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Abstract

Background: Metabolic disorders such as insulin resistance, obesity, and hyperglycemia are prominent risk factors
for the development of non-alcoholic fatty liver disease (NAFLD)/steatohepatitis (NASH). Dietary rodent models
employ high fat, high cholesterol, high fructose, methionine/choline deficient diets or combinations of these to
induce NAFLD/NASH. The FATZO mice spontaneously develop the above metabolic disorders and type 2 diabetes
(T2D) when fed with a normal chow diet. The aim of the present study was to determine if FATZO mice fed a high
fat and fructose diet would exacerbate the progression of NAFLD/NASH.

Methods: Male FATZO mice at the age of 8 weeks were fed with high fat Western diet (D12079B) supplemented
with 5% fructose in the drinking water (WDF) for the duration of 20 weeks. The body weight, whole body fat
content, serum lipid profiles and liver function markers were examined monthly along with the assessment of liver
histology for the development of NASH. In addition, the effects of obeticholic acid (OCA, 30 mg/kg, QD) on
improvement of NASH progression in the model were evaluated.

Results: Compared to normal control diet (CD), FATZO mice fed with WDF were heavier with higher body fat
measured by gNMR, hypercholesterolemia and had progressive elevations in AST (~ 6 fold), ALT (~ 6 fold), liver over
body weight (~ 2 fold) and liver triglyceride (TG) content (1.4-2.9 fold). Histological examination displayed evidence
of NAFLD/NASH, including hepatic steatosis, lobular inflammation, ballooning and fibrosis in FATZO mice fed WDF.
Treatment with OCA for 15 weeks in FATZO mice on WDF significantly alleviated hypercholesterolemia and
elevation of AST/ALT, reduced liver weight and liver TG contents, attenuated hepatic ballooning, but did not affect
body weight and blood TG levels.

Conclusion: WDF fed FATZO mice represent a new model for the study of progressive NAFLD/NASH with
concurrent metabolic dysregulation.
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Introduction
Non-alcoholic fatty liver disease (NAFLD) is an

all-encompassing term used to describe the fatty liver
environment in the absence of excessive alcohol con-
sumption. It is estimated that 25% of the world’s general
population meet the criteria for a diagnosis of NAFLD
[1-3]. Metabolic disturbances are prominent risk factors
for the development of NAFLD [3-10]. NAFLD with
concurrent obesity, insulin resistance and hyperlipidemia
is associated with an increased risk of progression of
NAFLD to NASH. However, whether NAFLD develops
prior to or as a result of metabolic dysregulation is
unknown and debated [11-14].

The initial stage of NAFLD is characterized by the
accumulation of ectopic fat in hepatocytes (steatosis).
Steatosis is generally a benign, asymptomatic condition;
however, with concurrent obesity/metabolic distur-
bances, steatosis can progress to non-alcoholic steatohe-
patitis (NASH) and in severe cases hepatocellular
carcinoma (HCC) and liver failure [15]. Histologically
NASH is characterized by hepatocellular ballooning, in-
flammation and increased liver fibrosis [16—18]. In the
context of insulin resistance, obesity and dyslipidemia,
an inflammatory response is initiated which is thought
to be causative in the progression of NAFLD to more se-
vere NASH [3, 6, 7, 19]. Unlike benign steatosis, NASH
represents a significant health threat that progresses to
fibrosis/cirrhosis in 10-28% of patients [12, 20-23].
Further progression from NASH to fibrosis/cirrhosis is
highly predictive of mortality in these patients [24].

The study of human NAFLD and its progression is
hampered by the slow (decades) development of disease
as well as tools available for staging the disease [3].
While much research is ongoing to identify non-invasive
tools for staging and reliable clinical biomarkers are not
yet available, biopsy remains the gold standard. Thus at-
tempts have been made to develop rodent models of
fatty liver disease to aid in the investigation of the patho-
physiological and morphological findings characteristic
of NAFLD. As metabolic syndrome is the most promin-
ent risk factor for the development of NAFLD in
humans, the ideal animal model should develop NAFLD
in the context of metabolic disease. Furthermore, the
model should display histological characteristics such as
steatosis, interlobular inflammation, hepatocellular
ballooning, fibrosis and be susceptible to liver tumors
seen in humans [12].

Over the last several years, investigators have taken
different approaches to developing mouse models of
NAFLD and NASH; methionine-choline deficient
(MCD) diet [25], high fat diets with or without fructose
in C57BL/6] and ob/ob mice [26-29] and the STAM
model where 4dayold mice are given streptozotocin plus
high fat diet [30, 31]. Initial attention has been placed on
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producing fibrosis as quickly as possible with MCD diet
[27]. The mice on the MCD diet are not obese, actually
losing significant body weight (30%), and are not insulin
resistant or hyperlipidemia during disease progression
[25]. The STAM model is characterized by type 1 dia-
betes induced with streptozotocin, rather than type 2
diabetes (T2D) on a high fat diet and produces fibrosis
after 12 weeks on diet and eventually HCC [30, 31]. Strep-
tozotocin, a known carcinogen, could exacerbate the de-
velopment of HCC in this model. In C57BL/6 and Lep®’/
Lep®” models using high fat diets either alone or supple-
mented with fructose, investigators have observed NAFLD
and NASH in the presence of insulin [26, 32—34].

The FATZO mouse was developed by crossing C57BL/
6] and AKR/] mice that have a strong propensity to de-
velop obesity when fed a high fat diet. Selective inbreed-
ing of the offspring resulted in animals that have a
strong propensity to develop many of the characteristics
of “metabolic syndrome” early in life [35, 36]. Thus
FATZO mice have a strong genetic pre-disposition to-
wards obesity and develop insulin resistance, dyslipid-
emia, and obesity when fed a normal chow diet [35, 36].

Excess consumption of fructose has been shown to
promote liver steatosis and fibrosis in humans [37-39]
and normal rodents [40—42]. Therefore, we hypothesized
that the pre-disposition for metabolic disruptions in the
FATZO mice in conjunction with feeding of the WDF
diet with fructose supplementation would generate a
more translational model of NAFLD/NASH with
characterization that resembles the progression of hu-
man disease. Thus, the aims of the present study were to
examine 1) if FATZO mice fed WFD develop NAFLD/
NASH similar to the pathologic changes in human; and
2) if obeticholic acid (OCA) treatment, one of the most
advanced NASH specific drug in clinical trial, is able to
improve liver function as well as morphological changes
in the liver of FATZO mice fed WDF.

Methods

Animal studies

Male FATZO/Pco mice (n=88) were bred and main-
tained at the Crown Bioscience facility (Indianapolis,
IN). Animals were housed individually in open ventilated
cages and fed control diet of Purina 5008 chow (LabDiet,
St. Louis, MO) with distilled water ad libitum until study
started. Room temperature was monitored and maintained
at 20-26 °C with the light cycle set at 12h (6:00-18:00).
Mice at 8 weeks of age were randomized into different
study groups based on body weight and serum ALT.

Effects of WDF on FATZO mice

In the first study for model characterization, animals
were randomized into 2 groups fed with control diet
(CD) (n=32); or Western diet (D12079B, Research
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Diets, New Brunswick, NJ) + 5% fructose in the drinking
water (WDF) (n=32). Body weights were recorded
weekly. Whole body fat content (%) was assessed using
gNMR (EchoMRI-500; Houston, TX). Eight animals
from each group were sacrificed every month for the
duration of the study.

Effects of OCA in FATZO mice fed WDF

In the second study, all of FATZO mice were fed WDF
at age 8 weeks for 8 weeks, then randomized into vehicle
(n =8) and OCA (30 mg/kg, p.0.QD, n =8) groups for an
additional 15weeks on WDF. Previous studies have
shown that to achieve significant differences between
groups given the standard deviations of biochemical
parameters, eight animals per group will be sufficient.

At the end of the studies, all mice were euthanized by
neck dislocation, and blood samples and liver tissues
were collected for examination. All animal experiments
were approved by the Institutional Animal Care and Use
Committee at Crown Bioscience — Indiana (IACUC
protocol number: 2015-230).

Biochemical measurements
Mice were fasted (6h) prior to sacrifice and serum
samples were obtained for clinical chemistry analysis
including cholesterol, triglycerides, AST and ALT
(AU480 clinical analyzer, Beckman-Coulter; Brea, CA).
Liver triglyceride content was analyzed from samples
(~ 200 mg/animal) snap frozen in liquid nitrogen.
Tissues were placed in Lysing Matrix D Tubes with dis-
tilled water in a 20% concentration (MP Biomedicals,
Santa Anna, CA) and homogenized in a Fastprep-FP120
cell disrupter (Thermo Fisher Savant) for 30 s. Homoge-
nates were kept cold and analyzed on a clinical analyzer
(Beckman-Coulter AU480, Indianapolis, IN) within 30
min of preparation.

Histology

Tissue processing

The liver tissues were fixed in 10% neutral buffered for-
malin (NBF) for 24 h followed by baths of standard con-
centrations of alcohol then xylene to prepare the tissues
for paraffin embedding. After being embedded in paraf-
fin and cooled, five-micron sections were cut and stained
for routine H&E and Picro Sirius Red (PSR).

Whole slide digital imaging

A whole slide digital imaging system was used for
imaging with the Aperio Scan Scope CS system (360
Park Center Drive, Vista, CA). The system imaged all
slides at 20x. The scan time ranged from 1.5 to a
maximum time of 2.25 min.
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NAFLD activity score (NAS) and fibrosis scoring

The liver samples were evaluated by a trained general
pathologist who is blind of different study groups using
the NASH liver criteria for scoring [16—18]. Steatosis,
lobular inflammation, hepatocyte balloon degeneration,
fibrosis, NAS and the presence of NASH by pattern
recognition were systematically assessed. Three repre-
sentative areas per liver were assessed and the score of
each parameter of individual animal was calculated by
averaging scores from three representative areas [43].

Statistics

Treatment effects of WDF were compared to CD over
the time points using One-Way or Repeat Measures
ANOVA with multiple comparison t-test using Prism
(GraphPad, version 7.01). Statistical differences were
denoted as p <0.05. All values are reported as Mean *
SEM; unless noted otherwise.

Results

WDF exacerbated metabolic disorders, impaired liver
function and caused histological changes resembling
NAFLD/NASH in FATZO mice

The FATZO mice fed WDF showed a significantly
greater increase in body weight (Fig. 1a), associated with
a significant increase in body fat compared to the
age-matched CD fed mice (Fig. 1b). Blood cholesterol
levels were almost 2.5 times higher in WDF group than
CD controls after 4weeks on diet and the levels were
consistently higher in WDF group throughout the diet
induction period (Fig. 1c), though triglyceride levels were
slightly lower (Fig. 1d) in the WDF group.

Metabolic stress on the livers of FATZO mice fed
WDF caused a significant elevation in the liver en-
zymes, with evidence of almost 6 and 4 fold higher in
ALT (Fig. le) and AST (Fig. 1f) levels respectively
over the 20 weeks of diet exposure compared to that
in CD fed mice. The liver over body weight signifi-
cantly increased over time (Fig. 1g), accompanied by
a significantly higher liver TG content measured at
weeks 12-20 from mice fed WDF compared to that
of CD (Fig. 1h).

WDF fed FATZO mice developed fatty liver character-
ized by progressive steatosis, hepatocellular ballooning,
lobular inflammation and the early stages of fibrosis.
During the early progression of NAFLD, the livers from
WDF fed FATZO mice were very pale in color upon
necropsy compared to that of CD fed mice (Fig. 2). H&E
staining demonstrated pan lobular steatosis with
ballooning as early as 4 weeks on WDF compared to CD
diet. Over time, FATZO mice exhibited a progressive
worsening of NAFLD. At each time point, the livers of
WDF fed mice were paler in color than the correspond-
ing CD fed ones. Significant histological changes
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indicative of NASH (steatosis, hepatocellular balloon-
ing, lobular inflammation and mild fibrosis) were seen
in the liver sections from the mice on WDF for 16
weeks (Fig. 2).

When sections were assessed for individual NASH
activity scores, the livers from WDF fed mice exhibited
significantly higher scores for steatosis (Fig. 3a),

hepatocellular ballooning (Fig. 3b), lobular inflammation
(Fig. 3c) and fibrosis (Fig. 3d) when compared to the
corresponding livers from the CD fed mice. When
measured by a composite NAFLD activity score (NAS),
the livers from WDF fed mice demonstrated significantly
more pathological findings when compared to the livers
from CD fed mice (Fig. 3E).
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Fig. 2 Histological evidence of NAFLD/NASH in FATZO mice fed WDF. Representative images of H&E and Picro Sirius Red (PSR) staining of livers
removed from FATZO mice fed WDF or CD for 4, 16 and 20 weeks. *Denotes steatosis, .denotes ballooning, .denotes lobular inflammation

and Idenotes fibrosis
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OCA improved liver function and hepatic ballooning in
FATZO mice fed WDF
Treatment of OCA (30 mg/kg, QD) in FATZO mice on
WDF from 8 weeks on diet for additional 15 weeks had
no impact on body weight (Fig. 4a) or blood TG levels
(Fig. 4b). In contrast, OCA treatment alleviated the
elevation of blood total cholesterol (Fig. 4c) and LDL
(Fig. 4d), resulting in significantly lower levels compared
to vehicle controls. In addition, improvement in liver
function could be seen as early as 4 weeks after OCA
treatment, as blood ALT (Fig. 4e) and AST (Fig. 4f) levels
in the OCA treatment group were dramatically lower than
its own pretreatment baseline as well as the CD fed mice.
After treatment with OCA for 15 weeks, liver over body
weight (Fig. 4g) and hepatic TG levels decreased signifi-
cantly compared to the vehicle controls (Fig. 4h).

When liver histology was evaluated (Fig. 5), OCA
treatment tended to improve NAS score (Fig. 6e) with

significant alleviation in numbers of foci showing hepatic
ballooning (Fig. 6b). The changes in other components
of NAS score, such as steatosis (Fig. 6a), lobular inflam-
mation (Fig. 6¢), and fibrosis (Fig. 6d) were not obvious.

Discussion

Currently, the global hypothesis for the pathogenesis of
NASH is the “multi-hit hypothesis,” with metabolic syn-
drome playing a major role, due to insulin resistance
followed by pro-inflammatory processes. Unlike monogenic
leptin deficient 0b/ob or db/db mice, the FATZO mice area
polygenic model of obesity and type 2 diabetes when fed
regular rodent diet, with an intact leptin pathway, thereby
making it more translatable to the human disease [35, 36].
The goal of the present investigation was to determine if the
FATZO mice, which inherently develop metabolic syn-
drome and type 2 diabetes, would develop NAFLD and
NASH when fed a western diet supplemented with fructose.
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In recent reviews [12, 44], the murine models that
most closely resembled the human disease, were those
that used high fat diets supplemented with fructose.
These diets best simulate the high prevalence of high fat
food and corn syrup sweetened beverages in the
Western diet. Fructose has been shown to enhance the
development of NAFLD and NASH without [29], or
with fibrosis in C57BL/6 [26, 28, 34, 45], ob/ob [28, 34]
and DIAMOND™ [32] mice on high fat diets.

In the present investigation, FATZO mice fed WDF
diet developed NAFLD and NASH with progressive

steatosis, ballooning, inflammation and mild fibrosis
over 20 weeks when compared to the CD. In the plasma,
increases in the liver enzymes, ALT/AST, and cholesterol
were observed in FATZO mice on WDF diet for as early
as 4 weeks and remained significantly higher compared
to the values from the mice on CD over 20 weeks.
Plasma triglycerides were not elevated in WDF fed
animals when compared to CD, which is consistent with
reports in the ob/ob NASH models [28, 34]. However,
liver triglycerides were elevated 1.4-2.9 folds at 12, 16
and 20 weeks in mice fed WDF compared to CD. On
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Fig. 5 OCA treatment improves hepatic ballooning in NASH FATZO mice. Representative images of H&E and Picro Sirius Red (PSR) staining of the
livers removed from NAFLD/NASH FATZO mice treated with OCA or vehicle for 15 weeks
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gross necropsy, the livers from WDF fed mice were pale
in color and had significantly higher liver over body
weight ratios when compared to the corresponding CD
fed group. Histologically, the livers from WDF fed mice
presented steatosis as early as 4 weeks on diet which
progressed to steatohepatitis characterized by balloon
degeneration, lobular inflammation and fibrosis. The
composite NAS score in the FATZO mice fed WDF was
equivalent to “~ 5” at 16 and 20 weeks on diet; indicative
of “definitive” NASH [17, 18]. Mild fibrosis was observed
as early as 16 weeks on diet in 50% of WDF fed mice
and progressed to 100% of animals demonstrating
moderate fibrosis scores of 1.5 at 20 weeks.

Recently, Machado et al. reported that the models with
Western diet developed a more common and relatively
non-progressive subtype of NASH, whereas MCD diet
model developed a less common and more rapidly
progressive/aggressive NASH subtype [25]. The main
differences between the 2 models are significant in
regards to which more closely mimics the human condi-
tion. Western diet fed animals are obese, insulin resist-
ant and hyperlipidemia whereas the MCD diet fed
animals had weight loss, but are not insulin resistant or
hyperlipidemia [25]. FATZO mice on WDF benefit with
progressive NASH phenotypes, increased body weight
and hyperlipidemia. More recently, when 22%fructose
and trans-fat are added to the Western diet, 0b/0b mice
develop steatosis, lobular inflammation and mild fibrosis
similar to FATZO mice on WDF [28, 34]. However,
compared to FATZO mice on the WDE, the hepatic bal-
looning was not present in the ob/ob mice on Western

diet via the same length of diet induction [28]. More
importantly, the use of 0b/ob mice with intrinsic leptin
deficiency in the metabolic disease should always be cau-
tious, as the involvement of leptin in multiple metabolic
signaling pathways should not be overlooked. As a re-
sult, the appearance of NASH phenotypes in the models
with gene mutations might not fully reflect the actual
disease pathogenesis, which might create concerns for
the model to be used in testing anti-NASH therapy.
Compared to other rodent NASH models where animals
with intrinsic gene mutation (eg: 0b/ob mice) or chem-
ical induction, FATZO mice have more physiological
relevance to human patients with metabolic syndromes,
while maintaining critical biochemical and histopatho-
logical changes of phenotypes representative of NASH
by applying the common risk factor of inducing NASH
such as fructose.

The diet induced obesity (DIO) model in C57BL/6]
mice also present liver TG accumulation and hepatic
steatoses, however, unlike the FATZO mice, C57BL/6]
mice are not diabetic, and develop less severe liver histo-
pathologic changes.

Multiple drugs are in the development stage for treat-
ment of NASH. Obeticholic acid (OCA) is a
semi-synthetic bile acid that acts on the nuclear farne-
soid X receptor (FXR) which is expressed predominantly
in the liver, kidney and intestine to regulate bile acid
homeostasis, hepatic lipid metabolism and immune
function [46, 47]. It was originally developed for the
treatment of primary biliary cholangitis [48] and is cur-
rently in the most advanced stage being tested for NASH
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in several clinical trials with evidence of significant
alleviation of plasma liver ALT and AST levels and mild
improvement in steatosis, hepatic ballooning, lobular in-
flammation and fibrosis [49]. In pre-clinical rodent stud-
ies, OCA has been shown to reduce hepatic lipid
accumulation, liver enzyme activities, steatosis and fibro-
sis, though the models and dosing regimen selected
might largely affect the final manifestation of the drug
efficacy [50, 51]. FATZO mice which possess aberrant
lipid metabolism develop advanced NASH phenotypes
upon WD feeding. The development of the phenotypes
was largely accelerated by the impact of fructose on hep-
atic lipid metabolism including lipogenesis and reduced
fatty acid oxidation. The treatment of FATZO mice with
OCA is likely to reduce such impact by inhibiting lipogen-
esis and fatty acid synthesis. Indeed, in the present study
in FATZO mice on WED for 8 weeks, OCA treatment for
15 weeks significantly reduced plasma ALT and AST levels
almost to baseline values before WDF induction (Fig. 4e
and e). This result is consistent with the report from
NASH patients treated with OCA [49]. In addition, treat-
ment of OCA for 8 weeks appeared to be more efficacious

in reducing liver enzymes in FATZO fed WDF compared
to ob/ob mice fed with AMLN diet, where impacts of
OCA on plasma liver enzymes in the latter model were
minimal [51]. Moreover, OCA treatment improved hep-
atic ballooning leading to overall reduction in NAS score
and increased the numbers of animals with absence of fi-
brosis in WDF fed FATZO mice (Fig. 5 and 6). The data
suggested that the leading anti-NASH treatment OCA can
improve NASH phenotypes in FATZO mice fed with
WDF similar as seen in human patients. More import-
antly, some of the known effects of OCA such as reducing
liver enzyme ALT in NASH patients which were not
shown in ob/ob mice were also evident in FATZO model,
suggesting more clinical relevance of the model. There-
fore, FATZO mice fed with WDF develop NAFLD/NASH
phenotypes in a time frame that might be suitable for test-
ing anti-NASH drug intervention.

Conclusion

In the present investigation, the polygenic FATZO
mouse model of obesity and type 2 diabetes with an in-
tact leptin pathway diet developed progressive NAFLD/



Sun et al. BMIC Gastroenterology (2019) 19:41

NASH similar to humans when fed with WDF. The
FATZO WDF model of NAFLD/NASH represents a new
and improved scientific tool for the advancement of
NAFLD/NASH research which is potentially more
translatable to human disease than many other models.

Based on the results of this study, other previously
published studies and for a better description of model,
the common name of this model will be subsequently
changed from FATZO/Pco to MS-NASH/Pco] and as
such will be marketed through Jackson Labs.
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