p < 0.001)
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Fig. 9  Gene set enrichment analysis of the m6A-LPS in the high-risk group (a, b) and low-risk group (c, d)
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clinical practicability. Furthermore, the prognostic model 
showed a robust, high value for predicting the survival of 
GC. However, this study has several limitations that need 
to be addressed. First, our prognostic model was con-
structed based only on TCGA data, and we failed to use 
other public databases or patient cohorts for further vali-
dation. Second, the relationship between m6A regulators 
and lncRNAs should be further explored in experiments 
in vitro and in vivo.

Conclusion
In the current study, we constructed an m6A-LPS prog-
nostic model with high predictive value that can serve as 
an independent prognostic factor for GC. To the best of 
our knowledge, this is the first study to construct a prog-
nostic model based on m6A-related lncRNA pairs that 
does not require assessment of the exact expression lev-
els of each lncRNA. Obviously, it has substantial value in 
clinical applications. Additionally, our results provide a 
new direction for individualized therapy.

Fig. 10  Potential relationships between the m6A-LPS and infiltrating immune cells
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