
RESEARCH ARTICLE Open Access

Spectrum of genomic variations in Indian
patients with progressive familial
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Abstract

Background: Progressive familial intrahepatic cholestasis (PFIC) is caused by variations in ATP8B1, ABCB11 or ABCB4
genes. Data on genetic variations in Indian patients with PFIC are lacking.

Methods: Coding and splice regions of the three genes were sequenced in unrelated Indian children with PFIC
phenotype. The variations identified were looked for in parents, 30 healthy persons and several variation databases,
and their effect was assessed in-silico.

Results: Among 25 children (aged 1–144 months), nine (36%) had unique major genomic variations (ATP8B1: 4, ABCB11:
3 and ABCB4: 2). Seven had homozygous variations, which were assessed as ‘pathogenic’ or ‘likely pathogenic’. These
included: (i) four amino acid substitutions (ATP8B1: c.1660G > A/p.Asp554Asn and c.2941G > A/p.Glu981Lys; ABCB11: c.
548 T > C/p.Met183Thr; ABCB4: c.431G > A/p.Arg144Gln); (ii) one 3-nucleotide deletion causing an amino acid deletion
(ATP8B1: c.1587_1589delCTT/p.Phe529del); (iii) one single-nucleotide deletion leading to frame-shift and premature
termination (ABCB11: c.1360delG/p.Val454Ter); and (iv) a complex inversion of 4 nucleotides with a single-nucleotide
insertion leading to frame-shift and premature termination (ATP8B1: c.[589_592inv;592_593insA]/p.Gly197LeufsTer10). Two
variations were found in heterozygous form: (i) a splice-site variation likely to cause abnormal splicing (ABCB11: c.784 +
1G > C), and (ii) a nucleotide substitution that created a premature stop codon (ABCB4: c.475C > T/p.Arg159Ter); these
were considered as variations of uncertain significance. Three of the nine variations were novel.

Conclusions: Nine major genomic variations, including three novel ones, were identified in nearly one-third of Indian
children with PFIC. No variation was identified in nearly two-thirds of patients, who may have been related to variations in
promoter or intronic regions of the three PFIC genes, or in other bile-salt transport genes.
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Background
Progressive familial intrahepatic cholestasis (PFIC) is a
group of heterogeneous liver disorders of childhood with
disruption of normal secretion of bile salts and/or phos-
pholipids into the bile [1]. It accounts for nearly 10 to
15% of cases with cholestasis in early childhood, and for
a large proportion of pediatric liver transplantation pro-
cedures [1]. PFIC is classified into three types, namely
PFIC1, PFIC2 and PFIC3, based on detection of causative
variations in ATP8B1, ABCB11 and ABCB4 genes,

respectively [1]. Several different variations have been re-
ported in each of these genes [2–4]. In PFIC1 and PFIC2,
symptoms appear during infancy, whereas in PFIC3, these
may be delayed to late childhood or adolescence. Also,
characteristically, the serum levels of gamma-glutamyl
transpeptidase (GGT) are normal in PFIC1 and PFIC2, but
are elevated in PFIC3 [5]. Since the protein encoded by
ATP8B1 is also expressed in other body tissues, some
PFIC1 patients also have extrahepatic manifestations, such
as diarrhea, sensorineural deafness, pancreatic deficiency
and growth retardation [1, 6]. All three forms of PFIC are
inherited in autosomal recessive manner [1].
The genomic variations underlying PFIC show geo-

graphic heterogeneity. Thus, some variations, such as
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G308V, D554N and I661T in ATP8B1 gene have been
observed frequently in Caucasian groups [2, 7], but
not in other populations; in these latter groups, other
sequence variations have been identified as causing
PFIC [8]. Further, in a substantial number of patients
with PFIC phenotype, no variation in these three genes
can be identified. Some of these cases are related to
variations in other genes involved in the secretion of
bile salts [9].
Data on PFIC in the Indian population are limited

to a few case reports and case series [10–15]. In par-
ticular, no information is available on genetic varia-
tions in Indian patients with PFIC, except in one
patient that we reported recently [16]. Given the gen-
etic heterogeneity underlying the three forms of PFIC,
particularly between populations [17], the genomic
variations in Indian patients with PFIC may be ex-
pected to differ from those reported elsewhere. We
therefore decided to study genomic variations in the
exonic and splice site regions of the ATP8B1,
ABCB11 and ABCB4 genes in a group of Indian chil-
dren with clinical features suggestive of PFIC.

Methods
Study patients
The study included children with liver disease with clin-
ical and biochemical findings that suggested a diagnosis
of PFIC. The diagnosis was considered in all infants and
children presenting with cholestatic liver disease, with
no evidence of biliary obstruction on imaging or of an-
other cause of liver injury. Cholestasis was defined in
children as jaundice with itching and deranged liver
function tests, and in neonates as jaundice with conju-
gated bilirubin exceeding 20% of total serum bilirubin
(or > 1.0 mg/dL when total bilirubin was < 5.0 mg/dL).
All children underwent clinical and laboratory work-up,
including screening for TORCH (toxoplasmosis, rubella,
cytomegalovirus and herpes virus) group of neonatal in-
fections among infants, screening for metabolic liver dis-
ease (non-glucose reducing substances in the urine and
assay for galactose-1-phosphate uridyl transferase in red
blood cells; serum alpha-fetoprotein levels; and, serum
ferritin level and minor salivary gland biopsy in those
suspected to have neonatal hemochromatosis), and Ala-
gille syndrome (slit lamp examination, X-ray spine and
echocardiography). For patients with symptoms starting
after 3 years of age, biochemical tests and liver biopsy
examination were done to exclude Wilson disease and
autoimmune hepatitis.
Biochemical liver function tests including serum gam-

ma-glutamyl transpeptidase (GGT) levels were measured
in all patients. Those with elevated GGT levels were con-
sidered to have PFIC3, and those with normal GGT were
considered to have PFIC1 or PFIC2. All patients with

PFIC3 underwent MRCP; however, this was done select-
ively in those with PFIC1/PFIC2. All patients also under-
went a liver biopsy as part of their diagnostic workup (not
for this study); however, immunohistochemistry for bile
salt export protein (BSEP; to diagnose PFIC2) and for
multidrug resistance 3 protein (MDR3; to diagnose PFIC3)
were not possible.
In families with multiple cases, only one child was

studied. For each child, clinical and biochemical data
were recorded; in addition, family history of liver dis-
ease and history of prominent itching during third
trimester of pregnancy in the mother were also noted,
and a pedigree tree was drawn with special emphasis
on consanguinity. From each subject, venous blood
(~ 2 ml) was collected in EDTA, after obtaining writ-
ten consent from one of the parents, and genomic
DNA was extracted using the phenol-chloroform
method [18]. Blood specimens were also collected
from their parents, wherever possible. The study was
approved by our institution’s Ethics Committee.

Laboratory methods and data analysis
From the genomic DNA, all the coding exons (exons 2
to 28 for each gene) and the surrounding splice site re-
gions were amplified using polymerase chain reaction
with specific primers for genes ATP8B1 [19], ABCB11
[20] and ABCB4 [21]. The PCR products were subjected
to Sanger sequencing in both directions using a 3130
Genetic Analyzer (Applied Biosystems/ThermoFisher).
The nucleotide sequencing data obtained were analysed

using Finch TV (1.4.0) (http://jblseqdat.bioc.cam.ac.uk/
gnmweb/download/soft/FinchTV_1.4/doc/) and Seqtrace
(version 0.9.0) (https://code.google.com/archive/p/seqtrace/)
softwares. The sequences were then aligned against genomic
and messenger RNA reference sequences for ATP8B1
(NG_007148.2, NM_005603.4), ABCB11 (NG_007374.1,
NM_003742.2) and ABCB4 (NG_007118.1, NM_000443.3)
genes from National Centre for Biotechnology Information
(NCBI) database. Each variation observed was manually
verified.
The sequence variation identified were looked up in

various genomic variation databases [NCBI dbSNP
(https://www.ncbi.nlm.nih.gov/projects/SNP/), Human
Gene Mutation Database (HGMD) (http://www.hgmd
.cf.ac.uk/ac/index.php), Exome Aggregation Consortium
(ExAC) (http://exac.broadinstitute.org/), ClinVar NCBI
(https://www.ncbi.nlm.nih.gov/clinvar/), 1000 genome
browsers (http://www.internationalgenome.org/1000-gen
omes-browsers/)]. Further, the effect of each variation
on the amino acid sequence of the respective protein
was assessed; this was followed by prediction of the ef-
fect of amino acid change on the protein function using
several bioinformatics tools, namely PROVEAN [22],
Mutation Taster [23], Polyphen 2 [24], PhD-SNP [25],
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SIFT [26], SNAP [27], Meta SNP [28]. The effect of se-
quence variations located near splice sites was predicted
using Human Splicing Finder tool [29].
Each genomic sequence variant was then analysed for

its pathogenic significance using the standards and guide-
lines laid down by the American College of Medical
Genetics and Genomics and the Association for Molecular
Pathology [30]. In brief, these guidelines recommend that
sequence variants in a gene should be classified into five
categories – ‘pathogenic’, ‘likely pathogenic’, ‘uncertain sig-
nificance’, ‘likely benign’, and ‘benign’ – based on frequency
of the variant in the healthy population, computational
data, functional data and segregation data.

Studies in parents and control subjects
Any ‘pathogenic’ or ‘likely pathogenic’ variations identi-
fied in the patients were looked for in the parents by
amplification and sequencing of the specific exons of the
affected gene.
For non-synonymous variations identified in one or more

patients, the frequency of minor alleles was assessed by se-
quencing the genomic DNA from 30 healthy persons.

Results
The 25 patients included in this study were unrelated to
each other, and were aged 1 month to 12 years (median:
15 months; 19 boys). Their clinical and laboratory find-
ings are shown in Table 1. Seven patients were born of
consanguineous marriages.

Pathogenic or likely pathogenic sequence variations
Overall, 9 patients were found to have 9 different
major genomic variations (Table 2). Of these, seven
were present in homozygous form and each of these
was interpreted either as ‘pathogenic’ or ‘likely patho-
genic’ (n = 7). The remaining two variations were
present in heterozygous form and were assessed to be
‘of uncertain significance’ (n = 2); in both these pa-
tients, no other pathogenic variation was identified.
Five of the 7 patients with homozygous variations and
none of the two with heterozygous variations reported
consanguinity (Fig. 1).
Of the nine patients with significant variations, four

had these variations in the ATP8B1 gene, 3 in ABCB11
gene and 2 in ABCB4 gene. Of the nine variations iden-
tified, three (ATP8B1: 1, ABCB11: 2) were novel. Four
variations led to a single amino acid substitution, one
led to shifting of reading frame and premature trunca-
tion, two led to creation of a stop codon at the variation
site, one led to an in-frame deletion of one amino acid,
and one was predicted to lead to loss of a splice site.
The clinical and laboratory findings in the patients with
identifiable variations are shown in Table 3. A compari-
son of these findings with those in patients without such

variations (Table 1) showed no significant difference be-
tween the two groups, except that patients with genomic
variations tended to be younger and more often had his-
tory of consanguinity, compared to those without
variations.
The results of bioinformatic prediction of the effect of

these genomic variations are shown in Additional file 1:
Table S1. None of the nine variations included in Table
2 was observed in any of the 30 healthy controls. Among
patients with homozygous variations (n = 7), both par-
ents were available for testing for four patients and one
parent each was available for three patients; all of them
showed the respective variation in heterozygous form.
For the two patients with heterozygous variations, one
parent each was available for testing; in either case, the
tested parent too had the variation in a heterozygous
form.

Non-pathogenic variations
Three non-synonymous variations were identified in sev-
eral children with PFIC (Table 4). These variations also
had a high frequency in various population databases as
well as in our patients as well as controls, indicating their
benign nature. Further, all the three non-synonymous var-
iations were predicted by various bioinformatics software
tools to be neutral (Additional file 1: Table S2). Hence,
these were considered as non-pathogenic.
In addition, 12 synonymous variations (Additional file

1: Table S3) were also identified in several patients.
These too had a high frequency in population databases
as well as in our patient population, and hence were
considered as non-pathogenic.

Discussion
In our study of 25 unrelated Indian children with
PFIC phenotype, we found pathogenic or
likely-pathogenic sequence variations in ATP8B1,
ABCB11 or ABCB4 gene in seven and variations of
unknown significance in two. In these 9 patients, a
total of nine different variations, including three
novel variations, were identified. The variations
which are particularly frequent in the Caucasian and
other populations were not found. No major vari-
ation was found in the remaining 16 kindreds.
No data are available on the genomic variations re-

sponsible for PFIC from India. The Indian population
is genetically diverse with contribution from at least
two highly divergent populations – i.e. the 'North
Indians’, genetically close to the Middle Easterners,
Central Asians, and Europeans, and a distinct group
termed as ‘Ancestral South Indians’ [31–33], with
some contributions from the sub-Saharan and Middle
Eastern lineages [34]. This may explain the diversity in
genetic variations observed in our cohort, identification of
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novel variations and the difference in variations in
our patients from those reported in the other popula-
tion groups. The diversity of variations in our patients
suggests that it will be difficult to identify a panel of
few common variations for diagnostic testing in In-
dian patients with PFIC.
We encountered three novel variations. One of these

(p.Gly197LeufsTer10) was expected to lead to produc-
tion of a truncated ATP8B1 protein (of 205-amino acid
length instead of the usual 1251 amino acids), which
would lack a part of the E1-E2 ATPase domain (aa 170–
234), and the entire cation ATPase (aa 533–628) and
phospholipase ATPase C domains (aa 919–1174), and
hence be non-functional. This patient has been de-
scribed in detail elsewhere as a case report [16]. Another
variation (p.Val454*) led to a truncated ABCB11 protein.
Both these truncation variations would be clearly expected
to be pathogenic even without any functional studies to
study their biological effect. The third novel variation af-
fected a splice donor site in the ABCB11 gene, and was het-
erozygous. Demonstration of its functional effect needed
sequencing of the patient’s liver transcriptome; how-
ever, a liver biopsy for this purpose was considered
ethically unacceptable. This patient also had a

heterozygous p.Val444Ala variation, which is known
to cause a reduction in enzyme activity, and this may
explain the occurrence of disease in him despite the
novel splice site variation being heterozygous.
Variations observed in our remaining six patients had

been reported previously in other population groups. Of
these, three were in ATP8B1 gene and had been previ-
ously shown to be associated with disease. First, an
in-frame deletion (p.Phe529del) had been previously re-
ported in two patients – in homozygous form in a Japa-
nese patient with severe disease needing liver transplant
by 4 years of age [2, 35], and in compound heterozygous
form with a splice site variation in a patient of mixed
Caucasian-African American ancestry [2]. Our patient
was homozygous for this variation and had a severe
illness. Second, a p.Asp554Asn substitution had been
previously reported in three Inuit patients [19, 36, 37]. It
affects a centrally-located aspartate residue in the AASP-
DEGALV motif, specific for P-type ATPases [38], and
was associated in an in vitro study with an absent ex-
pression of ATP8B1 on canalicular membranes [39].
Third, a p.Glu981Lys substitution had been previously
reported in a Japanese patient with PFIC [40], and the
mutant protein was shown to have a reduced interaction

Table 1 Clinical and laboratory features of patients included in the study (n = 25)

Clinical feature Value in all patients
studied (n = 25)

Value in those with
genomic
variation (n = 9)

Value in those without
genomic variation
(n = 16)

p value (with genomic
variation versus
without genomic
variation)

Age at presentation (months) 15 (1–144) 15 (3–144) 23 (1–48) 0.089

Age at onset of symptoms (months) 5 (0.25–138) 3.5 (0.25–138) 5 (0–18) 1.123

Male (number) 19 (76%) 7 12 1.000

History of consanguinity (number) 7 (28%) 5 2 0.058

History of cholestasis of pregnancy (number) 10 (40%) 3 7 0.691

Intense pruritus (number) 24 (96%) 8 16 0.360

History of skin bleeding (number) 17 (68%) 5 12 0.394

Jaundice (number) 25 (1) 9 16 1.000

Weight z scorea −2.08 (−3.55 to +0.32) − 2.35 (−3.55 to +0.32) −1.98 (−3.52 to +0.21) 0.205

Height z scoreb − 1.63 (−5.62 to +2.26) −1.55 (−4.75 to +0.2) −1.73 (−5.62 to +2.26) 0.478

Palpable liver below right costal margin (cm)c 4 (1–8) 3 (2–8) 4 (1–7) 0.790

Palpable spleen below left costal margin (cm)d 2 (1–5) 1 (1–5) 3 (2–4) 0.300

Total serum bilirubin (mg/dL) 7.0 (1.3–32.0) 12.7 (1.3–21.0) 6.6 (1.7–32.0) 0.296

Serum albumin (g/dL)e 3.7 (2.7–4.5) 3.8 (3.2–4.2) 3.8 (2.7–4.5) 0.777

Serum aspartate aminotransferase (U/L) 175 (45–1210) 92 (45–1120) 214 (69–1210) 0.844

Serum alanine aminotransferase (U/L) 142 (29–682) 96 (29–598) 104 (30–682) 0.947

Serum gamma-glutamyl transpeptidase (U/L) 28 (8–69) 25 (8–57) 33.5 (11–69) 0.154

Data are shown as median (range), or as number (%)
aValues less than 2.0 were observed in 13 children, including 5/9 with and 8/16 without genomic variations (p = 1.00)
bValues less than 2.0 were observed in 10 children, including 4/9 with and 6/16 without genomic variations (p = 1.00)
cLiver was palpable in all the 25 children
dSpleen was palpable in 16 of the 25 children: including 5/9 with and 11/16 without genomic variations (p = 0.67)
eSerum albumin level was abnormally low (<3.5 g/dL) in 3 of 25 children: including 1/9 with and 2/16 without genomic variations (p = 1.00)
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with its substrate leading to a nearly 80% reduction in
its activity in a yeast-cell model [41].
Of the remaining three previously-reported variations,

one was in ABCB11 gene. This variation in ABCB11
gene (p.Met183Thr) had been previously reported in a
patient with PFIC2, who had a compound heterozygous
state [42]; in our patient, this variation was homozygous.
Of the two previously-known variations in the ABCB4
gene identified in our patients, one (p.Arg159*) was pre-
viously reported in an Italian patient in heterozygous
state [43], with no genomic variation on the other allele.
This is similar to the findings in our patient, who had an
elder sibling with similar illness, and in whom the symp-
toms appeared at 54 months of age. Given that PFIC3 is
well recognized to have an autosomal recessive inherit-
ance, one would expect another variation on the other
allele of this gene, which however could not be identi-
fied. The other ABCB4 variation (p.Arg144Gln) that we
observed has not been reported in patients with PFIC;
however, it is likely to be pathogenic since it was pre-
dicted to be deleterious, was present in homozygous
form and had a low population frequency.
We also identified some missense and synonymous varia-

tions which were frequent in population-level genetic data-
bases, and were predicted not to adversely affect protein
structure or function, and hence were considered ‘benign’
or ‘likely benign’. One of these, the c.1331 T >C
(p.Val444Ala) substitution in ABCB11 gene may need par-
ticular mention. This variation has previously been variably
reported to be associated with reduced activity of the

protein and disease [44]. As discussed above, this substitu-
tion was identified in a patient who also had a heterozygous
novel splice-site variation in this gene, and hence could
have played in role in disease causation in that patient.
Importantly, no coding region or splice-site variation was

identified in any of the three genes studied in 16 of our 25
patients. This could have several explanations. In studies
from other geographical regions too, variations are identi-
fied in only 30–50% of cases with PFIC phenotype [2, 42].
Second, we did not look for variations in the promoter and
non-coding regions; however, such variations are only in-
frequently responsible for disease. Third, our methods
could miss a heterozygous major deletion; however, such a
deletion would need a pathogenic variation on the other al-
lele to cause disease. Fourth, we did not study variations in
other genes involved in bile acid transport (such as
MYO5B, TJP2, NR1H4, FXR or VIPAS39) [45–49]. It
should be possible to work around some of these limita-
tions in future, by using whole exome or whole genome se-
quencing. Finally, it is possible that some of our patients
may not have had PFIC, even though we took precautions
to exclude other liver diseases.
As expected, we identified genomic variations more

often in patients with history of consanguinity (5/7; 71%)
than in those without (4/18; 22%). In the two patients
who had homozygous variations in the absence of his-
tory of consanguinity, the parents may have had some
shared ancestry which was missed on history taking; this
is possible with close inbreeding prevalent in some com-
munities in India.

Fig. 1 Family tree for 9 patients in whom major variations in ATP8B1 (patients PF05, PF20, PF19 and PF18), ABCB11 (patients PF03, PF21 and
PF13) or ABCB4 (patients PF25 and PF09) genes were found. Five of these nine patients had history of consanguinity. Clinical, biochemical and
histological findings in these patients are included in Table 3
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Conclusions
Our study identified major genomic variations in only
about one-third of Indian children with PFIC. None of the
nine variations that we identified was particularly fre-
quent, and three of these were novel. Further, our findings
suggest that genomic variations responsible for PFIC in
Indian patients may differ from those in other popula-
tions. Since we did not find any genomic variation in
nearly two-thirds of our patients, it may be useful to
undertake whole-exome or whole-genome sequencing
studies in Indian children with PFIC to look for variations
in promoter/intronic regions of the ATP8B1, ABCB11
and ABCB4 genes and in other genes involved in bile salt
transport.
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