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Abstract 

Background:  MKI67 plays a vital role in the tumour microenvironment (TME) and congenital immunity. The present 
work focuses on exploring the prognosis prediction performance of MKI67 and its associations with T cell activity and 
immune infiltration within numerous cancers, especially hepatocellular liver carcinoma (LIHC).

Methods:  Oncomine, GEPIA2, and HPA were adopted to analyse MKI67 levels in different types of cancers. The prog‑
nostic prediction performance of MKI67 was evaluated through the TCGA portal, GEPIA2, LOGpc, and Kaplan–Meier 
Plotter databases. The associations of MKI67 with related gene marker sets and immune infiltration were inspected 
through TISIDB, GEPIA2, and TIMER. We chose MKI67 to analyse biological processes (BPs) and KEGG pathways related 
to the coexpressed genes. Furthermore, the gene–miRNA interaction network for MKI67 in liver cancer was also 
examined based on the miRWalk database.

Results:  MKI67 expression decreased in many cancers related to the dismal prognostic outcome of LIHC. We found 
that MKI67 significantly affected the prognosis of LIHC in terms of histology and grade. Increased MKI67 levels were 
directly proportional to the increased immune infiltration degrees of numerous immune cells and functional T cells, 
such as exhausted T cells. In addition, several critical genes related to exhausted T cells, including TIM-3, TIGIT, PD-1, 
LAG3, and CXCL13, were strongly related to MKI67. Further analyses showed that MKI67 was associated with adaptive 
immunity, cell adhesion molecules (CAMs), and chemokine/immune response signal transduction pathways.

Conclusion:  MKI67 acts as a prognostic prediction biomarker in several cancers, particularly LIHC. Upregulation of 
MKI67 elevates the degree of immune infiltration of many immune cell subtypes, including functional T cells, CD4+ 
T cells, and CD8+ T cells. Furthermore, MKI67 shows a close correlation with T cell exhaustion, which plays a vital 
role in promoting T cell exhaustion within LIHC. Detection of the MKI67 level contributes to prognosis prediction 
and MKI67 modulation within exhausted T cells, thus providing a new method to optimize the efficacy of anti-LIHC 
immunotherapy.
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Introduction
Liver hepatocellular carcinoma (LIHC), a frequently 
occurring liver cancer, affects 6/100,000 people every 
year and is a primary cause of cancer-associated mor-
tality [1, 2]. Current targeted drug therapy cannot pro-
vide a satisfactory therapeutic effect because of several 
diverse factors, including LIHC drug resistance, 
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biological behaviour, and clinical factors [3]. The 
uncertainty of the molecular mechanisms related to 
cancer genesis and development further complicates 
efficient anti-LIHC treatment [4]. In addition, the lack 
of disease stage- or tumour type-specific markers has 
dramatically hindered the prevention and management 
of LIHC. In this regard, it is necessary to elucidate the 
tumour-immune interaction phenotypes and identify 
new immune-associated therapeutic targets for liver 
cancers.

MKi67 expression is found within proliferating cells 
alone under general conditions [5]. Under normal 
conditions, MKi67 shows cortical nucleolar locali-
zation during interphase and is recruited into con-
densed chromosomes in mitosis [6, 7]. The MKi67 
gene located on chromosome 10q25-ter mainly func-
tions to encode 2 MKi67 isoforms (345 and 395  kDa, 
respectively) [8–10]. Additionally, the MKi67 level 
is elevated from the G1 phase to mitosis and shows a 
rapid decrease later. MKi67 protein expression can 
be evaluated within cell nuclei at the G1/S/G2 phase 
and mitosis rather than within quiescent cell nuclei at 
the G0 phase [11, 12]. As a result, MKi67 expression 
represents cell proliferation status. Ki67 shows high 
expression within cancer cells and can be regarded 
as a prognostic prediction factor for cancer [13, 14]. 
Furthermore, MKi67 has been studied extensively in 
retrospective articles as a candidate prognostic pre-
diction factor for cancer proliferation [15, 16]. Plenty 
of evidence supports the role of MKi67 in diagnosing 
cancer [17–20]. Cancer cells show high MK167 protein 
expression, and the positive MKI67 rate (referred to as 
the labelling index) is related to the clinicopathological 
characteristics and survival of diverse cancers, such as 
LIHC [21]. In an article enrolling LIHC cases receiv-
ing surgery, high MK167 expression was identified in 
cancer tissues, which predicted greater tumour grade 
and early cancer relapse [22, 23]. Furthermore, p53 
(encoded via a tumour suppressor gene) and MK167 
staining have been extensively adopted to predict 
LIHC survival postoperatively or even after liver trans-
plantation [24, 25]. The above results indicate that 
MKI67 plays a vital role in cancer migration, invasion, 
and progression.

The present work focuses on detecting MKI67 lev-
els and mutations in LIHC cases derived from pub-
licly accessible databases such as The Cancer Genome 
Atlas (TCGA). MKI67-related functional networks and 
genomic alterations within LIHC were evaluated based 
on multidimensional analysis, where the function of 
MKI67 in tumour immunity was also explored. The 
findings of this work can help identify novel diagnostic 
and therapeutic targets for LIHC.

Materials and methods
Analysis based on oncomine database
Oncomine is an integrative database covering 86,733 
samples and 715 gene expression profiling datasets devel-
oped to facilitate data mining [26]. It is utilized in the 
present work to assess MKI67 levels and patient progno-
sis in different types of cancers. (https://​www.​oncom​ine.​
org/​resou​rce/​login.​html).

Analysis based on TIMER database
Tumour Immune Estimation Resource (TIMER, cis-
trome. shinyapps.io/timer), a kind of easy-to-use web 
interface, has provided a computational approach for 
oncology investigators to comprehensively and dynami-
cally analyse and monitor cancer genomic and immuno-
logic data [27]. It contains gene expression profiling data 
of 10,897 samples covering 32 different kinds of TCGA-
derived cancers to estimate six tumour-infiltrating 
immune cells (TIICs), including CD4+ T cells, CD8+ T 
cells, dendritic cells (DCs), B cells, neutrophils, and mac-
rophages. This study adopted constrained least-squares 
fitting for specific gene levels, which negatively correlated 
with the tumour purity of all cancers [28], for predict-
ing the 6 TIIC subpopulation abundances. Furthermore, 
“Gene module” and “Diff Exp module” were utilized to 
analyse the MKI67 level within diverse cancers, as well as 
the associations of MKI67 level with 6 TIIC subpopula-
tion abundances. The Wilcoxon test assessed the signifi-
cant difference in MKI67 expression levels. We adopted 
statistical significance and purity-adjusted partial Spear-
man’s correlation to evaluate the association between 
MKI67 levels and immune infiltration. Tumour infiltra-
tion degrees for MKI67 across different cancers showing 
distinct somatic copy number alterations (SCNA) were 
compared using the “SCNA module” defined by GISTIC 
2.0. Typically, the module consists of high amplification 
(2), arm-level gain (1), diploid/normal (0), arm-level dele-
tion (− 1), and deep deletion (− 2) [29]. Furthermore, we 
utilized the “Correlation module” to explore the associa-
tions of MKI67 levels with TIIC gene markers carefully 
chosen based on previously published articles, includ-
ing markers for T cells, B cells, effector T cells, CD8+ 
T cells, central memory T cells, effector memory T 
cells, exhausted T cells, resident memory T cells, effec-
tor Treg cells, resting Treg cells, neutrophils, T-helper 
1 (Th1), dendritic cells (DCs), macrophages, mast cells, 
and natural killer cells (NK cells) [30–33]. We designed 
scatterplots of MKI67 gene expression in specific cancers 
using this module based on statistical significance and 
Spearman’s correlation analysis. We also displayed gene 
expression data in the form of a log2 RSEM (RNA-Seq by 
Expectation–Maximization).

https://www.oncomine.org/resource/login.html
https://www.oncomine.org/resource/login.html
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Analysis based on OnCoLnc database
OncoLnc covers the survival data for 21 TCGA-derived 
cancers along with the corresponding MiTranscriptome, 
mRNA, and miRNA data http://​www.​oncol​nc.​org/. The 
cases can be classified into different groups based on gene 
expression to obtain results using this database. OncoLnc 
contributes to viewing the Kaplan–Meier plot results for 
at least one cancer simultaneously. It offers Cox regres-
sion data and allows the extraction of sufficient data for 
analysis. In addition, users can also examine the prog-
nostic significance of the tested genes within 21 cancers 
simultaneously, facilitating the investigation of the vital 
functions of specific genes in cancer survival.

Analysis based on GEPIA2 database
The Gene Expression Profiling Interactive Analysis 2 
database (GEPIA2, http://​gepia2.​cancer-​pku.​cn/) repre-
sents a web-based approach to investigate gene expres-
sion and interactions in cancer tissues and noncarcinoma 
tissues based on Genotype-Tissue Expression (GTEx) 
and TCGA-derived data, which can further provide 
customizable functions, such as profiling plotting, dif-
ferential expression analysis, patient survival analysis, 
dimensionality reduction analysis, correlation analysis, 
and similar gene identification. [34] This study adopted 
“survival analysis” to examine the association of MKI67 
levels with the survival of diverse TCGA-derived cancers. 
In addition, we used Spearman’s correlation analysis to 
examine the association of MKI67 with the TIIC gene. 
Both cancer and noncarcinoma sample datasets were 
used in subsequent analyses.

Analysis based on Kaplan–Meier plotter database
The Kaplan–Meier Plotter database was developed as 
an online approach for rapidly assessing the influence 
of gene expression on 21 cancer survivors, as well as 
the four significant datasets, namely, breast cancer (BC, 
n = 6234), lung cancer (LC, n = 3452), ovarian cancer 
(n = 2190), and gastric cancer (GC, n = 1440) [35]. It was 
adopted to evaluate the associations of MKI67 levels with 
the survival of these four cancers. A pan-cancer data-
set was used to study MKI67 levels within diverse LIHC 
subtypes. Meanwhile, we determined HRs (95% CIs) and 
log-rank P values and plotted the survival curves (http://​
kmplot.​com/).

TISIDB database analysis
The TISIDB database covers 988 immune-associated 
anticancer genes reported in data from previous stud-
ies, noncarcinoma multiomics data, molecular profiling 
data, high-throughput screening (HTS) technologies, 
and different immunological data resources collected 

based on seven publicly accessible databases [36]. It anal-
yses the associations between the screened genes and 
chemokines, lymphocytes, and immunomodulators. The 
present work adopted TISIDB to assess the associations 
of Annexin levels with LIHC clinical stages and investi-
gate the relationships of MKI67 levels with immunomod-
ulators and lymphocytes (http://​cis.​hku.​hk/​TISIDB).

Analysis based on human protein atlas database
The HPA (https://​www.​prote​inatl​as.​org/) database covers 
all pathological and gene expression data collected from 
numerous studies conducted using diverse cell lines and 
tissue types [37]. This database was implemented in the 
present work to examine MKI67 levels within diverse tis-
sues along with MKI67 localization in cells. The direct 
links to these images according to the human protein 
atlas are as follows.

MEXPRESS database analysis
MEXPRESS (https://​mexpr​ess.​be/) represents a way to 
visualize data related to DNA methylation status, TCGA 
expression, clinical information, and the underlying asso-
ciations [38]. Here, we utilized MEXPRESS to investigate 
the SPC25 gene methylation status and the association of 
SPC25 mRNA levels with various clinical features among 
BC cases.

Analysis based on LinkedOmics database
LinkedOmics signifies an openly accessible database 
covering multiomics data of 32 TCGA-derived cancers 
[39]. We conducted Pearson’s test for statistical analyses 
of MKI67 coexpression by LinkedOmics of “LinkFinder.” 
The data are presented as heat map/volcano map/scat-
ter plots. In addition, we utilized LinkedOmics of the 
“LinkInterpreter” module for Gene Ontology (GO, Bio-
logical Process (BP)) annotation, Kyoto Encyclopedia of 
Genes and Genomes (KEGG) for pathway analysis, and 
Gene Set Enrichment Analysis (GSEA) for transcription 
factor-target/miRNA-target/kinase-target enrichments 
using the threshold of false discovery rate (FDR) < 0.05 
for 1000 iterations (http://​www.​linke​domics.​org).

Analysis based on miRWalk database
Target genes. MiRNAs screened through the miRWalk 
approaches were enrolled as possible MKI67-regulating 
miRNAs [40]. (http://​mirwa​lk.​umm.​uni-​heide​lberg.​de/).

Statistical methods
The Oncomine database-derived data was presented as 
ranking, fold-change (FC), and P-values. Survival curves 
were plotted from TCGA portal, GEPIA2, KM Plotter, 
LoGPC, and TIMER, (Cox) P-value and HR by the log-
rank test. Wilcoxon rank-sum test (two-sided) was used 

http://www.oncolnc.org/
http://gepia2.cancer-pku.cn/
http://kmplot.com/
http://kmplot.com/
http://cis.hku.hk/TISIDB
https://www.proteinatlas.org/
https://mexpress.be/
http://www.linkedomics.org
http://mirwalk.umm.uni-heidelberg.de/
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for comparing the infiltration degree of every SCNA cat-
egory with normal tissue. Spearman correlation was also 
adopted to assess the association between MKI67 level 
and other gene or immune infiltration levels in specific 
cancer types. P ≤ 0.05 indicated statistical significance, 
shown in the figures.

Results
MKI67 mRNA expression in diverse human cancers
We measured MKI67 mRNA expression in tumour and 
noncarcinoma samples from distinct cancers based on 
the Oncomine database to determine the differential 
MKI67 expression between cancer and noncarcinoma 
samples. According to our results, MKI67 expression 
was increased in bladder cancer, CNS and brain can-
cers, breast cancer (BC), head and neck cancer (HNC), 
colorectal cancer (CRC), oesophageal cancer (EC), 
cervical cancer, gastric cancer (GC), liver cancer, lung 
cancer (LC), lymphoma, ovarian cancer, pancreatic can-
cer, and sarcoma compared with noncarcinoma sam-
ples (Fig.  1a). In addition, other datasets also showed 
decreased levels of MKI67 mRNA expression in CNS 
and brain cancers and BC, kidney, and leukaemia can-
cers. Additional file  1: Table  S1 provides more data 
about MKI67 levels in diverse cancers. To better evalu-
ate MKI67 levels in human cancers, we analysed MKI67 
levels in various TCGA-derived cancers based on RNA-
seq data. Figure  1b shows MKI67 levels within cancer 
and noncarcinoma samples in TCGA-derived cancers. 
MKI67 levels decreased significantly in skin cutaneous 
melanoma (SKCM) relative to matched noncarcinoma 

samples. However, MKI67 levels increased within BRCA 
(invasive breast carcinoma), BLCA (urothelial bladder 
carcinoma), COAD (colon adenocarcinoma), CHOL 
(cholangiocarcinoma), HNSC (head and neck cancer), 
ESCA (oesophageal carcinoma), KIRP (kidney renal 
papillary cell carcinoma), KIRC (kidney renal clear cell 
carcinoma), KICH (kidney chromophobe), LIHC (hepa-
tocellular liver carcinoma), PRAD (prostate adenocar-
cinoma), LUSC (lung squamous cell carcinoma), LUAD 
(lung adenocarcinoma), STAD (stomach adenocarci-
noma), READ (rectum adenocarcinoma), UCEC (uterine 
corpus endometrial carcinoma) and THCA (thyroid car-
cinoma) relative to noncarcinoma samples.

Prognosis prediction performance of MKI67 in cancers
To assess the prognosis prediction performance of LIHC 
in cancer, the associations between the LIHC level and 
cancer survival were determined from three large-scale 
cancer databases containing a variety of samples. Typi-
cally, this study first determined the impact of LIHC 
expression on cancer prognostic outcome based on the 
OncoLnc database. Conspicuously, the LIHC level was 
markedly associated with the prognosis of eight cancer 
types: KIRC, BRCA, LGG, KIRP, LUAD, LIHC, SKCM, 
and PAAD (Table 1).

We conducted comprehensive analysis on the asso-
ciations of MKI67 level with patient survival from 3 
large-scale cancer databases consisting of sufficient 
samples to assess the prognosis prediction performance 
of MKI67 for cancer. Figure  2a illustrates the influ-
ence of MKI67 level on survival in cancer. The poor 

Fig. 1  MKI67 expression in diverse human cancer types. a MKI67 up-regulation or down-regulation in diverse cancer datasets relative to 
non-carcinoma samples obtained from Oncomine database. b MKI67 expression in diverse TCGA-derived cancers measured using TIMER
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overall survival (OS) and disease-free survival (DFS) of 
LIHC was significantly related to higher MKI67 levels 
(P = 4.5e−4, HR = 1.9; P = 4.2e−5, HR = 1.9, respectively) 
(Fig.  2b).  MKI67 upregulation predicted the survival 
of KIRP (OS: P = 0.00059, HR = 3); PFS: P = 6.9e−06, 
HR = 4); ACC (OS: (P = 3.6e−08, HR = 12); PFS: 
P = 0.00048, HR = 3.3); LGG (OS: P = 0.00015, HR = 2); 
PFS: P = 0.035, HR = 1.4) (Fig. 2c–e). Poor prognosis was 
also correlated with higher MKI67 expression in PAAD 
(OS: P = 6.7e−05, HR = 2.28); PFS: P = 0.014, HR = 2.85); 
SARC (OS: P = 0.0028, HR = 1.82); PFS: P = 0.0025, 
HR = 1.82); and STAD (OS: P = 0.01, HR = 0.65); PFS: 
P = 0.0042, HR = 0.39) (Additional file 1: Figure S1F–H). 
Nonetheless, poor prognosis in ESCA was associated 
with lower MKI67 expression (OS: P = 0.011, HR = 0.18; 
PFS: P = 0.045, HR = 0.37) (Additional file 1: Figure S1F). 
Furthermore, the level of MKI67 expression significantly 
differed in disease-free survival and overall survival 

with PADD (pancreatic adenocarcinoma), SARC (sar-
coma), and UVM (uveal melanoma) (Additional file  1: 
Figure S2A–C). Thereafter, we examined the association 
of MKI67 level with patient survival from 4 large-scale 
cancer datasets (including BC, LC, liver cancer and ovar-
ian cancer) based on Kaplan–Meier Plotter. Likewise, 
MKI67 upregulation predicted the dismal prognostic 
outcome of LIHC (OS: P = 0.00011, HR = 1.96 [1.38–
2.77]; PFS: P = 1.1e−05, HR = 2.14 [1.51–3.02]), BRCA 
(OS: P = 1e−06, HR = 1.73 [1.39–2.16]; PFS: P = 1.7e−10, 
HR = 1.43 [1.28–1.59]), OV (OS: P = 0.0079, HR = 1.23 
[1.05–1.43]; PFS: P = 0.028, HR = 1.17 [1.02–1.35]), 
and LUAD (OS: P < 1e−16, HR = 1.95 [1.69–2.25]; PFS: 
P = 5e−11, HR = 2.32 [1.79–3]) (Fig. 2f–i).

Effect of MKI67 on regulating immune molecules
Here, we examined Spearman’s correlations of MKI67 
levels with immunomodulators based on the TISIDB 

Table 1  Relation between MKI67 expression and patient prognosis of different cancer in OncoLnc database

Significantly different results are displayed in this table (cox P < 0.05)

Cancer Cox P value FDR Rank Median Mean

BLCA 0.017 8.30e−01 9.25e−01 14,656 2546.83 2892.19

BRCA​ 0.196 3.00e−02 3.18e−01 1558 1701.38 2293.89

CESC 0.007 9.60e−01 9.86e−01 15,876 4153.29 4477.01

COAD − 0.036 7.20e−01 9.11e−01 12,906 3605.44 3927.73

ESCA − 0.154 2.20e−01 9.72e−01 3737 5406.79 6246.63

GBM 0.051 5.70e−01 9.34e−01 10,197 809.93 1006.12

HNSC 0.037 6.10e−01 8.42e−01 12,004 3773.88 4310.74

KIRC 0.211 1.30e−02 3.84e−02 5613 388.75 544.72

KIRP 0.996 7.80e−09 2.07e−06 62 140.49 283.54

LAML − 0.011 9.20e−01 9.76e−01 14,335 4542.33 5680.33

LGG 0.249 1.10e−02 2.62e−02 7023 289.2 551.11

LIHC 0.382 4.50e−05 4.76e−03 148 624.13 964.54

LUAD 0.281 2.30e−04 1.34e−02 288 1309.51 1749.87

LUSC − 0.027 7.00e−01 9.33e−01 12,679 2607.62 2905.06

OV 0.069 3.40e−01 8.37e−01 6799 2414.05 2886.55

PAAD 0.358 1.30e−03 2.86e−02 772 1145.59 1363.72

READ − 0.073 7.70e−01 9.86e−01 12,829 3665.46 3858.49

SARC​ 0.157 1.10e−01 3.52e−01 4966 2138.02 2519.99

SKCM 0.172 1.10e−02 6.66e−02 2623 1768.63 2055.23

STAD − 0.151 7.40e−02 3.95e−01 3156 5150.04 5609.92

UCEC 0.06 6.10e−01 9.95e−01 10,064 2149.23 2492.38

(See figure on next page.)
Fig. 2  Prognosis prediction performance of MKI in diverse cancers measured using GEPIA2 (a–e) and Kaplan–Meier Plot (f–i). a Survival heatmap 
for MKI in 33 TCGA-derived cancers. Heatmap showing log10 HRs for MKI67. Blue and red blocks represent decreased and increased risks, separately. 
Rectangles with frames indicate the significance upon prognosis analysis. DFS and OS curves for b LIHC (n = 362), c KIRP (n = 281), d ACC (n = 76), e 
LGG (n = 514). OS and PFS survival curves in f liver cancer (n = 364, n = 316), g BC (n = 1402, n = 3951), h ovarian cancer (n = 1656, n = 1435), and i 
lung cancer (n = 1925, n = 982). OS overall survival, RFS relapse-free survival, DFS disease-free survival, PFS progression-free survival
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Fig. 2  (See legend on previous page.)
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database (Fig.  3). Figure  3a displays the association of 
MKI67 levels with TILs. The most significantly corre-
lated lymphocytes were activated CD4 T cells (Act-cd4; 
Spearman: ρ = 0.608, P < 2.2e−16), type 2 helper cells 
(Th2; Spearman: ρ = 0.372, P = 1.38e−13), and mono-
cytes (monocytes; Spearman: ρ = -0.352, P = 3.42e−12) 
(Fig.  3b). Immunomodulators are divided into major 
histocompatibility complex (MHC) molecules, immune 
inhibitors, and immunostimulators. Figure 3c reveals the 
association of MKI67 expression with immunoinhibi-
tors, among which the most significantly correlated ones 
were KDR (Spearman: ρ = -0.353, P = 2.96e−12), PDCD1 
(Spearman: ρ = 0.212, P = 3.92e−05) and CTLA4 (Spear-
man: ρ = 0.243, P = 2.23e−06) (Fig. 3d). Figure 3e displays 
the association of MKI67 levels with immunostimulators, 
where the most significantly correlated ones were MICB 
(Spearman: ρ = 0.379, P = 4.6e−14), CD276 (Spear-
man: ρ = 0.298, P = 4.95e−09), and TNFSF4 (Spearman: 
ρ = 0.333, P = 5.41e−11) (Fig.  3f ). Figure  3g represents 
the association of MKI67 levels with MHC molecules, 
among which the most significantly correlated are B2M 
(Spearman: ρ = 0.344, P = 1.21e−11), HLA-C (Spear-
man: ρ = 0.221, P = 1.67e−05), and HLA-E (Spearman: 
ρ = -0.28, P = 4.22e−08) (Fig.  3h). Therefore, MKI67 
is perhaps related to the regulation of these immune 
molecules.

MKI67 is related to immune infiltration degrees 
within LIHC
We can estimate lymph node metastasis (LNM) and the 
survival of cancer cases separately based on lymphocyte 
infiltration degrees within a tumour [41–43]. Therefore, 
we further analysed the association of MKI67 levels 
with immune cell infiltration degrees within 39 cancers 
based on the TIMER database (Additional file  1: Fig-
ure S2). Consequently, MKI67 levels were significantly 
related to tumour purity within 14 cancers and B cell 
infiltration degrees within 23 cancers. MKI67 was also 
related to CD4+ T cell infiltration degrees in 22 can-
cers, CD8+ T cell infiltration degrees in 19 cancers, DC 
infiltration degrees in 25 cancers, neutrophil infiltra-
tion degrees in 24 cancers, and macrophage infiltration 
degrees in 17 cancers. However, MKI67 expression was 
not related to the infiltration degrees of CD4+ T cells, 

CD8+ T cells, B cells, macrophages, DCs, or neutro-
phils within cholangiocarcinoma (CHOL) (Additional 
file  1: Figure S2H). In LIHC, MKI67 expression indi-
cated an increase in the infiltration degrees of CD4+ T 
cells (R = 0.381, P = 2.58e−13), CD8+ T cells (R = 0.331, 
P = 3.26e−10), DCs (R = 0.471, P = 3.55e−20), neu-
trophils (R = 0.41, P = 2.10e−15), and macrophages 
(R = 0.475, P = 1.30e−20) (Fig.  4a). Furthermore, in 
some types of cancers, including THCA, BRCA, SKCM, 
KIRC, and GBM, the immune infiltration degrees were 
markedly associated with MKI67 (Additional file  1: Fig-
ure S2). This study also presented Kaplan–Meier plots 
based on the TIMER database to explore the association 
of immune cell infiltration degrees with MKI67 expres-
sion in LIHC. Hence, MKI67 levels were not significantly 
related to the immune cell infiltration degree or sur-
vival of LIHC (Fig. 4b). We also determined the infiltra-
tion degrees in LIHC showing diverse SCNA for MKI67 
(Fig.  4c). According to the results obtained, MKI67 
exerts a vital role in modulating the infiltration degrees 
of immune cells in LIHC, especially for neutrophils and 
DCs (Fig.  4c). This study revealed that MKI67 had a 
stimulating effect on the degree of immune infiltration, 
particularly for CD4+ T cells, neutrophils, B cells, and 
dendritic cells, in LIHC.

Association of MKI67 with TIIC gene maker
We analysed the association of MKI67 levels with TIIC 
gene markers in LIHC based on GEPIA2 and TIMER to 
reveal the underlying relationship of MKI67 expression 
with tumour immune infiltration degree. Based on our 
previous study, we adopted commonly used TIIC gene 
markers and diverse functional T cells, including B cells, 
T cells, CD8+ T cells, monocytes, M1/M2 macrophages, 
TAMs, natural killer (NK) cells, neutrophils, mast cells, 
DCs, Tfhs, effector T cells, Th1/Th2/Th17 cells, central 
memory T cells, effector memory T cells, exhausted T 
cells, resident memory T cells, effector Treg T cells and 
resting Treg T cells. Table  2 reveals the tumour purity-
adjusted results of the correlation analysis for LIHC. 
MKI67 was markedly related to gene markers of mono-
cytes, B cells, M1/M2 macrophages, TAMs, CD8+ T 
cells, neutrophils, T cells, DCs, mast cells, NK cells, 
and many functional T cells, including effector memory 

Fig. 3  Spearman’s correlation between MKI67 and immunomodulators and lymphocytes (TISIDB). a Association of TILs abundances with MKI67 
level; b the three most significant TILs with the highest Spearman’s correlation with MKI67 levels; c association of increasing immune inhibitors 
with MKI67 level; d the three most significant immune inhibitors with the maximum Spearman’s correlation with MKI67 level; e association of 
immunostimulators abundances with MKI67 level; f the four most significant immunostimulators with the maximum Spearman’s correlation with 
MKI67 levels; g association of MHC molecules with MKI67 level; h the three most significant MHC molecules with the highest Spearman’s correlation 
with MKI67 level. Blue and red cells stand for negative and positive correlations, separately. Color intensity is directly proportional to correlation 
strength. MHC major histocompatibility complex, TILs tumor-infiltrating lymphocytes

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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T cells, effector T cells, resident memory T cells, cen-
tral memory T cells, resting Treg T cells, exhausted T 
cells, Th1/Th2/Th17/Tfh cells, and effector Treg T cells. 
Interestingly, such observations verified that MKI67 
was related to T cells, B cells, and functional T cells, as 
reported previously. It also illustrated the new relation-
ship of MKI67 with exhausted T cells; however, there is 
little relevant research confirming this relationship.

This study also examined correlations of MKI67 lev-
els with TIIC gene markers in LIHC and noncarci-
noma tissues using GEPIA2 (Table  3) to confirm the 
above observations. MKI67 correlated positively with 
TAMs (Cor = 0.27, P < 0.0001), monocytes (Cor = 0.28, 
P < 0.0001), CD8+ T cells (Cor = 0.2, P < 0.001), neu-
trophils (Cor = 0.37, P < 0.0001), M1 macrophages 
(Cor = 0.31, P < 0.0001), and several functional T 
cells, particularly effector memory T cells (Cor = 0.4, 
P < 0.0001) and effector T cells (Cor = 0.26, P < 0.0001). 
Here, MKI67 was significantly related to several critical 

genes involved in T cell exhaustion, including TIM-3 
(Cor = 0.14, P < 0.01), PD-1 (Cor = 0.15, P < 0.01), CXCL13 
(Cor = 0.085, P < 0.1), and TIGHT (Cor = 0.21, P < 0.0001). 
These genes have an essential effect on existing antitu-
mour immunotherapies. However, for the remaining 
immune cell types, such as NK cells, DCs, and neutro-
phils, we found statistically significant differences but a 
weak correlation strength compared with the above cell 
types. In comparison, MKI67 expression did not have a 
significant link with TIIC gene markers in noncarcinoma 
tissues.

Expression levels of MKI67 in LIHC
This study also examines MKI67 levels in diverse 
LIHC immune subtypes in the TISIDB. As a result, we 
detected MKI67 expression in 4 subtypes, namely, C1 
(wound healing), C2 [interferon γ (IFN-γ) dominance], 
C3 (inflammation), C4 (lymphocyte depletion), C5 
(immunological quiet), and C6 (TGF-b dominance). The 

Fig. 4  Association of MKI67 with immune infiltration degrees within LIHC. a Association of MKI67 level with immune infiltration degrees of CD8+ 
T cells, CD4+ T cells, B cells, neutrophils, macrophages, DCs, and tumor purity; b Kaplan–Meier plots concerning immune infiltration and MKI67 
expression within LIHC; c tumor-infiltration degrees of LIHC displaying diverse SCNAs defined using GISTIC 2.0, which include high amplification (2), 
arm-level gain (1), diploid/normal (0), arm-level deletion (− 1), and deep deletion (− 2)
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greatest MKI67 expression was detected in the C1 type, 
whereas the lowest was measured in the C3 type (Fig. 5a). 
We also measured MKI67 levels in diverse LIHC molec-
ular subtypes (iCluster:1, iCluster:2, and iCluster:3) in 
TISIDB [44]. According to our results, the greatest and 
lowest MKI67 levels were found in the iCluster: 1 and 
iCluster: 2 subtypes, respectively (Fig. 5b). Furthermore, 
MKI67 was closely associated with the tumour immune 

Table 2  Association of MKI67 with immune cell gene markers in 
LIHC detected through TIMER

Immune cell Gene markers None Purity

Cor P value Cor P value

CD8+ T cell CD8A 0.218 *** 0.211 ***

CD8B 0.180 ** 0.182 **

T cell CD6 0.214 *** 0.215 ***

CD3D 0.279 *** 0.278 ***

CD3E 0.217 *** 0.214 ***

SH2D1A 0.195 ** 0.194 **

TRAT1 0.183 ** 0.196 **

CD3G 0.279 *** 0.274 ***

CD2 0.224 *** 0.227 ***

B cell CD19 0.247 *** 0.242 ***

FCRL2 0.202 *** 0.214 ***

KIAA0125 0.146 * 0.146 *

TNFRSF17 0.133 0.01 0.142 *

SPIB 0.376 *** 0.357 ***

PNOC 0.197 ** 0.211 ***

CD79A 0.176 ** 0.172 *

Monocyte CD86 0.316 *** 0.314 ***

CD115(CSF1R) 0.184 ** 0.190 **

TAM CD68 0.272 *** 0.263 ***

IL10 0.249 *** 0.240 ***

M1 Macrophage IRF5 0.412 *** 0.411 ***

COX2(PTGS2) 0.138 * 0.151 *

M2 Macrophage CD163 0.106 0.041 0.109 0.042

MS4A4A 0.119 0.022 0.128 0.017

Neutrophils FPR1 0.239 *** 0.244 ***

SIGLEC5 0.296 *** 0.304 ***

CSF3R 0.307 *** 0.302 ***

FCGR3B 0.158 * 0.153 *

CEACAM3 0.120 0.021 0.136 0.017

CD116(ITGAM) 0.296 *** 0.312 ***

Natural killer cell XCL2 0.210 *** 0.226 ***

KIR2DL1 − 0.003 0.955 − 0.023 0.668

KIR2DL3 0.177 ** 0.189 **

KIR2DL4 0.177 ** 0.167 *

Dendritic cell CCL13 0.181 ** 0.162 *

CD209 0.171 ** 0.180 **

HSD11B1 − 0.352 *** − 0.344 ***

HLA-DPB1 0.185 ** 0.185 **

HLA-DQB1 0.148 * 0.148 *

HLA-DRA 0.196 ** 0.199 **

HLA-DPA1 0.176 ** 0.186 **

BCDA-1(CD1C) 0.136 * 0.141 *

BDCA-4(NRP1) 0.291 *** 0.296 ***

CD11c(ITGAX) 0.363 *** 0.354 ***

Mast cell TPSB2 − 0.028 0.595 − 0.044 0.413

HDC − 0.166 * − 0.175 *

Th1 IFN-γ(IFNG) 0.269 *** 0.282 ***

TAM, tumor-associated macrophage; LIHC, Liver hepatocellular carcinoma; Treg, 
regulatory T cells; Tfh, Follicular helper T cells; Th, T helper cells; Purity, tumor 
purity-adjusted correlation. None, unadjusted correlation; Cor, ρ-value upon 
Spearman correlation. Significance levels: * P < 0.05; ** P < 0.01; *** P < 0.001

Table 2  (continued)

Immune cell Gene markers None Purity

Cor P value Cor P value

TNF-α(TNF) 0.288 *** 0.299 ***

STAT4 0.259 *** 0.263 ***

STAT1 0.379 *** 0.379 ***

Th2 GATA3 0.250 *** 0.258 ***

STAT6 0.162 * 0.157 *

STAT5A 0.329 *** 0.329 ***

Tfh BCL6 0.172 ** 0.179 **

IL21 0.172 ** 0.178 **

Th17 STAT3 0.200 ** 0.198 **

IL17A 0.100 0.054 0.099 0.065

Effector T cell CX3CR1 0.199 ** 0.209 ***

FGFBP2 − 0.140 * − 0.120 0.026

FCGR3A 0.305 *** 0.309 ***

Effector memory 
T cell

PD-1 (PDCD1) 0.344 *** 0.332 ***

DUSP4 0.324 *** 0.330 ***

Central memory 
T cell

CCR7 0.131 0.011 0.136 0.011

SELL 0.175 ** 0.188 **

IL7R 0.176 ** 0.185 **

Resident 
memory T cell

CD69 0.176 ** 0.174 *

ITGAE 0.306 *** 0.297 ***

CXCR6 0.201 *** 0.203 **

MYADM 0.391 *** 0.375 ***

Exhausted T cell TIM-3 (HAVCR2) 0.344 *** 0.345 ***

TIGIT 0.325 *** 0.333 ***

LAG3 0.306 *** 0.295 ***

CXCL13 0.273 *** 0.295 ***

LAYN 0.227 *** 0.243 ***

Resting Treg 
T cell

FOXP3 0.194 ** 0.223 ***

IL2RA 0.308 *** 0.309 ***

Effector Treg 
T cell

CTLA4 0.354 *** 0.353 ***

CCR8 0.444 *** 0.456 ***

TNFRSF9 0.371 *** 0.386 ***
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Table 3  The correlations of MKI67 with immune cell gene markers for LIHC by GEPIA2

Immune cell Gene markers Tumor Tumor-sum Normal Tumor-sum

Cor P value Cor P value Cor P value Cor P value

CD8+ T cell CD8A 0.2 ** 0.2 ** 0.39 * 0.37 *

CD8B 0.23 *** 0.31 0.026

T cell CD6 0.12 0.024 0.2 ** 0.24 0.093 0.41 *

CD3D 0.23 *** 0.42 *

CD3E 0.13 * 0.34 0.017

SH2D1A 0.13 0.014 0.39 *

TRAT1 0.049 0.35 0.36 *

CD3G 0.24 *** 0.35 0.013

CD2 0.15 * 0.3 0.035

B cell CD19 0.096 0.066 0.17 * 0.28 0.051 0.44 *

FCRL2 0.068 0.19 0.5 **

KIAA0125 0.052 0.32 0.52 **

TNFRSF17 0.06 0.25 0.43 *

SPIB 0.13 0.01 0.22 0.12

PNOC 0.071 0.18 0.48 **

CD79A 0.062 0.24 0.38 *

Monocyte CD86 0.32 *** 0.28 *** 0.21 0.15 0.28 0.052

CD115(CSF1R) 0.25 *** 0.27 0.056

TAM CD68 0.26 *** 0.27 *** 0.2 0.15 0.21 0.14

IL10 0.21 *** 0.15 0.29

M1 Macrophage IRF5 0.31 *** 0.31 *** 0.13 0.37 0.07 0.63

COX2(PTGS2) 0.078 0.14 − 0.032 0.82

M2 Macrophage CD163 0.15 * 0.12 0.018 0.18 0.22 0.25 0.078

MS4A4A 0.16 * 0.22 0.12

Neutrophils FPR1 0.25 *** 0.37 *** − 0.035 0.81 0.15 0.3

SIGLEC5 0.31 *** − 0.011 0.94

CSF3R 0.22 *** 0.11 0.43

FCGR3B 0.05 0.34 0.17 0.24

CEACAM3 0.19 ** 0.064 0.66

CD116(ITGAM) 0.33 *** 0.36 0.011

CD8+ T  cell CD8A 0.2 ** 0.2 ** 0.39 * 0.37 *

CD8B 0.23 *** 0.31 0.026

T cell CD6 0.12 0.024 0.2 ** 0.24 0.093 0.41 *

CD3D 0.23 *** 0.42 *

CD3E 0.13 * 0.34 0.017

SH2D1A 0.13 0.014 0.39 *

TRAT1 0.049 0.35 0.36 *

CD3G 0.24 *** 0.35 0.013

CD2 0.15 * 0.3 0.035

B cell CD19 0.096 0.066 0.17 * 0.28 0.051 0.44 *

FCRL2 0.068 0.19 0.5 **

KIAA0125 0.052 0.32 0.52 **

TNFRSF17 0.06 0.25 0.43 *

SPIB 0.13 0.01 0.22 0.12

PNOC 0.071 0.18 0.48 **

CD79A 0.062 0.24 0.38 *

Monocyte CD86 0.32 *** 0.28 *** 0.21 0.15 0.28 0.052

CD115(CSF1R) 0.25 *** 0.27 0.056
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microenvironment (TIME). Shmulevich’s work revealed 
that six immune subtypes were clustered for cancer 
[45]. According to the GEPIA database, in compari-
son with LIHC at diverse stages, the upregulated level 
was detected at stage III, while the downregulated level 
was detected at stages I and IV (Fig. 5c). As revealed by 
HPA-based analysis, more intense MKI67 staining was 
detected within LIHC samples than in noncarcinoma 
samples (Fig. 5d). In addition, according to MEXPRESS-
based analysis, MKI67 levels were related to sample type, 
simplified tumour stage, and fibrosis risk score (Fig. 5e).

MKI67 co‑expression networks within LIHC
To further understand MKI67’s biological significance 
in LIHC, LinkedOmics of the “LinkFinder” module was 

adopted to check the MKI67 coexpression pattern. Fig-
ure 6a reveals that 13,073 genes (red dots) showed a posi-
tive correlation with MKI67, whereas 6848 (green dots) 
showed a negative correlation (P < 0.05). Figure  6b, c 
display the heatmaps for the 50 most significant MKI67-
related genes (both positive and negative). According to 
the GSEA-annotated GO terms, MKI67 coexpression 
genes were mainly associated with DNA recombination, 
chromosome segregation, and mitotic cell cycle phase 
transition in contrast to cellular amino acid metabolic 
process, translational elongation, steroid metabolic pro-
cess, protein maturation, lipid catabolic process, cofac-
tor biosynthetic process, and mitochondrial respiratory 
chain complex assembly (Fig. 6d). As revealed by KEGG 
analysis, these genes were primarily associated with the 

Cor, ρ value of Spearman’s correlation. Tumor, single gene marker correlation analysis in LIHC tissue. Normal, single gene marker correlation analysis in normal tissue; 
Cor, ρ-value upon Spearman correlation. Significance levels: *P < 0.05; **P < 0.01; ***P < 0.001

Table 3  (continued)

Immune cell Gene markers Tumor Tumor-sum Normal Tumor-sum

Cor P value Cor P value Cor P value Cor P value

TAM CD68 0.26 *** 0.27 *** 0.2 0.15 0.21 0.14

IL10 0.21 *** 0.15 0.29

M1 Macrophage IRF5 0.31 *** 0.31 *** 0.13 0.37 0.07 0.63

COX2(PTGS2) 0.078 0.14 − 0.032 0.82

M2 Macrophage CD163 0.15 * 0.12 0.018 0.18 0.22 0.25 0.078

MS4A4A 0.16 * 0.22 0.12

Neutrophils FPR1 0.25 *** 0.37 *** − 0.035 0.81 0.15 0.3

SIGLEC5 0.31 *** − 0.011 0.94

CSF3R 0.22 *** 0.11 0.43

FCGR3B 0.05 0.34 0.17 0.24

CEACAM3 0.19 ** 0.064 0.66

CD116(ITGAM) 0.33 *** 0.36 0.011

Central memory T cell CCR7 0.063 0.23 0.12 0.023 0.37 * 0.38 *

SELL 0.1 0.055 0.24 0.092

IL7R 0.042 0.43 0.31 0.031

Resident memory T cell CD69 0.063 0.23 0.28 *** 0.3 0.037 0.25 0.075

ITGAE 0.21 *** − 0.046 0.75

CXCR6 0.12 0.02 0.25 0.085

MYADM 0.27 *** − 0.092 0.52

Exhausted T cell TIM-3(HAVCR2) 0.14 * 0.3 *** 0.15 0.31 0.37 *

PD-1 (PDCD1) 0.15 * 0.46 **

TIGIT 0.21 *** 0.34 0.015

LAG3 0.16 * 0.15 0.31

CXCL13 0.085 0.1 0.28 0.049

LAYN 0.12 0.024 0.26 0.073

Resting Treg T cell FOXP3 0.011 0.84 0.18 ** 0.29 0.038 0.47 **

IL2RA 0.2 *** 0.18 0.21

Effector Treg T cell CTLA4 0.21 *** 0.27 *** 0.36 * 0.4 *

CCR8 0.23 *** 0.37 *

TNFRSF9 0.018 0.74 0.36 *
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Fig. 5  MKI67 expression levels in liver hepatocellular carcinoma. a MKI67 expression in TISIDB-derived LIHC having diverse molecular subtypes; b 
MKI67 expression in TISIDB-derived LIHC having diverse immune subtypes; c MKI67 expression in GEPIA-derived LIHC of diverse stages (MKI67 gene 
levels were calculated relative to the log counts per million mapped reads (log2CPM) in (a, b) and log2(TPM + 1) in (c); d immunohistochemistry 
(IHC) for MKI67 based on the HPA database; e MKI67 level related to PR/ER status and sample type. T: Protein levels of MKI67 in tumor tissue 
(staining: high; intensity: strong, quantity: 75–25%) https://​www.​prote​inatl​as.​org/​ENSG0​00001​48773-​MKI67/​patho​logy/​liver+​cancer#​img; N: Protein 
levels of MKI67 in normal tissue (staining: Not detected; intensity: weak, quantity: < 25%) https://​www.​prote​inatl​as.​org/​ENSG0​00001​48773-​MKI67/​
tissue/​liver#​img

https://www.proteinatlas.org/ENSG00000148773-MKI67/pathology/liver+cancer#img
https://www.proteinatlas.org/ENSG00000148773-MKI67/tissue/liver#img
https://www.proteinatlas.org/ENSG00000148773-MKI67/tissue/liver#img
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cell cycle, microRNAs in cancer, pyrimidine metabolism, 
spliceosomes, etc. (Fig.  6e). Notably, the 50 genes with 
the most significant positive correlation became high-
risk markers for LIHC, among which 49 showed great 
HRs (HR, P < 0.05) (Fig.  6f ). In contrast, 21 of the 50 
genes with a significant negative correlation showed low 
HRs (P < 0.05) (Fig. 6g).

Among these pathways, the hsa04151:PI3K-Akt sig-
nalling pathway, hsa04115: p53 signalling pathway, 
hsa04010: MAPK signalling pathway, hsa04310:Wnt sig-
nalling pathway, hsa04350:TGF-beta signalling pathway, 
and hsa04110: cell cycle pathway were involved in the 
tumorigenesis and pathogenesis of liver hepatocellular 
carcinoma (Fig. 7).

miRNA screening of regulatory MKI67
We applied miRWalk to screen the targeted miRNAs of 
MKI67. Then, we drew the miRNA-gene network using 
miRWalk. As illustrated in 6H, the interaction network 
consisted of MKI67 and 1003 miRNAs. Moreover, the 
contribution level of the miRNAs to MKI67 is repre-
sented as the number of lines. Additionally, the top 20 
miRNAs targeting MKI67 are presented in Fig. 6h.

Discussion
Risk factors for HCC include viral hepatitis infec-
tion, alcoholism, autoimmune diseases, and cholesta-
sis [46–49]. The combination of FFAs and cholesterol 
induces severe inflammation and steatohepatitis and, at 
the cellular level, impairs mitochondrial function and 
biogenesis [50]. Recently, medical experts believe that 
obesity-related nonalcoholic steatohepatitis (NASH) 
or nonalcoholic fatty liver disease (NAFLD) is the main 
cause of HCC [51, 52]. Some scholars have shown that 
sartan significantly improved the recurrence time of liver 
cancer patients after rf ablation but did not improve the 
five-year survival rate of LIHC. Stiffness declines signifi-
cantly after in hepatitis virus patients undergoing antivi-
ral therapy [53, 54]. Plenty of evidence supports the role 
of MKi67 in diagnosing cancer [17–20]. MKi67, located 
on chromosome 10q25-ter, can encode 2 isoforms (345 
and 395  kDa, respectively) [8–10]. The positive MKI67 
rate (referred to as the labelling index) is suggested to be 

related to the clinicopathological characteristics or the 
survival of cancers, such as LIHC [21]. MK167 upregu-
lation in cancer tissues is related to early cancer relapse 
and advanced tumour grade, according to an article 
enrolling LIHC cases receiving surgery [22, 23]. In addi-
tion, p53 and MK167 staining are used extensively for 
predicting LIHC prognosis postoperatively or even after 
liver transplantation [24, 25]. Such results indicate the 
vital role of MKI67 in tumour invasion, migration, and 
development. Nonetheless, the association of MKI67 
levels with T cell activity, prognosis, and immune infil-
tration in diverse cancers remains unclear. We obtained 
cancer samples from some large-scale databases for 
analysis. According to our results, MKI67 expression is 
related to the survival of diverse cancers, such as LIHC. 
Furthermore, MKI67 coexpression genes were suggested 
to play a significant role in the prognosis prediction of 
cancer. More investigations suggest that MKI67 levels are 
related to the degree of immune infiltration within LIHC. 
Therefore, MKI67 was identified as a candidate prog-
nostic biomarker for LIHC, which offers a new direction 
for understanding the association of MKI67 with T cell 
activity and immune infiltration.

The present study analysed MKI67 expression with 
prognosis expression profiles in different types of can-
cers based on individual datasets from Oncomine and 33 
TCGA-derived cancers in GEPIA2. MKI67 expression 
levels in cancer and noncarcinoma samples were stud-
ied. Based on the Oncomine database, MKI67 showed 
high expression in bladder cancer, CNS and brain, breast 
cancer (BC), colorectal cancer (CRC), cervical cancer, 
oesophageal cancer (EC), head and neck cancer (HNC), 
gastric cancer (GC), liver cancer, ovarian cancer, lung 
cancer (LC), lymphoma, sarcoma, and pancreatic can-
cer compared with noncarcinoma tissues. However, 
according to particular datasets, MKI67 was expressed 
at low levels in CNS and brain cancers, BC, leukaemia, 
and kidney cancer (Fig. 1a). However, TCGA-based data 
analysis revealed high expression of MKI67 in BLCA, 
KIRC, BRCA, CHOL, COAD, ESCA, HNC, KICH, KIRP, 
LUSC, LUAD, LIHC, READ, PRAD, STAD, UCEC, and 
THCA and low expression within SKCM relative to 
noncarcinoma samples (Fig.  1b). Human Protein Atlas 

(See figure on next page.)
Fig. 6  MKI67 co-expression genes in LIHC (LinkedOmics). a MKI67-related genes in LIHC discovered by Pearson’s test. Green and red dots indicate 
genes with significant negative and positive correlations with MKI67, separately; b, c Heatmaps displaying 50 most significant MKI67-related genes 
in LIHC (both positive and negative); d, e Significantly associated GO: BP annotations together with KEGG pathway analysis for MKI67 in LIHC; f, g 
survival heatmaps displaying the 50 most significant MKI67-related genes in LIHC (both positive and negative). Survival heatmaps displaying the 
log10 HRs of diverse genes. Blue and red blocks represent decreased and increased risks distinctly. Rectangles with frames represent significantly 
positive and negative outcomes upon prognosis analysis (P < 0.05). GO Gene Ontology, KEGG Kyoto Encyclopedia of Genes and Genomes, FDR false 
discovery rate, LIHC Liver hepatocellular carcinoma; h MKI67 and its predicted miRNAs (MKI67 presented in yellow circles and targeted miRNAs 
presented in blue circles. The interaction between the MKI67 and related miRNAs is represented in the form of lines)
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Fig. 6  (See legend on previous page.)
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data further verified MKI67 upregulation in liver can-
cer through immunohistochemistry (Fig.  5d). Different 
MKI67 levels measured in diverse cancers from distinct 
databases can provide a novel data extraction method 
and help illustrate the mechanisms associated with 
diverse biological characteristics. However, as discovered 
from the above databases, MKI67 expression is related to 
the prognosis of LIHC, KIRP, ACC, BRCA, and LUAD. 
According to TCGA-based analysis, MKI67 upregula-
tion is associated with many cancers’ dismal prognostic 
outcomes (PAAD, SARC, KIRP, and UVM). However, 
in STAD and ESCA, MKI67 downregulation predicted 
favourable patient survival. Concerning the GEPIA2 
datasets, MKI67 upregulation might serve as a factor to 
independently predict the dismal survival of LIHC and 
ACC (Fig. 2b, d). According to the Kaplan–Meier Plotter 
database, MKI67 upregulation related to high HRs pre-
dicted OS and PFS for LIHC, BRCA, and LUAD (Fig. 2f, 
g, i). Collectively, the above results suggest the feasibil-
ity of MKI67 as a prognostic biomarker for LIHC. The 
present work evaluated the association of MKI67 with 

immunity based on the TISIDB database. According to 
our results, MKI67L is closely related to lymphocytes 
(including monocytes, type 2 helper cells, and acti-
vated CD4 T cells), immunostimulators (such as MICB, 
CD276, and TNFSF4), immunoinhibitors (including KDR 
and PDCD1 CTLA4), and MHC molecules (including 
B2M and HLA-C HLA-E). Therefore, MKI67 can act as 
a novel target to investigate immune escape in LIHC cells 
and a therapeutic target for anti-LIHC immunotherapy.

Liver cancer is not a single disorder but is further clas-
sified into numerous molecular subtypes. According to 
the TISIDB database analysis, the MKI67 gene displayed 
the greatest expression within the iCluster: 1 subtype, 
while iCluster: 3 type ranked second, whereas MKI67 
was expressed at low levels in the iCluster: 2 type. Dif-
ferential MKI67 expression in LIHC of diverse immune 
subtypes was detected. The results suggested that the C1 
type displayed the most significant expression relative to 
those in the remaining three subtypes. Comprehensive 
analysis of MKI67 levels within diverse LIHC subtypes 

Fig. 7  Hepatocellular carcinoma pathway regulated by the MKI67 alteration in LIHC
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from diverse databases suggests the vital role of MKI67 
in microenvironment characteristics.

Given that MKI67 has an important effect on the 
immune system and predicts the prognosis of LIHC, 
this study examined the associations of MKI67 with 
immune infiltration degrees within LIHC (Fig.  4a). 
MKI67 upregulation is closely related to the degree of 
immune infiltration of many immune cell subpopula-
tions, such as B cells, neutrophils, macrophages, DCs, 
CD4+ T cells and CD8+ T cells (Fig.  4a). The var-
ied SCNA for MKI67 did not significantly affect the 
immune infiltration degrees of CD4+ T cells or B cells 
within LIHC, and considerable attention was devoted 
to the close links between MKI67 and immune cells 
(Fig. 4c). According to subsequent analyses of the rela-
tionships of MKI67 with immune cell gene markers, 
MKI67 interacted with many immune cells and diverse 
functional T cells, including central memory T cells, 
effector T cells, and exhausted T cells (Tables 2 and 3). 
T cell exhaustion accounts for a leading reason for weak 
anticancer immunity [, and the measures for prevent-
ing T cell exhaustion represent a key role in anticancer 
immunotherapy [55–57]. As revealed by our results, 
MKI67 upregulation showed a positive correlation with 
several critical genes related to exhausted T cells, such 
as TIM-3, PD-1, LAG3, and TIGIT. These act as thera-
peutic targets for immunotherapy [58, 59].

Interestingly, this study suggested that the dual role 
of MKI67 is specific. It also predicted that MKI67 
upregulation has prognostic outcomes for several can-
cers, including LIHC, whereas inducing T cell exhaus-
tion shows ineffective anticancer immunity. The above 
two inverse trends were not contradictory. Recently, 
some articles have shed more light on the exact related 
mechanisms. Consequently, MKI67 plays a critical and 
distinct role in normal immunity development and reg-
ulating the TME, which is essential to identify a specific 
stage.

Conclusion
The results in this work indicate the potential of MKI67 
as a prognostic biomarker for several cancers, particu-
larly LIHC. MKI67 upregulation is associated with more 
significant immune infiltration degrees of B cells, CD4+ 
T cells, CD8+ T cells, neutrophils, DCs, and many 
functional T cells. MKI67 exerts a stimulating effect 
on immunity, and it also shows a high correlation with 
exhausted T cells, which may serve as an essential factor 
to promote T cell exhaustion within LIHC. The detection 
of MKI67 levels possibly adds to prognosis prediction 
and modulation of MKI67 levels in exhausted T cells, 

which offers novel management for enhancing the effi-
cacy of anti-LIHC immunotherapy.
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