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Abstract

Background: Serotonin exhibits a vast repertoire of actions including cell proliferation and differentiation. The
effect of serotonin, as an incomplete mitogen, on liver regeneration has recently been unveiled and is mediated
through 5-HT2 receptor. The aim of the present study was to investigate the effect of 5-HT7 receptor blockade on
liver regeneration after partial hepatectomy.

Methods: Male Wistar rats were subjected to 60-70% partial hepatectomy. 5-HT7 receptor blockade was applied
by intraperitoneal administration of SB-269970 hydrochloride two hours prior to and sixteen hours after partial
hepatectomy and by intraperitoneal administration of SB-258719 sixteen hours after partial hepatectomy. Animals
were sacrificed at different time points until 72 h after partial hepatectomy. Liver regeneration was evaluated by
[3H]-thymidine incorporation into hepatic DNA, the mitotic index in hematoxylin-eosin (HE) sections and by
immunochemical detection of Ki67 nuclear antigen. Reversion of 5-HT7 blockade was performed by intraperitoneal
administration of AS-19. Serum and liver tissue lipids were also quantified.

Results: Liver regeneration peaked at 24 h ([3H]-thymidine incorporation into hepatic DNA and mitotic index by
immunochemical detection of Ki67) and at 32 h (mitotic index in HE sections) in the control group of rats. 5-HT7 receptor
blockade had no effect on liver regeneration when applied 2 h prior to partial hepatectomy. Liver regeneration was
greatly attenuated when blockade of 5-HT7 receptor was applied (by SB-258719 and SB-269970) at 16 h after partial
hepatectomy and peaked at 32 h ([3H]-thymidine incorporation into hepatic DNA and mitotic index by immunochemical
detection of Ki67) and 40 h (mitotic index in HE sections) after partial hepatectomy. AS-19 administration totally reversed
the observed attenuation of liver regeneration.

Conclusions: In conclusion, 5-HT7 receptor is a novel type of serotonin receptor implicated in hepatocyte proliferation.
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Background
Serotonin (5-HT) is an ancient chemical and neuro-
transmitter implicated in a vast variety of physiological
and pathophysiological processes [1-3]. 5-HT mediates its
actions through 14 distinct types of receptors encoded by
a respective number of genes and its actions outnumber
by far those of any other neurotransmitter. The majority
of serotonin in the body (90%) is synthesized in the GI
tract by enterochromafin cells and is known to control
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mood, behavior, memory, sleep and anxiety in the central
nervous system (CNS). In the periphery, serotonin medi-
ates vascular contraction and relaxation, GI tract smooth
muscle cell tone (contraction and/or relaxation), platelet
aggregation and is also acting as a growth factor for
diverse cell types promoting survival, cell differentiation
and proliferation as well as inhibition of apoptosis [1-3].
In the liver, serotonin is implicated in the regulation of

blood flow at the level of portal vein and sinusoids
through activation of 5-HT2 subtype of receptors [1], in
biliary tree growth (5-HT1α and 5-HT1β receptors), in the
development of liver cirrhosis through activation and
proliferation of HSC cells (5-HT2α and 5-HT2β) and hep-
atocyte proliferation (mainly 5-HT2α/β) [4]. Hepatocytes
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express SERT, 5-HT2α and 5-HT2β and possibly other
types of serotonin receptors and HSC cells express 5-
HT1β, 5-ΗΤ1F, 5-HT2α, 5-HT2β, 5-HT7 and SERT [1].
Reports regarding implication of serotonin in liver re-

generation are dated back in the early 80s in non-English
literature or even earlier [5,6]. A number of recent in vivo
studies including studies from our laboratory have eluci-
dated the role of serotonin in liver regeneration after
partial hepatectomy [7-9] with platelets to be the major
reservoir accounting for the increased hepatic concentra-
tions of the monoamine during liver regeneration. From
experiments with 5-HT2 receptor blockade with ketan-
serin or ritanserin in our laboratory, it has become evident
that serotonin exerts its actions mainly at the G1/S transi-
tion point and this suggests implication of the monoamine
in the control of this major restrictive checkpoint of the
cell cycle [8]. In cultured rat hepatocytes, in in vitro exper-
iments, serotonin induces dose-dependent increase in
DNA synthesis only in the presence of insulin and epi-
dermal growth factor (EGF) [7] and recently serotonin has
been shown to promote hepatocellular cancer growth in
human hepatocellular cancer cell lines [10].
5-HT7 receptor has been the last family of serotonin

receptors to be discovered. It is a Gs coupled receptor
with at least four different splice variants that differ in the
length of the C termini and in the number of phosphoryl-
ation sites, and the above have significant biochemical
consequences in the G protein coupling efficiency and the
differential susceptibility to desensitization [11]. The dis-
tribution of the receptor has not been fully elucidated and
its mRNA is most abundant in the thalamus, hippocam-
pus and hypothalamus. In the central nervous system, 5-
HT7 receptor mediates thermoregulation, learning and
memory, regulation of circadian rhythms and mood, and
endocrine functions. In the periphery the receptor is local-
ized mainly on smooth muscle cells in blood vessels in a
variety of organs where it mediates relaxation of blood
vessels as well as in the gastrointestinal tract where it
regulates motility [2,3,12].
In the present study, we investigated the effect of 5-

HT7 receptor blockade on liver regeneration after partial
hepatectomy.

Methods
Experimental animal model
Male Wistar rats, weighing 160–200 g, four to five
months old (Hellenic Pasteur Institute, Athens, Greece)
were used in this study. The animals were kept in a
temperature-controlled room (22-25°C), under 12 h of
light (08.00 h-20.00 h) and 12 h of darkness (20.00 h-
08.00 h) and they had free access to a commercial pellet
diet and tap water. The study protocol was approved by the
Deontology Committee of the University of Peloponnese
and animals were handled with humane care in accordance
with the European Union Directive and adapted in the
relevant Greek Presidential decree for the care and use
of laboratory animals [13].
All surgical procedures were performed between 07.00-

09.00 am with the animals under light ether anesthesia (di-
ethyl ether per anesthesia; Codex, Carlo Erba, Milan, Italy).
5-HT7 receptor blockade was applied by intraperitoneal ad-
ministration of SB-269970 hydrochloride (Sigma-Aldrich)
and SB-258719 (Tokris Bioscience, Ellisville Missouri,
USA). Reversion of 5-HT7 blockade was achieved by intra-
peritoneal administration of selective agonist AS-19 (Tokris
Bioscience, Ellisville Missouri, USA).
The experimental rats were randomly assigned to the

following groups:

Group A: rats submitted to 60-70% partial hepatectomy
and intraperitoneal administration of normal saline 2 h
prior and 16 h after partial hepatectomy.
Group B: rats submitted to 60-70% partial hepatectomy
and intraperitoneal administration of SB-269970
hydrochloride at the dose of 2 mg/kg bodyweight 2 h
prior to partial hepatectomy.
Group C: rats submitted to 60-70% partial hepatectomy
and intraperitoneal administration of SB-269970
hydrochloride at the dose of 2 mg/kg bodyweight 16 h
after partial hepatectomy.
Group D: rats submitted to 60-70% partial hepatectomy
and intraperitoneal administration of SB-269970
hydrochloride at the dose of 2 mg/kg bodyweight 2 h
prior and 16 h after partial hepatectomy.
Group E: rats submitted to 60-70% partial hepatectomy
and intraperitoneal administration of SB-258719 at the
dose of 4 mg/kg bodyweight 16 h after partial
hepatectomy.
Group F: rats submitted to 60-70% partial hepatectomy,
intraperitoneal administration of SB-269970 16 h after
partial hepatectomy at the dose of 2 mg/kg bodyweight
followed by intraperitoneal administration of AS-19 at
the dose of 10 mg/kg bodyweight.
Group G: rats submitted to 60-70% partial hepatectomy,
intraperitoneal administration of SB-258719 16 h after
partial hepatectomy at the dose of 4 mg/kg bodyweight
followed by intraperitoneal administration of AS-19 at
the dose of 10 mg/kg bodyweight.

Dosage of SB-269970 and SB-258719 was determined
after dose–response experiments (Figure 1). Pilot experi-
ments were also conducted with AS-19 (administration
at the doses of 1, 2, 5, 7.5 and 10 mg/kg) (Figure 2).
Animals from groups A, B and D were killed at 8, 18,

20, 24, 32, 40, 48, 60 and 72 h after partial hepatectomy
via cardiac puncture. Animals of groups C, E, F, and G
were sacrificed at 18, 20, 24, 32, 40, 48, 60 and 72 h after
partial hepatectomy.



Figure 1 Dose–response Curves of SB-269970 and SB-258719
administration. Rate of liver regeneration at 24 h after 60-70%
partial hepatectomy as evaluated by [3H]-thymidine incorporation
into hepatic DNA in rats having administered different doses of
SB-269970 (0.5, 1, 1.5, 2, and 2.5 mg/kg body weight) and SB-258719
(0.5, 1, 2, 4 and 5 mg/kg body weight) intraperitoneally at 16 h after
partial hepatectomy. Results represent the findings from at least five
rats. Values are expressed as means ± SE.
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One hour prior to sacrifice the animals of all groups were
injected with [3H]-thymidine at the dose of 250 μCi/kg
bodyweight intraperitoneally. A standard portion of the me-
dian liver lobe was used for histological evaluation and the
rest was rapidly frozen in liquid nitrogen for further deter-
minations. Liver weights were also tabulated for all groups
of rats.

Histological evaluation
A standard portion of the median liver lobe was fixed in
4% buffered formalin for 24 hours. Sections 5-μm thick
Figure 2 Dose–response Curves of AS-19 administration. Rate of
liver regeneration at 24 h after 60-70% partial hepatectomy as evaluated
by [3H]-thymidine incorporation into hepatic DNA in rats having
administered SB-269970 hydrochloride (2 mg/kg bodyweight) 16 h after
partial hepatectomy (group C) and SB-258719 (4 mg/kg bodyweight)
16 h after partial hepatectomy (group E) and different doses of AS-19
(1, 2, 5, 7.5 and 10 mg/kg body weight) intraperitoneally at 16.5 h after
partial hepatectomy. Results represent the findings from at least five rats.
Values are expressed as means ± SE.
were processed routinely, stained with hematoxylin-eosin
(HE) and analysed for mitoses. Mitoses were counted
in 10 randomly selected high-power fields (HPF) and
expressed as the mean number of mitoses/HPF. The
mitotic index was also evaluated by the immunochemical
detection of Ki67 nuclear antigen (Dako, MIB 5 clone,
1:50, with microwave pre-treatment).

Liver regeneration
The rate of liver regeneration was evaluated by the rate
of [3H]-thymidine incorporation into hepatic DNA, the
mitotic index in HE sections and by immunochemical
detection of Ki67 nuclear antigen.

Rate of [3H]-thymidine Incorporation into Hepatic DNA
Animals of all groups were injected intraperitoneally
with 250 μCi/kg bodyweight of [3H]-thymidine 1 h prior
to sacrifice. DNA was extracted from the tissue according
to the method of Munro and Fleck [14] as modified by
Kyprianidis et al. [15]. The content of tissue DNA was es-
timated by the method of Richards [16]. The rate of [3H]-
thymidine incorporation into hepatic DNA was calculated
from the radioactivity measured in a liquid scintillation
counter (Wallac LKB 1211 Rackbeta, Sweden) and results
were expressed as counts/min/μg of DNA.

Analysis of liver and serum lipid content
Frozen liver tissue (~100 mg) was homogenised in
1.6 ml phosphate-buffered saline and protein concentra-
tion was determined using the method of Lowry [17].
Lipids were extracted using chloroform: methanol (2:1)
according to Folch et al. [18]. Phase separation was
achieved with sulphuric acid 0.1% and the organic phase
was solubilized in Triton X-100. Cholesterol, TG, FFA
and phospholipid content were determined in liver tissue
and plasma with the use of commercially available kits
(Wako, Chemicals) and normalized to protein concen-
tration of the homogenate. Free plasma glycerol levels
were also determined in deproteinised serum samples as
an indicator of lipolysis in adipose tissue [19].

Statistical analysis
Data were expressed as means ± SE. All observations were
obtained from at least five animals. The statistical analysis
of the results was performed by unpaired Student’s t-test.
Results
In rats subjected to 60-70% partial hepatectomy (group
A), liver regeneration as evaluated by [3H]-thymidine in-
corporation into hepatic DNA, peaked at 24 and 32 h after
partial hepatectomy and high rates were also observed at
40 h. The regenerative rates declined abruptly after 40 h
and remained at low levels thereafter (Figure 3).



Figure 3 Liver regeneration as evaluated by [3H]-thymidine
incorporation into hepatic DNA in 60-70% partially
hepatectomized rats and SB-269970. Time course of liver
regeneration as evaluated by [3H]-thymidine incorporation into
hepatic DNA in 60-70% partially hepatectomized rats having
received intraperitoneally saline (group A), SB-269970 hydrochloride
(2 mg/kg bodyweight) 2 h prior to partial hepatectomy (group B),
SB-269970 hydrochloride (2 mg/kg bodyweight) 16 h after partial
hepatectomy (group C) or SB-269970 hydrochloride (2 mg/kg
bodyweight) 2 h prior and 16 h after partial hepatectomy (group
D). Results represent the findings from at least five rats: killed at 8,
18, 20, 24, 32, 40, 60 and 72 h (groups A, B and D) and at 18, 20, 24,
32, 40, 48, 60 and 72 h (group C). Values are expressed as means ±
SE. DNA group A vs group C and D; P < 0.001: 18–40 h.

Figure 4 Liver regeneration as evaluated by [3H]-thymidine
incorporation into hepatic DNA in 60-70% partially
hepatectomized rats and SB-258719. Time course of liver
regeneration as evaluated by [3H]-thymidine incorporation into
DNA in 60-70% partially hepatectomized rats having received
SB-258719 (4 mg/kg bodyweight) 16 h after partial hepatectomy.
Results represent the findings from at least five rats killed at 18, 20, 24,
32, 40, 48, 60 and 72 h (group E). Values are expressed as means ± SE.

Figure 5 Liver regeneration as evaluated by [3H]-thymidine
incorporation into hepatic DNA in 60-70% partially
hepatectomized rats and AS-19. Time course of liver
regeneration as evaluated by [3H]-thymidine incorporation into DNA in
60-70% partially hepatectomized rats having received intraperitoneally
saline (group A) or SB-269970 hydrochloride (2 mg/kg bodyweight)
16 h after partial hepatectomy (group C) or SB-269970 hydrochloride
(2 mg/kg bodyweight) followed by intraperitoneal administration of
AS-19 (10 mg/kg bodyweight) 16.5 h after partial hepatectomy
(group F). Results represent the findings from at least five rats killed at
8, 18, 20, 24, 32, 40, 48, 60 and 72 h (group A) and at 18, 20, 24, 32, 40,
48, 60 and 72 h (groups C and F). Values are expressed as means ± SE.
DNA group C vs group F; P < 0.001: 18–48 h.
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In rats subjected to 60-70% partial hepatectomy and
intraperitoneal administration of SB-269970 2 h prior to
partial hepatectomy (group B), [3H]-thymidine incorpor-
ation into hepatic DNA was maximal at 24 h and 32 h after
partial hepatectomy with high rates also at 40 h (Figure 3).
The temporal pattern and values of regenerative rate were
almost identical in groups A and B of rats (Figure 3).
In group C of rats, intraperitoneal administration of SB-

269970 16 h after partial hepatectomy greatly attenuated
liver regeneration as evaluated by [3H]-thymidine incorpor-
ation into hepatic DNA at 24 h after partial hepatectomy
(Figure 3). [3H]-thymidine incorporation into hepatic DNA
was maximal at 32 h after partial hepatectomy in group C
of rats and sharply declined thereafter (Figure 3). The max-
imal regenerative rate observed at 32 h in group C as well
as the regenerative rates at all time points examined in this
group were lower than the corresponding rates at the same
time points for groups A and B (Figure 3).
In group D of rats [3H]-thymidine incorporation into

hepatic DNA peaked at 32 h after partial hepatectomy
showing the same temporal pattern as in group C (Figure 3).
As in group C, liver regeneration was greatly attenuated at
all time points examined.
In group E of rats [3H]-thymidine incorporation into hep-

atic DNA peaked at 32 h after partial hepatectomy showing
the same temporal pattern and similar values as in groups
C and D (Figure 4). As in group C, liver regeneration was
greatly attenuated at all time points examined.
In groups F and G, AS-19 administration reversed
the observed attenuation of liver regeneration and [3H]-
thymidine incorporation into hepatic DNA peaked at 24
and 32 h after partial hepatectomy while it was also at
high levels at 40 h. The time pattern and values of [3H]-
thymidine incorporation into hepatic DNA in groups
F and G were almost identical with that in group A
(Figures 5 and 6).



Figure 6 Liver regeneration as evaluated by [3H]-thymidine
incorporation into hepatic DNA in 60-70% partially
hepatectomized rats and AS-19. Time course of liver
regeneration as evaluated by [3H]-thymidine incorporation into
DNA in 60-70% partially hepatectomized rats having received
intraperitoneally saline (group A) or SB-258719 (4 mg/kg bodyweight)
16 h after partial hepatectomy (group E) or SB-258719 (4 mg/kg
bodyweight) followed by intraperitoneal administration of AS-19
(10 mg/kg bodyweight) 16.5 h after partial hepatectomy (group G).
Results represent the findings from at least five rats killed at 8, 18, 20,
24, 32, 40, 48, 60 and 72 h (group A) and at 18, 20, 24, 32, 40, 48, 60 and
72 h (groups E and G). DNA group E vs group G; P < 0.001: 18–40 h.

Figure 7 Liver regeneration as evaluated by mitotic index
(HE sections) in 60-70% partially hepatectomized rats and
SB-269970. Time course of liver regeneration as evaluated by mitotic
index (HE sections) in 60-70% partially hepatectomized rats having
received intraperitoneally saline (group A) or SB-269970 hydrochloride
(2 mg/kg bodyweight) 2 h prior to partial hepatectomy (group B) or
SB-269970 hydrochloride (2 mg/kg bodyweight) 16 h after partial
hepatectomy (group C) or SB-269970 hydrochloride (2 mg/kg
bodyweight) 2 h prior and 16 h after partial hepatectomy (group D).
Mitotic index was expressed as mean number of mitoses/high-power
field (HPF). Results represent the findings from at least five rats: killed at
8, 18, 20, 24, 32, 40, 60 h and 72 h (groups A, B and D) and at 18, 20,
24, 32, 40, 48, 60 and 72 h (group C). Values are expressed as means ±
SE. Mitotic index group A vs group C and D; P < 0.001: 24–32 and 60 h;
P < 0.01: 40 h. Mitotic index group A vs groups B, C and D; P < 0.01: 18
and 20 h. Mitotic index group A vs group C; P < 0.01: 48 h.

Figure 8 Ki67 positive cells in 60-70% partially hepatectomized
rats and SB-269970. Time course of Ki67 positive cells in 60-70%
partially hepatectomized rats having received intraperitoneally saline
(group A) or SB-269970 hydrochloride (2 mg/kg bodyweight) 2 h
prior to partial hepatectomy (group B) or SB-269970 hydrochloride
(2 mg/kg bodyweight) 16 h after partial hepatectomy (group C) or
SB-269970 hydrochloride (2 mg/kg bodyweight) 2 h prior and 16 h
after partial hepatectomy (group D). Results represent the findings
from at least five rats killed at 8, 18, 20, 24, 32, 40, 48, 60 h and 72 h
(groups A, B and D) at 18, 20, 24, 32, 40, 48, 60 and 72 h (group C).
Values are expressed as means ± SE. Ki67 group A vs group C and D;
P < 0.001: 18–40 h.
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Mitotic index in HE sections was maximal at 32 h
after partial hepatectomy in groups A and B with also
relatively high levels at 24, 40 and 48 h and sharply de-
clined thereafter (Figure 7). In groups C and D of rats,
mitotic index was minimal until 32 h and two major
peaks were observed at 40 and 60 h that were both
lower than the corresponding peaks in groups A and B
at 32 h (Figure 7).
Mitotic index as evaluated by the immunochemical de-

tection of Ki67 gradually increased between 8 and 24 h
when it peaked in groups A and B of rats and remained
at high levels until 40 h with abrupt decline thereafter
(Figures 8 and 9). The index remained at low levels be-
tween 8 and 24 h after partial hepatectomy in groups C
and D of rats with sharp increase at 32 h (Figures 8
and 10). The percentage of Ki67 nuclei remained at rela-
tively high levels until 48 h after partial hepatectomy
with gradual decrease afterwards in these groups of rats
(Figure 8). The regenerative rate as evaluated by Ki67
positive cells in groups C and D at 32 and 40 h was
lower than that in groups A and B.
In group F intraperitoneal administration of AS-19 at the

dose of 10 mg/kg of body weight totally reversed the ob-
served attenuation of liver regeneration as evaluated by the
percentage of Ki67 positive cells and regenerative rates
were almost identical with these in group A (Figure 11).
The observed effect of AS-19, as evaluated in initial pilot
experiments was dose-dependent (Figure 2). In group G
of rats AS-19 administration also totally reversed the ob-
served inhibition of liver regeneration and the time pattern



Figure 9 Ki67 positive cells at 24 h (×400) in 60–70% partially
hepatectomized rats having received saline (group A).

Figure 11 Ki67 positive cells in 60-70% partially hepatectomized
rats and AS-19. Time course of Ki67 positive cells in 60-70% partially
hepatectomized rats having received intraperitoneally saline (group A)
or SB-269970 hydrochloride (2 mg/kg bodyweight) 16 h after partial
hepatectomy (group C) or SB-269970 hydrochloride (2 mg/kg
bodyweight) followed by intraperitoneal administration of AS-19
(10 mg/kg bodyweight) 16.5 h after partial hepatectomy (group F).
Results represent the findings at least five rats killed at 8, 18, 20, 24, 32,
40, 48, 60 and 72 h (group A) and at 18, 20, 24, 32, 40, 48, 60 and 72 h
(groups C and F). Values are expressed as means ± SE. Ki67 group C vs
group F; P < 0.001: 18–40 h.
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and values of Ki67 positive cells were also almost identical
with these in groups A and F (data not shown).
Relative liver weight (liver weight in g/100 g bodyweight)

sharply decreased, as expected after partial hepatectomy,
with gradual increase thereafter in group A of rats. In
groups C, D and E, relative liver weight remained at low
levels without significant increases until 24 h after partial
hepatectomy. In these groups a small increase was ob-
served at 32 h with further increase at 40 and 48 h after
partial hepatectomy. In groups F and G of rats, the relative
liver weights showed the same gradual increases as in
group A (Table 1).
Regarding lipid changes after partial hepatectomy, in-

crease in liver triglyceride levels was observed at 18 h
after partial hepatectomy with further increase at 24 h in
group A of rats. Liver triglyceride content peaked at
40 h after partial hepatectomy and decreased thereafter
Figure 10 Ki67 positive cells at 24 h (×400) in 60–70% partially
hepatectomized rats having received SB-269970 hydrochloride
(2 mg/kg bodyweight) 16 h after partial hepatectomy (group C).
but was still at high levels at 72 h after partial hepatec-
tomy. Serum triglyceride concentration decreased at 18
and 24 h after partial hepatectomy and increased after-
wards and these increases were still present at 72 h after
partial hepatectomy. Serum FFA and free glycerol levels
both increased at 18 h after partial hepatectomy and
remained at high levels thereafter. The temporal patterns
of liver and plasma lipid changes were similar in all
groups of rats (Tables 2 and 3).
Discussion
The ability of the liver to regenerate after surgical resec-
tion or any short of hepatic injury has been known from
long and has drawn immense scientific interest. 60-70%
partial hepatectomy is the most commonly applied stimu-
lus for the study of liver regeneration mainly due to the
fact that the mitotic stimulus is accurately applied in time
and not associated with necrotic or inflammatory pro-
cesses [20]. A great number of substances influence the re-
generative process and traditionally they are classified as
complete and incomplete (auxiliary) mitogens [20].
The autonomic nervous system, both sympathetic and

parasympathetic, is implicated in liver regeneration al-
though the exact mechanisms of its effects still remain ob-
scure [21-23]. Among neurotransmitters norepinephrine,
mainly through α1-adrenergic receptor [23-25] (actions
through β-adrenergic receptors have also been reported)
[26], and serotonin, mainly through 5-HT2 receptor, are
considered auxiliary mitogens [7-9].



Table 1 Relative liver weights (g/100 g bodyweight) after 60-70% partial hepatectomy in groups A, C, E, F and G

Relative liver weights (g/100 g body weight)

Hours after partial hepatectomy Group A Group C Group E Group F Group G

8 1,6 ± 0,1 1,5 ± 0,1 1,6 ± 0,1 1,7 ± 0,2 1,6 ± 0,1

18 1,9 ± 0,2 1,7 ± 0,1 1,6 ± 0,1 2,0 ± 0,2 2,0 ± 0,1

24 2,3 ± 0,2 1,7 ± 0,1 1,8 ± 0,1 2,2 ± 0,2 2,4 ± 0,2

32 2,6 ± 0,3 2,3 ± 0,2 2,2 ± 0,2 2,5 ± 0,3 2,7 ± 0,2

40 3,1 ± 0,3 2,6 ± 0,2 2,6 ± 0,1 3,1 ± 0,2 3,0 ± 0,3

48 3,5 ± 0,2 2,7 ± 0,2 2,8 ± 0,2 3,4 ± 0,3 3,4 ± 0,3

60 3,7 ± 0,2 2,7 ± 0,2 2,7 ± 0,1 3,8 ± 0,2 3,7 ± 0,3

72 4,2 ± 0,2 2,6 ± 0,1 2,8 ± 0,1 4,1 ± 0,3 4,3 ± 0,2

The mean relative liver weight for normal rats (n = 5) of the same age and weight range was 4.5 ± 0.3.
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Serotonin is an important neurotransmitter of the auto-
nomic nervous system and in the liver serotonergic nerve
fibres are localized in the tunica media of branches of the
hepatic artery, portal vein, bile ducts and the connective
tissue of the interlobular septae in humans and rats
[27,28]. 5-HT receptors are expressed in various liver cell
types, apart from hepatocytes, as hepatic stelate cells and
sinusoidal endothelial cells [4,29,30].
From experiments on differential 5-HT receptor sub-

type expression and blockade experiments with various
receptor antagonists of other research groups it has be-
come evident that 5-HT2α and 5-HT2β receptors mediate
liver regeneration [31] and molecular pathways have
been elucidated in the case of 5-HT2β receptor [32-34].
In our study, 5-HT7 receptor blockade greatly attenu-

ated liver regeneration when applied close to the G1/S
transition point of the cell cycle and this is the first study
to reveal implication of the 5-HT7 receptor in liver regen-
eration and more specifically in this major restrictive cell
cycle check point. In the central nervous system, blockade
of 5-HT7 receptor has been reported to increase hippo-
campal cell proliferation [35] and the receptor is also im-
plicated at least in the initial stages of T-cell activation and
possibly in T-cell proliferation [36]. Additionally, 5-ΗΤ7

receptor has been recently found to be expressed in hepa-
tocytes although the full repertoire of its actions in the
liver still remains obscure [37].
SB-269970 used in our study is considered a highly se-

lective ligand for 5-HT7 receptors (pKi= 8.9 ± 0.1) with
at least 100-fold greater affinity in relation to other types
of 5-HT receptor subtypes but some researchers have
also reported that it is also a potent α2-adrenergic recep-
tor blocker [38-41]. Although only α1-adrenoreceptors
have been reported to participate in liver regeneration,
the observed inhibitory effect by SB-269970 could also
be attributed to α2-receptor blockade especially since α2-
adrenoreceptors are expressed in hepatocytes [42,43].
Activation of α2-adrenergic receptors has been reported
to induce cell proliferation in different cell types [44-46],
whereas competitive inhibition of these receptors at-
tenuates cell proliferation and/or induces apoptosis
[44,45,47]. However, there are reports that connect α2-
receptor stimulation with inhibition of cell growth [48].
In order to elucidate the above, another series of exper-
iments has been conducted in our laboratory with in-
traperitoneal administration of SB-258719 (pKi= 7.5) at
the dose of 4 mg/kg bodyweight at 16 h after partial
hepatectomy [38,49,50]. SB-258719 is a known weak in-
verse agonist of 5-HT7 receptor without any known actions
on other type of serotonin receptors and its administration
had the same effect on liver regeneration as SB-269970
administration and the above clearly suggests that the ob-
served inhibitory effect must be attributed to 5-HT7 recep-
tor blockade.
In order to verify that the observed effect on liver regen-

eration is due to blockade of 5-HT7 receptor we con-
ducted another series of experiments with the selective 5-
HT7 receptor agonist AS-19 [51-53]. AS-19 is considered
a selective 5 HT7 agonist (Ki = 0.6 nM, IC50 = 0.83nM)
[54]. AS-19 administration reversed the observed attenu-
ation of liver regeneration caused by administration of
SB-269970 and SB-258719 and this verifies the implication
of 5-HT7 in liver regeneration.
It is known from long that liver regeneration is accom-

panied by transient hepatic steatosis and intracellular
accumulation of triglycerides in hepatocytes through in-
creased lipolysis in the adipose tissue and increased hep-
atic lipogenesis [55,56]. Serotonin induces lipolysis in
adipocytes and promotes gluconeogenesis in hepatocytes
through 5-HT2b receptor during fasting adaptation [57].
Additionally serotonin is also implicated in the regulation
of lipid metabolism through 5-HT2c receptors by altering
sympathetic outflow at the brain level [58]. In our experi-
ments no significant differences have been observed in
serum and liver lipids during liver regeneration after 5-
HT7 receptor blockade and consequently 5-HT7 receptor
does not seem to be implicated in the adaptive changes of
lipid metabolism during liver regeneration.



Table 2 Liver and serum triacylglycerol levels and serum glycerol and FFA levels in groups A, C and D

Time after
PH (hours)

Group A Group C Group D

Liver
triacylglycerol
(μg/mg of
protein)

Serum
triacylglycerol
(mg/dl)

Serum
glycerol
(μmol/l)

Serum FFA
(μmol/ml
or mmol/l)

Liver
triacylglycerol
(μg/mg of protein

Serum
triacylglycerol
(mg/dl)

Serum
glycerol
(μmol/l)

Serum FFA
(μmol/ml
or mmol/l)

Liver
triacylglycerol
(μg/mg of protein)

Serum
triacylglycerol
(mg/dl)

Serum
glycerol
(μmol/l)

Serum FFA
(μmol/ml
or mmol/l)

0 15.8 ± 0.8 6.2 ± 0.6 61.2 ± 5.2 0.32 ± 0.05 15.8 ± 0.8 6.2 ± 0.6 61.2 ± 5.2 0.32 ± 0.05 15.8 ± 0.8 6.2 ± 0.6 61.2 ± 5.2 0.32 ± 0.05

8 16.8 ± 0.9 5.8 ± 0.6 75.4 ± 6.5 0.44 ± 0.05 N.D. N.D. N.D. N.D. 17.4 ± 1.3 6.0 ± 0.9 72.8 ± 6.1 0.50 ± 0.06

18 28.1 ± 2.3 3.8 ± 0.4 188.6 ± 8.8 0.86 ± 0.07 27.5 ± 3.1 4.2 ± 0.4 174.2 ± 7.5 0.82 ± 0.08 29.4 ± 2.4 3.5 ± 0.6 179.4 ± 7.8 0.89 ± 0.08

20 30.6 ± 3.4 3.6 ± 0.5 192.2 ± 9.5 0.84 ± 0.08 29.7 ± 2.5 3.9 ± 0.4 190.3 ± 8.6 0.86 ± 0.09 31.2 ± 2.6 3.3 ± 0.4 195.1 ± 8.2 0.81 ± 0.06

24 34.8 ± 3.8 3.4 ± 0.4 187.8 ± 9.1 0.82 ± 0.07 35.3 ± 3.4 3.2 ± 0.5 195.2 ± 8.9 0.89 ± 0.09 36.2 ± 2.9 3.0 ± 0.4 189.3 ± 8.8 0.79 ± 0.07

32 37.2 ± 2.3 5.6 ± 0.6 204.2 ± 10.4 0.90 ± 0.06 38.1 ± 3.8 4.8 ± 0.4 197.5 ± 9.3 0.94 ± 0.08 37.8 ± 2.7 5.4 ± 0.7 201.8 ± 9.4 0.88 ± 0.09

40 40.1 ± 3.4 6.4 ± 0.7 196.3 ± 10.1 0.86 ± 0.09 41.3 ± 4.2 5.9 ± 0.6 203.4 ± 8.7 0.88 ± 0.07 39.2 ± 3.1 6.7 ± 0.8 204.9 ± 8.5 0.91 ± 0.09

48 33.8 ± 2.6 7.4 ± 0.7 205.1 ± 9.5 0.84 ± 0.08 34.5 ± 3.5 7.1 ± 0.7 197.8 ± 9.5 0.84 ± 0.08 31.6 ± 2.5 7.8 ± 0.9 209.5 ± 9.7 0.80 ± 0.08

60 26.6 ± 2.2 7.2 ± 0.8 179.9 ± 8.6 0.83 ± 0.07 27.6 ± 3.1 7.4 ± 0.6 189.7 ± 7.8 0.81 ± 0.08 27.3 ± 1.9 7.7 ± 0.6 192.5 ± 8.3 0.78 ± 0.08

72 24.6 ± 1.6 7.0 ± 0.6 204.1 ± 8.9 0.85 ± 0.08 26.5 ± 2.6 7.5 ± 0.7 196.8 ± 7.5 0.80 ± 0.07 23.2 ± 1.7 7.2 ± 0.8 189.6 ± 7.8 0.74 ± 0.06

Values are expressed as mean ± standard error.
FFA = Free fatty acid.
N.D. = Not Determined.
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Table 3 Liver and serum triacylglycerol levels and serum glycerol and FFA levels in groups E, F and G

Time after
PH (hours)

Group E Group F Group G

Liver
triacylglycerol
(μg/mg of protein)

Serum
triacylglycerol
(mg/dl)

Serum
glycerol
(μmol/l)

Serum FFA
(μmol/ml
or mmol/l)

Liver
triacylglycerol
(μg/mg of
protein

Serum
triacylglycerol
(mg/dl)

Serum
glycerol
(μmol/l)

Serum FFA
(μmol/ml
or mmol/l)

Liver
triacylglycerol
(μg/mg
of protein)

Serum
triacylglycerol
(mg/dl)

Serum
glycerol
(μmol/l)

Serum FFA
(μmol/ml
or mmol/l)

0 15.8 ± 0.8 6.2 ± 0.6 61.2 ± 5.2 0.32 ± 0.05 15.8 ± 0.8 6.2 ± 0.6 61.2 ± 5.2 0.32 ± 0.05 15.8 ± 0.8 6.2 ± 0.6 61.2 ± 5.2 0.32 ± 0.05

18 30.3 ± 2.9 4.0 ± 0.6 180.7 ± 8.3 0.85 ± 0.09 28.9 ± 3.3 3.8 ± 0.5 175.9 ± 8.5 0.72 ± 0.08 29.9 ± 2.8 4.2 ± 0.8 184.8 ± 8.8 0.81 ± 0.08

20 32.7 ± 3.8 3.7 ± 0.5 191.3 ± 8.9 0.83 ± 0.06 30.8 ± 3.5 3.9 ± 0.5 190.7 ± 9.0 0.79 ± 0.09 34.3 ± 3.1 3.6 ± 0.7 196.7 ± 8.5 0.77 ± 0.08

24 35.7 ± 3.9 3.5 ± 0.5 194.5 ± 9.7 0.80 ± 0.07 34.4 ± 3.8 3.4 ± 0.7 193.8 ± 8.5 0.87 ± 0.13 37.2 ± 3.5 3.1 ± 0.6 199.5 ± 9.2 0.79 ± 0.07

32 39.5 ± 3.3 5.0 ± 0.9 201.6 ± 10.3 0.93 ± 0.11 42.3 ± 4.0 5.3 ± 0.9 198.5 ± 9.9 0.96 ± 0.15 38.8 ± 3.7 4.5 ± 0.9 207.8 ± 10.4 0.90 ± 0.09

40 42.6 ± 4.1 6.7 ± 0.6 199.2 ± 10.8 0.86 ± 0.09 44.6 ± 4.6 6.3 ± 1.1 205.6 ± 10.7 0.91 ± 0.09 43.4 ± 3.6 6.1 ± 0.9 210.9 ± 9.5 0.95 ± 0.09

48 35.9 ± 2.9 7.7 ± 0.8 206.7 ± 11.3 0.83 ± 0.08 37.5 ± 3.9 7.6 ± 0.9 203.7 ± 10.2 0.87 ± 0.08 32.9 ± 3.5 7.2 ± 1.2 200.3 ± 10.7 0.81 ± 0.08

60 27.4 ± 2.6 7.1 ± 0.9 182.9 ± 9.6 0.81 ± 0.08 29.8 ± 3.3 7.4 ± 0.9 185.8 ± 8.8 0.82 ± 0.07 26.3 ± 2.4 7.3 ± 0.9 172.7 ± 8.9 0.73 ± 0.07

72 23.6 ± 2.2 6.7 ± 0.6 200.4 ± 9.9 0.85 ± 0.09 25.6 ± 2.9 6.5 ± 0.8 203.6 ± 9.5 0.76 ± 0.09 21.8 ± 1.9 7.0 ± 1.0 192.6 ± 7.5 0.81 ± 0.09

Values are expressed as mean ± standard error.
FFA = Free fatty acid.
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5-HT7 receptors have been reported to activate MAPK
[59,60] and this activation has also been reported to be
RAS-dependent [61]. The above seems to represent a
more general pattern of MAPK activation from Gs-
coupled receptors with RAS independent pathways to
have also been described [62,63]. Both 5-HT2α and 5-
HT2β receptors have also been reported to activate MAPK
through similar pathways [33,64] and this hints at a pos-
sible role of 5-HT7 receptor in mitogenesis and cell-
cycle progression although further research is needed at
this point.

Conclusions
The results of this study indicate that 5-HT7 receptor is
implicated in liver regeneration after partial hepatectomy.
Serotonin through 5-HT7 receptor seems to exert its aux-
iliary proliferative effect close to G1/S transition point and
during the S phase. Therefore, the results identify a novel
type of 5-HT receptor that mediates the proliferative effect
of the monoamine in the liver.
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