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Abstract 

Background:  Gastrointestinal adenocarcinoma (GIAD) has caused a serious disease burden globally. Targeted ther-
apy for the transforming growth factor beta (TGF-β) signaling pathway is becoming a reality. However, the molecular 
characterization of TGF-β associated signatures in GIAD requires further exploration.

Methods:  Multi-omics data were collected from TCGA and GEO database. A pivotal unsupervised clustering for 
TGF-β level was performed by distinguish status of TGF-β associated genes. We analyzed differential mRNAs, miRNAs, 
proteins gene mutations and copy number variations in both clusters for comparison. Enrichment of pathways and 
gene sets were identified in each type of GIAD. Then we performed differential mRNA related drug response by col-
lecting data from GDSC. At last, a summarized deep neural network for TGF-β status and GIADs was constracted.

Results:  The TGF-βhigh group had a worse prognosis in overall GIAD patients, and had a worse prognosis trend in 
gastric cancer and colon cancer specifically. Signatures (including mRNA and proteins) of the TGF-βhigh group is highly 
correlated with EMT. According to miRNA analysis, miR-215-3p, miR-378a-5p, and miR-194-3p may block the effect 
of TGF-β. Further genomic analysis showed that TGF-βlow group had more genomic changes in gastric cancer, such 
as TP53 mutation, EGFR amplification, and SMAD4 deletion. And drug response dataset revealed tumor-sensitive or 
tumor-resistant drugs corresponding to TGF-β associated mRNAs. Finally, the DNN model showed an excellent predic-
tive effect in predicting TGF-β status in different GIAD datasets.

Conclusions:  We provide molecular signatures associated with different levels of TGF-β to deepen the understand-
ing of the role of TGF-β in GIAD and provide potential drug possibilities for therapeutic targets in different levels of 
TGF-β in GIAD.
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Introduction
Cancer of the digestive tract share a large quantity of 
global cancer incidences. gastrointestinal adenocarci-
nomas (GIADs), including esophageal adenocarcinoma 
(ESAD), stomach adenocarcinoma (STAD), colon adeno-
carcinoma (COAD), rectum adenocarcinoma (READ), 
revealed a nonnegligible global health burden in recent 
years [1]. Previous studies have established that all types 
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of GIADs share the same features of DNA hypermethyla-
tion, mRNA expression and protein biomarkers, which 
confirmed GIAD in possession of exclusive character-
istics [2, 3]. Apart from traditional histologic classifica-
tion, an increasing number of molecular signatures were 
found across cancer. Models and clinical cohort were 
built to identify the function of molecular biomarkers. 
Thus, a dramatic increasing number of potential bio-
markers were found and reported, which made clinical 
diagnosis, prognostic and immunotherapy more effective 
and reliable.

Transforming growth factor beta (TGF-β) family 
consists great many of activation and inhibition fac-
tors which participate in a variety of cellular biological 
processes [4]. As a prototypical factor in TGF-β fam-
ily proteins, encoded by 33 genes in mammals, TGF-β 
is a multifunctional regulator involved in cell prolifera-
tion and differentiation [5], even in immune suppression 
within tumor microenvironment [6]. Some cell-surface 
transmembrane receptors with serine or threonine 
kinase activity can interact with activated TGF-βs, fol-
lowing phosphorylation of SMAD proteins, which then 
regulate the expression of TGF-β target genes [7]. Addi-
tionally, the activation of TGF-β signaling pathways can 
be negatively correlated with the development of COAD 
in multiple mechanisms [8]. And target genes of TGF-β 
are upregulated in ESAD samples while tumor progres-
sion is suppressed by TGF-β knockdown [9].

With the TGF-β signal transduction cascades being 
able to promote the growth and differentiation of tumor 
cells, and to inhibit cell proliferation in different tumor 
stages [4, 7, 10], it is still difficult to define the function 
of TGF-β signaling pathways in digestive tract adenocar-
cinomas. Moreover, TGF-β signaling targeted drugs have 
bright prospect in clinical application. Hence, more pro-
spective research for TGF-β associated molecular signa-
tures and possibility of targeted therapy in GIADs are in 
need.

We focused on multi-omics study across 4 cancer types 
in The Cancer Genome Atlas (TCGA) to elaborate dif-
ferent molecular pattern between TGF-β high expres-
sion (TGF-βhigh) and low expression (TGF-βlow) cluster. 
An array of transcription, post-modification, proteomic 
change, gene mutation, genomic alteration and what reg-
ulating function they induced were analyzed in cancers. 
And the potential effects of anticancer drugs targeted on 
TGF-β signaling were assessed.

Methods and materials
TCGA and GEO data collection and processing
We collected multi-omics data (including count data of 
RNA-seq and miRNA-seq, Reverse phase protein lysate 
microarray (RPPA), mutation maf files and survival data) 

of 4 type of gastrointestinal adenocarcinoma (ESAD, 
STAD, COAD, READ) from Xena Hub. Genes with aver-
age expression of less than 1 in RNA-seq and miRNA-seq 
as well as synonymous mutations in the mutation data 
were filtered. Level 4 Copy number variation (CNV) data 
processed by GISTIC2.0 was obtained from Firehouse. 
Additional sequencing data for gastrointestinal adeno-
carcinoma were downloaded from NCBI GEO, including 
GSE19417, GSE62254, GSE17536, GSE45404, along with 
GSE62254 and GSE17536 contained survival data.

Classification of TGF‑β status in GIAD
39 core TGF-β associated genes were selected as TGF-β 
gene expression signatures, including TGF-β ligands, 
receptors, receptor substrates, Co-SMAD, inhibitory 
Smads, adaptors, and Smad chaperones. The specific 
details are as follows: 43 TGF-β core genes were selected 
from previous study [11], and the genes with low expres-
sion level were further removed from the expression data 
of TCGA’s gastrointestinal adenocarcinoma (average 
count value less than 1), and 39 TGF-β core genes were 
finally obtained. In order to evaluate different TGF-β 
levels, two evaluation methods were used: (1) Unsuper-
vised K-means clustering analysis based on the 39 mRNA 
of TGF-β-related signatures for each sample in GIAD; 
(2) Gene set variation analysis based on single sample 
gene-set enrichment analysis (ssGSEA) method was used 
to calculate the TGF-β score of each sample in GIAD. 
Unsupervised clustering was performed by R package 
‘ConsensuClusterPlus’ [12], which is repeated 1000 times 
to ensure the stability of the results as in previous report 
[13].

Analysis of alterations between different TGF‑β status
For the mRNA, miRNA, and RPPA data in TGF-βhigh and 
TGF-βlow group in each GIAD, we used the permuta-
tion test for differential analysis as previously described 
[14]. For RNA-seq, we further screened mRNAs with the 
absolute value of logFC (log2 (Fold change) = mean value 
in TGF-βhigh / mean value in TGF-βlow) > 1; for miRNA, 
we set the absolute value of logFC > 0.5 as the threshold; 
for RPPA data, we set the difference greater than 0.2 as 
the significantly changed proteins. For the mutation data, 
we selected high frequency mutations of more than 10% 
in the TGF-βhigh or TGF-βlow group for analysis. Also, for 
CNV data, amplification or deletion regions exceeding 
10% in the TGF-βhigh or TGF-βlow group were selected for 
analysis. Fisher’s exact test was used to evaluate signifi-
cantly mutated genes, amplified and deleted chromosomal 
regions. We used FDR correction for all multiple tests, 
with FDR < 0.05 set as the threshold. Additionally, miRNA-
targeted mRNAs were extracted from miRTarBase [15] 
and miRDB [16]. The mRNAs targeted by miRNA in two 
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databases was intersected as the final targeted mRNAs. 
In order to analyze the correlation between miRNA and 
mRNA in different TGF-β status groups, principal compo-
nent analysis (PCA) was used to reduce dimensionality to 
obtain the first principal component (PC1), and then Pear-
son correlation evaluation was conducted for the PC1. The 
advantage of this approach is that it concentrates on scores 
that are correlated (or inversely correlated) between gene 
sets.

Enrichment analysis of pathways and gene set functions
We respectively performed Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis of the differen-
tially expressed mRNAs in each type of GIAD, including 
genes upregulated in the TGF-βhigh or TGF-βlow group. At 
the same time, gene-set enrichment analysis (GSEA) anal-
ysis was also used to analyze the significant up- or down-
regulated pathways and functions in TGF-βhigh group 
involved in each GIAD. Both KEGG and GSEA analyses 
are implemented on the R package ‘clusterProfiler’ [17]. The 
classic ‘Hallmark gene sets’ was selected as signatures for 
GSEA analysis. FDR < 0.05 was considered as significant 
enrichment.

Analysis of drug‑targeted TGF‑β associated with gene 
signatures
The Pearson coefficient (r) between the expression of 
TGF-β specific mRNAs and the drug response (IC50) were 
evaluated in digestive tract cell lines. The drug response 
data of cell lines was downloaded from Genomics of Drug 
Sensitivity in Cancer (GDSC) [18]. Pearson correlation 
coefficient and FDR were calculated in GDSC, in which 
|r|> 0.3 and FDR < 0.05 were considered to be significant. 
We also further evaluated the estimated drug responses 
of 138 drugs in the TCGA sample from a previous study 
[19]. For these estimated drug responses, we used the Wil-
coxon signed rank test, and FDR < 0.05 was considered to 
be differential.

Construction of deep neural network (DNN)
Using genomic data, we trained a deep neural network 
(DNN) model to predict the TGF-β status of different 
GIAD datasets (Fig. 7a). In addition to the input layer, we 
construct a four-layer neural network, including three hid-
den layers and an output layer. We labeled the TGF-βhigh 
group as 1 and the TGF-βlow group as 0. For a given hid-
den layer l, we use ReLu activation function. According to 
the output layer of the previous layer as the input of the 
next layer A[l−1], we can carry out forward propagation as 
follows:

where A[l] is the output matrix of the hidden layer, W [l] 
is the weight matrix, b[l] is a column vector, and X is the 
normalized matrix of input layer including the samples 
and gene signatures. Also, for the final output layer, we 
used the sigmoid activation function,

where Y is the probability vector of the output layer, 
and A[3] is the output matrix of the third hidden layer. We 
chose the loss function in logistic regression to measure 
the operation of the algorithm:

where J (W , b) is the cost function, m is the sample 
number, L

(

ŷ(i), y(i)
)

 is the lost function of a sample, and 
ŷ(i) and y(i) are output value of DNN and the real label 
value of sample i respectively. Then, in order to minimize 
(W , b) , we used the stochastic gradient descent training 
model to learn W [l] and b[l] . Learning rate (α) was set to 
be between 0.0005 and 0.005, and the epoch was set to be 
100 to evaluate the best model. The RMSprop algorithm 
was used to optimize the model. TCGA data were ran-
domly divided into training set and testing set according 
to 3:1. 75% of the TCGA samples were used for training, 
and the remaining 25% were used to test the performance 
of the model, which was evaluated by receiver operating 
characteristic (ROC) curve. Finally, we used this model to 
evaluate and analyze the TGF-β status on multiple GEO 
datasets.

Other information for analysis
All analysis was done on R (Version: 3.6.1) or Python 
(Version: 3.6). Due to different types of survival data, sur-
vival analysis in TCGA refers to overall survival (OS) and 
progression-free interval (PFI), and in GEO datasets to 
OS and disease-free survival (DFS). In addition to the sta-
tistical analysis mentioned above, the log-rank test was 
used for survival analysis, and all multiple statistical tests 
were FDR corrected.
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Fig. 1  Unsupervised classification of TGF-β status and prognosis in gastrointestinal adenocarcinoma (GIAD). a Heatmap based on cluster of 39 
TGF-β core genes. b Comparison of TGF-β scores in two clusters across different tumors. c–h Kaplan-survival curves (including overall survival and 
progression-free interval) for different TGF-β groups in GIAD. *P < 0.05, **P < 0.01, ***P < 0.001
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Result
Unsupervised classification of TGF‑β status and overall 
patterns of multi‑omics signatures between TGF‑βhigh 
and TGF‑βlow groups
Unsupervised clustering was used to identify the acti-
vation of respective driver genes between two clusters 
characterized by low and high distribution of TGF-β 
core genes (Fig.  1a). We used single-sample gene set 
enrichment analysis (ssGSEA) to further exhibit that 
cluster2 had higher TGF-β scores not only in various 
categories of GIAD but also in general (Fig.  1b). Cor-
relation analysis was performed to exhibit that TGF-β 
core genes were correlated to TGF-β score in a positive 
tendency (Additional file  1: Fig. S1a), which explained 
the consistency of gene activation and cluster outcome. 
Therefore, we set cluster1 as the TGF-βlow group and 
cluster2 as the TGF-βhigh group.

To analyze the prognosis of different TGF-β groups, 
we performed a survival analysis. As a whole, GIAD 
patients with high activation of TGF-β pathway had 
statistically significant poor prognosis (OS: HR = 1.374, 

95% CI 1.095–1.723, P = 0.0058; PFI: HR = 1.329, 95% 
CI 1.065–1.659, P = 0.012) (Fig. 1c, d). Specific to each 
tumor, although only STAD showed a significant differ-
ence between two groups (Fig.  1e, f ), a trend of poor 
prognosis still shown in TGF-βhigh-specific COAD and 
ESAD patients (Fig. 1g, h, Additional file 1: Fig. S1b–e), 
which partially elucidated the causality of poor progno-
sis and TGF-β pathway activity.

To further investigate TGF-β associated molecular 
features across GIAD, a procedure was designed with 
analytic pipeline outlined in Fig. 2a. Then, we analyzed 
various molecular signatures between previous cluster 
groups, including mRNA expression (approximately 
18,000 genes), miRNA expression (approximately 600 
miRNAs), protein expression (198 proteins), somatic 
mutation (frequency > 5% in at least one cluster) and 
copy number variation (CNV)  (Additional file  2). And 
the most striking signatures turned out to be mRNA, 
miRNA and protein expression (Fig.  2b). The number 
of mRNA genes ranged from 1865 in STAD to 5606 in 
READ, most of which surprisingly belonged to high 
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score group. The number of miRNAs showing signifi-
cant expression level ranged from 47 in READ to 276 
in STAD. Alterations of protein expression exhibited 
the largest number in STAD, and significant altera-
tions of low score group were more than high score 
group across cancer types. However, the differences in 
protein and mRNA expression between the two groups 
were not consistent. The possible reason is that, unlike 
the sequencing of all the genes encoding the transcrip-
tome, only 198 classical proteins were included in the 
study in the sequencing of proteins, and there were a 

lot of post-transcriptional modifications in these clas-
sical proteins, including phosphorylation, ubiquitin, 
glycosylation and the SUMOylation, which would affect 
the overall difference between mRNA and protein. We 
also found that STAD had a large amount of alterations 
in somatic mutation and CNV, while both clusters of 
other cancer types showed non-differential signatures. 
In aggregate, STAD got the most TGF-β associated sig-
natures, including 1865 mRNA genes, 276 miRNAs, 46 
proteins, 18 gene mutation and nearly 90 CNV regions.
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TGF‑β effects on mRNA and functional pathways
To understand the function of TGF-β associated mRNA 
signatures in digestive tract adenocarcinoma, we com-
pared mRNA expression levels for each gene. Then a 
robust rank aggregation (RRA) analysis was performed 
to rank top 50 genes with the highest expression in TGF-
βhigh group as previous research did [20] (Fig.  3a). For 
example, thrombospondin 4 [21] (THBS4), gremlin 1 [22] 
(GREM1), slit guidance ligand 2 [23] (SLIT2) and hemi-
centin-1 [24] (HMCN1, also known as fibulin-6) was able 
to mediate the function of cell proliferation, invasion and 
migration induced by TGF-β1 (Fig. 3a). Enriched KEGG 
pathway of differentially expressed mRNAs revealed 
that genes involved in extracellular matrix signaling, cell 
adhesion, classic PI3K/AKT signaling pathway and pro-
teoglycans expression were up-regulated in high TGF-β 
score samples (Fig.  3b). Meanwhile, due to the small 
number of down-regulated genes in the TGF-βhigh group 
across cancer types, there were fewer common genes and 
enriched pathways in the four tumors, with the result of 
pathway enrichment focused on ESAD and STAD (Addi-
tional file 1: Fig. S2a–b). To further manifest the enriched 
functions of differentially expressed mRNAs, we per-
formed gene set enrichment analysis (GSEA) on all of 
them (Fig.  3c). Some of the enriched functions across 
cancer types were associated with TGF-β induced bio-
logical process, such as epithelial mesenchymal transition 
(EMT) and inflammatory response, which was involved 
in tumor genesis and metastasis [6, 25]. We also noticed 
that signaling pathways of immune regulation and cellu-
lar metabolism were significantly enhanced. In general, 
the results were unsurprisingly consistent with previ-
ous findings. It is noteworthy that the EMT showed the 
most significant enrichment in our analysis, suggesting 
that TGF-β signaling pathway in GIAD may promote the 
occurrence of EMT and tumor metastasis, which is also 
consistent with previous research reports [26].

Comparison of miRNA, and protein expression in different 
TGF‑β status
As we all known that miRNA is the key regulator in 
post-transcription of gene expression [13]. In our study, 
differentially expressed miRNAs were detected across 
cancer types. Principal component analysis and correla-
tion analysis were implemented to describe the correla-
tion in between differentially expressed miRNAs and 

their predicted downstream regulation targets, mRNAs. 
And the results testified a negative regulation function 
of high expressed miRNAs in TGF-βlow group (TGF-βlow 
specific miRNAs) by showing a significant negative cor-
relation for 4 types of cancers (Fig.  4a). Meanwhile, the 
same trend was also found in TGF-βhigh specific miRNAs 
with low expression and its targeted mRNAs in TGF-βhigh 
group (Additional file  1: Fig. S3a). These indicated that 
TGF-β associated mRNAs are regulated by the associated 
TGF-β specific miRNAs.

Subsequently, we arranged the top 20 reduced miR-
NAs, with 3 (miR-215-3p, miR-378a-5p, and miR-194-3p) 
of them significantly downregulated in TGF-βhigh cluster 
across cancer type (Fig. 4b). Specifically, miR-215-3p was 
reported to be a co-inhibitor of cell migration induced 
by TGF-β1 [27]. And the overexpression of miR-194-3p 
significantly inhibited RUNX2 [28] and PRC1 [29] sign-
aling pathway which was crucial to cell proliferation and 
migration. Nevertheless, the effects of miR-378a-5p on 
cell proliferation, migration and invasion were contro-
versial according to recent studies [30, 31]. The network 
of these representative miRNAs and enriched target 
mRNAs were exhibited in Fig. 4c. The expression level of 
miR-215-3p, miR-194-3p and miR-378a-5p were nega-
tively correlated with TGF-β pathway scores across can-
cer types, which substantiated performed results (Fig. 4d, 
Additional file  1: Fig. S3c–d). Though the regulatory 
relationships were not clear between TGF-βhigh-specific 
expressing miRNAs and corresponding mRNAs, which 
might owe to few samples of TGF-βlow-specific mRNAs 
(Additional file  1: Fig. S3a–b). A recent research sug-
gested that expression of miR-100 and miR-125b, which 
got involved in EMT, tumorigenesis and poor prognosis, 
was induced and upregulated by TGF-β [32].

Standardized differences of protein expression levels 
between two groups were displayed in Fig.  4e. And we 
focused on STAD, COAD and READ due to unappar-
ent alterations in ESAD samples. For example, down-
regulated E-cadherin in TGF-βhigh group suggested its 
inhibiting effect of metastasis in cancer, which was con-
cordant with previous studies [33, 34]. On the contrary, 
collagen IV [35] and fibronectin [36] were reported as 
pro-metastasis factors and found unsurprisingly overex-
pressed in TGF-βhigh group. We also found that proteins 
associated with cell cycle (such as cyclinb1 and cycline1) 
were downregulated in TGF-βhigh cluster, which exactly 

Fig. 4  Comparison of miRNA, and protein expression in different TGF-β status. a Correlation between the first principal component (PC1) of 
the expression of TGF-βlow-specific miRNAs and their predicted targeted TGF-βhigh-specific mRNAs. b The heatmap shows the most significantly 
down-regulated 20 miRNAs in the TGF-βhigh group across each GIAD. c A network Schematic diagram of miR-215-3p, miR-378a-5p, and miR-194-3p 
and their predicted targeting TGF-βhigh-specific mRNA in stomach adenocarcinoma. d Negative correlation between miR-194-3p expression and 
TGF-β score in 4 types of GIAD (Pearson correlation). e The significantly differential proteins in TGF-βhigh and TGF-βlow groups; Red indicates high 
protein expression in the TGF-βhigh group, and blue indicates high protein expression in the TGF-βlow group

(See figure on next page.)
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(a)

(b)

(d)

(e)

(c)

Fig. 4  (See legend on previous page.)
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verified the inhibitory effect of TGF-β on proliferation 
[4].

Significant mutations and CNVs between the TGF‑β 
subgroups in GIAD
Various patterns of TGF-β signaling were historically 
found to be associated with genomic stability and gene 

expression in gastroenteric tumor [37]. Therefore, we 
analyzed the differences between low and high TGF-β 
expression at the genomic level. Overall, poor genomic 
stability was found in TGF-βlow cluster on account of a 
higher level of tumor mutation burden (TMB) and CNV, 
with STAD the most significant one across cancer types 
(Fig. 5a–b).
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Subsequently, we focused on significant gene muta-
tions in individual tumors, and only in COAD and 
STAD did we find significant mutations (FDR < 0.05). 
In addition to more EP300 mutation in the TGF-βhigh 
group in COAD, we found more interesting results in 
STAD. Specifically, there were a total of 18 mutated 
genes with significant difference in 2 STAD subtypes, 
all of which had more high-frequency mutations in the 
TGF-βlow group (Fig. 5c). As an outstanding tumor sup-
pressor gene activated by oncogenic stress, TP53 muta-
tion occurred frequently in various tumors [38], and 
showed the highest frequency of 52.6% in our study. 
Recent studies identified a high correlation between 
TP53 mutation and tumor immune response [39] with 
relevant TGF-β signaling induced immune evasion and 
immunotherapeutic resistance [40]. Significant CNVs 
of STAD in TGF-βlow cluster showed that amplifica-
tion and deletion of genes were concentrated on sev-
eral chromosomes (Fig.  5d). In particular, EGFR from 

region 7p11.2 amplified more frequently in TGF-βlow 
samples (56.0%) leading to an increased sensitivity 
to targeted therapy [41, 42]. Whereas SMAD4 from 
18q21.2, as a key mediator of TGF-β signaling pathway, 
exhibited a significant deletion (52.6%).

Analysis of TGF‑β associated gene signatures on drug 
susceptibility in GIAD
We wanted to further investigate the TGF-β signaling 
specific sensitivity of targeted drugs in digestive tract 
adenocarcinoma. By identifying a total of 760 differen-
tially expressed mRNA genes associated with TGF-β, we 
used Pearson correlation test between gene expression 
and 50% inhibiting concentration (IC50) for 345 anti-
cancer drugs to assess drug response across 106 diges-
tive tract cancer cell lines from the Genomics of Drug 
Sensitivity in Cancer (GDSC). We focused on these sig-
nificant correlations between 311 genes and 73 drugs, 
targeting on ERK, JNK and p38 signaling, RTK signaling, 
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chromatin signature, cell cycle, apoptosis and PI3K/
mTOR signaling (FDR < 0.05, Fig. 6a and Additional file 1: 
Fig. S4a–h). And dabrafenib got the largest quantity of 
associated genes (62 genes), such as FAP, FN1 and MMP2 
(rFAP = − 0.51, rFN1 = − 0.42, rMMP2 = − 0.51), which pro-
moted cell invasion, metastatic and EMT [43–45]. Then 
we calculated imputed tumor response as quantified 
sensitivity of 138 anticancer drugs in 79 TCGA patient 
samples (mainly ESAD) to assess the association between 
drug response and activation level of TGF-β signaling 
pathway. As a member of mutant BRAF-V600 inhibitors, 
debrafenib was reported be one favourable option for 
BRAF-V600 mutant malignances [46]. BRAF is one high 
frequency mutated kinase in human cancer and V600 a 
canonical mutation site in conserved domain, suggesting 
a significant ultilizing on clinical treatment and prognosis 
prediction. In melanoma, activation of TGF-β signaling 
directly upregulates the expression of EGFR and platelet-
derived growth factor receptor-β, which leads to BRAF 
inhibitor resistance [47]. And BRAF-V600 inhibitor can 
suppress the activation of TGF-β signaling via dephos-
porylation of TFEB, while TFEB phosphorylation and 
TGF-β upregulation play a pro-tumorigenic role in BRAF 
inhibitor resistant melanoma [48]. Our analyzed enriched 
genes associated with debrafenib provides a way to fur-
ther understanding of underlying mechanism. However, 
the application of BRAF-V600 inhibitors in the treatment 
of digestive tract adenocarcinoma is almost limited to 
colorectal cancer. Our result suggests the clinical poten-
tial of BRAF-V600 inhibitors in other GIACs. Significant 
imputed response differences of anticancer drugs were 
identified with 4 of them resistant but 5 of them sensitive 
to digestive tract adenocarcinoma (Fig. 6b). In our study, 
correlations between TGF-β score and drug sensitivity 
that were most significant were exclusively analyzed with 
a positive result for lenalidomide (r = -0.51) but quite 
opposite for IPA-3 (r = 0.40) (Fig. 6c).

Identification of two TGF‑β subtypes based on the deep 
neural network (DNN) associated with TGF‑β signatures
In order to better examine the application of TGF-β asso-
ciated signatures in the classification of TGF-β subtypes, 
we developed a DNN model to identify TGF-β subtypes 
(Fig. 7a). The advantage of DNN is that it can extract the 
characteristics of the data as much as possible and clas-
sify the nonlinear data. We used the aforesaid top 10 gene 
signatures with smallest p value in Fig. 3a as input data, 
which could which can fully represent the characteristic 
information of different groups of TGF-β. Through the 
GIAD data marked in TCGA, we trained in 75% of the 
data and tested in the remaining data. We found that in 
TCGA, our model was able to distinguish between the 
groups with TGF-βhigh and TGF-βlow status. Overall, the 

DNN classifiers demonstrated excellent performance, 
with the area under roc curve (AUC) of receiver operat-
ing characteristic (ROC) curve across all tumors above 
86% in both the training set and the test set. For example, 
in STAD, AUC was 96.8% and 94.6% in training and test 
sets, respectively (Fig. 7b).

Further, we analyzed other GIAD datasets. In the other 
datasets of four types of GIAD, we used the DNN model 
to identify TGF-β subtypes. Obviously, TGF-β scores 
were higher in the DNN-identified high TGF-βhigh group 
(Fig.  7c). Meanwhile, we evaluated prognosis in two of 
the datasets (GSE17536 (COAD) and GSE62254 (STAD)) 
with survival data. In both datasets, the TGF-βhigh group 
had a poorer prognosis, including OS and DFS (Fig. 7d–
g), although there was no statistical difference in OS for 
GSE17536 (P = 0.066). Finally, we performed GSEA anal-
ysis for all TGF-β subgroups identified by DNN model in 
four types of GIAD, in which EMT and TGF-β signaling 
pathways were significantly enriched (all P < 0.05, Fig. 7h, 
Additional file 1: Fig. S5). These results indicate that our 
DNN model is a good predictor of TGF-β status and 
patient prognosis in COAD and STAD.

Discussion
As a large and classic family of molecules, TGF-βs induce 
a series biological processes involved in tumorigenesis 
and metastasis, which can be sensitive to targeted drug 
therapy. The main function of TGF-β signaling pathway 
varies from different cancer types and different stages of 
cancer. First of all, we performed an unsupervised clus-
tering to characterized expression status of TGF-β signal-
ing and associated molecular differences in each cancer 
type. By identifying the relevancy between TGF-β high 
expression and poor prognosis, our method used permu-
tation test to implement multi-omics variation analysis. 
In this way, we managed to comprehensively evaluate the 
functions of TGF-β signaling by analyzing differentially 
expressed miRNAs and its negatively regulated mRNAs. 
In the meantime, identified gene mutations and CNVs 
demonstrated genetic approaches to a wide range of bio-
logical processes, such as cell cycle, angiogenesis, EMT, 
cell invasion and other downstream pathways. Consider-
ing that TGF-β associated gene and protein expression 
get involved in cancer progression (metastasis in espe-
cial), we then used the method from a previous study to 
identify drug response targeted at aforesaid signatures for 
further research of targeted therapy [14]. Several drugs 
suggested a great sensitivity to biological processes of 
tumor cells induced by TGF-β and related molecules. 
Moreover, some classic oncogenes were found to be tar-
geted by dozens of anticancer drugs, which improved 
the feasibility of targeted therapy. Also, based on TGF-β-
specific transcriptional signatures, we developed a deep 
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neural network classifier that could well predict TGF-β 
levels in different datasets of GIAD.

In our study, TGF-βhigh patients displayed a high pro-
pensity of overexpressed mRNAs which are relevant to 
extracellular matrix organization and cellular biologi-
cal process. These cell behaviors included proliferation, 
adhesion, invasion and migration, which can be inhib-
ited by regulations at transcriptional level for TGF-βlow 
patients. We also noticed that a number of metastasis 

promoting proteins (such as collagen IV, fibronectin) 
were upregulated in TGF-βhigh samples with inhibiting 
proteins (such as E-cadherin, FASN) downregulated. In 
line with our finding, a previous research comprehen-
sively identified the function of TGF-β family in both 
transcriptional and molecular level [5]. Genomic analy-
sis led to an impressed result that occurrence of signifi-
cant alterations was tendentious across multiple cancer 
types (especially STAD). It is worth noting that in our 
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mutation and CNV analysis, both significant mutation 
and CNV loci were present only in STAD; however, simi-
lar trends were observed in other gastrointestinal adeno-
carcinomas (Additional file 1: Fig. S6), but there was no 
statistically significant difference. However, in the overall 
analysis, there was more mutation load and copy number 
load in the TGF-βlow group (Fig. 5a, b), which indicated 
the consistency of gastrointestinal adenocarcinoma to 
some extent. Specifically, a high level of TMB and SCNA 
lead to modification of coding proteins in TGF-βlow sam-
ples, which can activate abundant anti-tumor immune 
response as tumor-specific neoantigens for TGF-βlow 
GIADs. Recently, immune responses were found to be 
suppressed due to TGF-β induced abnormal function 
of immune cells within tumor microenvironment [6, 49, 
50]. As for our observation, immune evasion induced by 
high TGF-β expression and lack of immune response in 
TGF-βhigh GIAD interpreted the poor prognosis of TGF-
βhigh patients, which was just the opposite situation in 
TGF-βlow group.

Our analysis about drug sensitivity revealed that dif-
ferentially altered gene were targeted by anticancer drugs 
for various clinical therapies. The most representative 
drug dabrafenib, inhibitor of BRAF-V600 mutation, is 
sensitive to genes related to cell invasion, metastatic and 
EMT, such as FAP, FN1 and MMP2. We predict dab-
rafenib one potential anticancer drug for GIAD patients. 
Lenalidomide, an immunomodulator, can facilitate acti-
vation and function of immune cells and participates 
in induction of tumor cell apoptosis. Due to imputed 
response differences, lenalidomide may be a valid anti-
cancer drug for TGF-βhigh patients. Though several trials 
of targeted drugs for TGF-β associated signatures have 
been implemented and reviewed, the molecular mecha-
nisms of targeted drugs remained unspecific [7, 51–53]. 
The role of clinically actionable genes in cancer progres-
sion and metastasis deserves further explanation so that 
rational combination therapies can be exploitable to pro-
mote prognosis in cancer patients. Hence, our system-
atic identification of TGF-β molecular signatures and 
sensitivity analysis can benefit clinical targeted therapies 
which are expected to be more efficient in the future.

This study has certain limitations. Despite these cau-
salities and correlations elaborated by our and many pre-
vious studies, further experimentations and analyses can 
be helpful to extend these conclusions and clinical viabil-
ity. Retrospective studies and large-scale clinical trials 
are necessary for experimental verification. Finally, our 
combination of multi-omics is comprehensive but not 
exhaustive. Potential regulatory pathways and molecu-
lar mechanisms need further investigation. In addition, 
prospective cohort studies are called to manifest clinical 
benefits for patients with tumor.

Conclusions
Our study provided a comprehensive analysis of the 
molecular characteristics associated with TGF-β and 
provides possible therapeutic targets in GIAD.
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