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Abstract
Background: Iron overload is associated with liver toxicity, cirrhosis, and hepatocellular
carcinoma in humans. While most iron circulates in blood as transferrin-bound iron, non-
transferrin-bound iron (NTBI) also becomes elevated and contributes to toxicity in the setting of
iron overload. The mechanism for iron-related carcinogenesis is not well understood, in part due
to a shortage of suitable experimental models. The primary aim of this study was to investigate
NTBI-related hepatic carcinogenesis using T51B rat liver epithelial cells, a non-neoplastic cell line
previously developed for carcinogenicity and tumor promotion studies.

Methods: T51B cells were loaded with iron by repeated addition of ferric ammonium citrate
(FAC) to the culture medium. Iron internalization was documented by chemical assay, ferritin
induction, and loss of calcein fluorescence. Proliferative effects were determined by cell count,
toxicity was determined by MTT assay, and neoplastic transformation was assessed by measuring
colony formation in soft agar. Cyclin levels were measured by western blot.

Results: T51B cells readily internalized NTBI given as FAC. Within 1 week of treatment at 200
μM, there were significant but well-tolerated toxic effects including a decrease in cell proliferation
(30% decrease, p < 0.01). FAC alone induced little or no colony formation in soft agar. In contrast,
FAC addition to cells previously initiated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)
resulted in a concentration dependent increase in colony formation. This was first detected at 12
weeks of FAC treatment and increased at longer times. At 16 weeks, colony formation increased
more than 10 fold in cells treated with 200 μM FAC (p < 0.001). The iron chelator desferoxamine
reduced both iron uptake and colony formation. Cells cultured with 200 μM FAC showed
decreased cyclin D1, decreased cyclin A, and increased cyclin B1.

Conclusion: These results establish NTBI as a tumor promoter in T51B rat liver epithelial cells.
Changes in cyclin proteins suggest cell cycle disregulation contributes to tumor promotion by NTBI
in this liver cell model.
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Background
Iron is an essential metal, but is potentially toxic and
therefore tightly regulated in mammalian systems [1,2].
Most body iron stores are sequestered in a non-toxic form
through high affinity binding to transport and storage
proteins including transferrin and ferritin. There is also a
significant pool of "free iron" complexed to low molecu-
lar weight (MW) carriers such as citrate. Intracellular free
iron is a necessary intermediate between iron storage
depots and biosynthetic pathways that utilize iron. It also
mediates translational control of iron homeostasis by
binding to iron regulatory proteins. However, free iron
can undergo redox cycling, forming reactive oxygen spe-
cies (ROS) through the Fenton and Haber Weiss reactions
[3-5]. ROS damage biomolecules and cause oxidative
stress by depleting cellular antioxidant stores and may
result in cell death [6-8]. The potential for iron damage is
particularly high in liver, the primary organ for storage of
excess iron [2]. As there is no significant excretion of iron,
excess uptake may be accompanied by severe liver damage
that progresses to liver failure or hepatocellular carcinoma
(HCC) [9]. This occurs in diseases of iron overload,
including hereditary hemochromatosis. Elevated liver
iron is also associated with increased HCC in other liver
diseases, including biliary cirrhosis and hepatitis C [10].

Iron overload is marked by increases in both transferrin-
bound and free, non-transferrin-bound iron (NTBI) in
blood [11,12]. Several considerations suggest these two
forms are separable: (1) Although transferrin-bound iron
has significant growth-promoting effects, stimulation of
cell growth by NTBI was seen only over a narrow concen-
tration range and under transferrin-limiting conditions
[13,14]. Tumor cells, which can have increased growth
rates, frequently have increased levels of transferrin recep-
tors [15], and iron uptake via this route is higher than in
neighboring cells. Yet in iron overload, tumors contain
lower iron levels than surrounding liver tissue [16]. Simi-
larly bone marrow cells, with a higher level of transferrin
receptors than hepatocytes, do not accumulate iron in
iron overload diseases. (2) Humans and animals that lack
transferrin still develop iron overload [17]. (3) There are
many reports of experimental iron overload in cells and
animals given NTBI [6-8], but not transferrin-bound iron.
(4) Rodent studies identified transferrin-independent
pathways of iron uptake in liver [18,19]. This was con-
firmed in rat hepatocytes and other mammalian cell types
in culture [20-23]. (5) Finally, unlike transferrin uptake
via receptor-mediated endocytosis, NTBI uptake was not
downregulated in iron replete cells; it increased with
exposure to iron [24-26]. In addition, NTBI uptake in liver
increased in an animal model of hemochromatosis [27].
These points suggest that mechanisms that don't involve
transferrin receptors are critical for iron overload in liver.

NTBI is an important, and possibly the primary, source of
iron-related toxicity in liver.

Although transferrin-independent uptake and toxicity of
NTBI have been demonstrated in animals and in cultured
cells, effects on neoplastic transformation are not under-
stood. This is due partly to a lack of suitable experimental
models, and partly to the difficulty of obtaining effects
using physiological forms of NTBI. The high rate of HCC
among human hemochromatosis patients with cirrhosis
has not been replicated in animal models of this disease
[2,9]. Non-physiological forms of dietary iron contrib-
uted to liver cancer in animals [28,29], but the relevance
to biological iron is unknown. Similarly, prior reports that
iron acts as a co-carcinogen or tumor promoter in liver
and cultured cells also depended on non-physiological
iron ligands [16,30,31]. In some protocols iron inhibited
or had no effect on cell transformation [32,33]. Transfor-
mation protocols that require any form of iron have not
been established in human cells. No previous studies have
reported transformation-related effects of iron adminis-
tered in a form that is present in humans.

Ferric citrate is present in blood and its levels increase in
hereditary hemochromatosis [12,34]. It may be an impor-
tant contributor to the pathological effects of iron over-
load in humans, including hepatocellular carcinoma.
Ferric ammonium citrate (FAC) is a formulation that min-
imizes generation of insoluble iron hydroxides in vitro
[35]. The present study investigated the transforming
effects of this physiologically and pathologically relevant
form of NTBI. We utilized T51B rat liver epithelial cells, a
well-characterized model for tumor promotion and carci-
nogenicity studies. We found FAC has properties of a
tumor promoter, rather than a complete carcinogen. Iron-
induced changes in cyclin proteins suggest tumor promo-
tion results in part from disruptions in regulation of the
T51B cell cycle in proliferating cells.

Methods
Materials
N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ferric
ammonium citrate (FAC), desferoxamine, and calcein-AM
were from Sigma/Aldrich (St. Louis, MO). Newborn calf
serum was from Atlanta Biologicals (Norcross GA). Other
cell culture reagents were from GIBCO/Invitrogen
(Carlsbad, CA). Agarose was from Cambrex BioScience
(Rockland, ME). Antibodies and other specialty reagents
were from commercial sources as noted below. Concen-
trated stock solutions were prepared assuming 100% rea-
gent purity and stored in aliquots at -20°C. Solutions in
solvent were kept at -20°C until use, while aqueous rea-
gents were used after thawing and storage at 4°C for lim-
ited periods. As appropriate, control experiments were run
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to document that solvent alone had no effect. MNNG
stock solutions were freshly prepared just prior to use.

Cell culture and transformation assays
T51B cells are a non-neoplastic cell line derived from rat
liver and used in studies of carcinogenicity and tumor pro-
motion [36-39]. T51B cells were maintained in Eagles
basal media supplemented with 10% newborn calf serum,
2 mM l-glutamine, and 100 U/ml penicillin/streptomycin
(complete media), at 37°C in a 5% CO2 atmosphere. For
proliferation and all other assays, treatment was started 1
day after plating. In general, untreated cells reached con-
fluence 5 days after plating and were subsequently quies-
cent [38]. Cell number was determined at 3 days
treatment (to approximate log phase growth rate) and at
7 days treatment (to approximate saturation density) by
trypsinization and counting with a hemocytometer. Con-
trol experiments demonstrated >95% of the cells were via-
ble as determined by trypan blue exclusion. Multiple
replicates were compiled for statistical analysis and pres-
entation. To determine differences between untreated and
FAC-treated groups, the data were evaluated using a 2
tailed unpaired student t-test for samples with unequal
variance, and significance noted at p < 0.01 and p < 0.001
levels.

Toxicity assays used the MTT method [40] in a 96 well
plate format at an initial seeding density of 10,000 cells
per well. Treatments were initiated 1 day after plating and
renewed in fresh complete media after 2 days. After treat-
ment for 5 days, cells were rinsed with PBS and incubated
with 0.3 μg/ml methylthiazolyldiphenyl-tetrazolium bro-
mide (MTT) in complete media containing 10 mM HEPES
pH7.4 for 3 hours. The formazan product was solubilized
in DMSO and measured by absorbance at 540 nm. Statis-
tical evaluations (to compare treated to untreated cells
cultured in parallel) were performed as described above
for cell proliferation.

For the transformation assays, the cells were treated with
or without 0.5 μg/ml MNNG one day after plating. After
24 hours, the media was renewed and test treatments ini-
tiated. Cells receiving MNNG only were cultured in com-
plete media for the same times as cells receiving test tumor
promotion treatments. The cells were passaged every 2
weeks during the transformation experiments, and the
media/treatments were further renewed 3–4 times
between each splitting. Starting at 12 weeks, aliquots of
cells were plated in soft agar to assess transformation [38].
Specifically, colony formation in soft agar was measured
after 12, 14, and 16 weeks in monolayer culture (experi-
ment 1); after 12, 14, 16, 18, and 20 weeks (experiment
2); and after 12, 14, 16, and 18 weeks (experiments 3 and
4). An aliquot corresponding to 25,000 cells prepared in
0.35% top agar media (agarose in Iscove's DMEM con-

taining 10% newborn calf serum and 10 ng/ml epidermal
growth factor) was layered on 0.6% bottom agar media in
a 60 mm dish. After 3 weeks the colonies were stained
with 1 ml 0.5 mg/ml iodonitrotetrazolium violet and
counted under the microscope. Colonies larger than 0.17
mm in diameter (approximately 100 cells) were scored as
positive. The means and standard error of the means
(s.e.m.) were determined from quadruplicate soft agar
plates in single experiments or after compiling data from
multiple experiments as specified. For clarity, data from
selected but representative time points are presented for
some experiments. Statistical evaluations (to compare
experimental to control cells cultured in parallel) were
performed as described above for cell proliferation.

Biochemical measurements
Total non-heme iron content of cells was determined
using ferrozine [41] as follows. Cells were rinsed in PBS
on ice, and then lysed and scraped in deionized water.
One volume of buffer A (1 M HCl 10%TCA) was added
and the sample was heated at 95°C for 30–45 minutes.
Samples were cooled to room temperature and the pro-
tein precipitate removed by centrifugation for 10 minutes
at 14,000 × g. An aliquot of the supernatant was mixed
with 1 volume of buffer B (0.58 mM ferrozine, 1.5% thi-
oglycolic acid, 1.5 M sodium acetate) and incubated for
30 minutes at room temperature. The absorbance of sam-
ples at 570 nm was compared in duplicate to an NIST-
traceable iron reference (Fluka) standard curve run in par-
allel. Approximately 0.75 nmol iron was required to
achieve less than 10% deviation from the standard curve,
corresponding to a limit of detection of roughly 2 nmol/
mg protein. The non-heme iron content of untreated con-
trol cells was below this limit and must be considered an
approximation. Qualitatively similar results, but with less
sensitivity, were obtained using the bathophenanthroline
disulfonate assay [26]. Cell lysate protein was determined
relative to BSA by a modified Lowry assay. Procedures for
western blot analysis, including cell harvesting, have been
described [38,42]. Antibodies to ferritin heavy and light
chains, cyclin B1, cyclin D1, cyclin E, and GAPDH, were
from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-
bodies to cyclin A were from Oncogene Research Products
(Cambridge, MA). Secondary antibodies linked to horse-
radish peroxidase were from Jackson Immunoresearch
(West Grove, PA). Detection utilized the ECL-plus system
from Amersham/GE Healthcare (Arlington Heights, IL).

Calcein fluorescence in cells was assessed by epifluores-
cence microscopy. Cells plated on glass coverslips were
treated for 30 minutes with 0.25 μg/ml calcein-AM
(Sigma) in serum-free media, rinsed, and incubated in
complete media with or without FAC and dfo for the
times indicated. The fluorescence of intracellular calcein is
quenched by the influx of free iron. Although calcein may
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also be partially degraded by iron under certain condi-
tions [43], this would minimally require iron uptake by
the cells. Loss of calcein fluorescence by either mechanism
(quenching or degradation) indicates iron influx. The cov-
erslips were rinsed 3× in PBS, mounted using Vectashield
(Vector Laboratories, Burlingame, CA), and viewed with a
Nikon Eclipse 50i inverted microscope equipped with X-
cite 120 epifluorescence. For each treatment condition,
identical fields were photographed with a Nikon Coolpix
4500 digital camera to record FITC fluorescence and
phase contrast views. Constant photographic parameters
(exposure, contrast, magnification, etc.) were maintained
for all treatment conditions.

Results
Non-transferrin bound iron uptake in T51B cells
T51B is a non-neoplastic liver epithelial cell line used for
transformation and tumor promotion studies [37,38,44].
This cell line was derived from adult rat liver and is similar

in morphology and marker protein content to liver oval
epithelial cells [36,39,45]. Uptake of NTBI has not been
previously demonstrated in liver oval cells. Iron uptake in
T51B cells was characterized by three approaches as illus-
trated in Figure 1. First, a chemical assay of non-heme iron
content showed a dramatic increase in cells treated with
FAC for 5 days (Figure 1A) that was reduced by the specific
iron chelator desferoxamine (dfo). Second, the fluores-
cence signal from the iron-sensitive dye calcein was lost
upon incubation of the cells with FAC (Figure 1B). This
occurred within 48 hours of FAC addition and was also
inhibited by dfo. Finally, western blotting showed both
ferritin H and ferritin L increased in FAC-treated cells (Fig-
ure 1C). The ferritin increase occurred within 48 hours of
addition of 200 μM FAC, was dfo-sensitive, and was main-
tained for at least 12 weeks of culture in FAC, the longest
time point examined (not shown). These experiments
demonstrated that iron given as FAC readily accumulates

Characterization of non-transferrin-bound iron internalization in T51B liver epithelial cellsFigure 1
Characterization of non-transferrin-bound iron internalization in T51B liver epithelial cells. A. Non-heme iron 
content. Cells were left untreated (none) or treated with 200 μM ferric ammonium citrate (FAC) or with 200 μM FAC and 
160 μM desferoxamine (FAC + dfo) for 5 days. Total non-heme iron (nmol/mg cell lysate protein) was determined by a ferro-
zine-based colorimetric assay as described under Methods. Values are reported as the means +/- s.e.m. of triplicate dishes (**p 
< 0.001 compared to control). B. Quenching of calcein fluorescence. Cells were pulsed with calcein-AM for 30 minutes, 
rinsed, and incubated for 2 days in complete cell media containing: (i) no addition, (ii) 200 μM FAC, or (iii) 200 μM FAC and 
160 μM dfo. Identical fields for FITC fluorescence (left panels; corresponding to calcein signal) and phase contrast (right panels) 
are shown. C. Ferritin content. Cells were treated with 0, 200, or 500 μM FAC for 5 days and processed for western blots 
using antibodies specific for ferritin L, ferritin H, or GAPDH as gel loading control. Each experiment was performed at least 
twice with similar results.
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in T51B cells in a uniform fashion with expected effects on
cellular pathways regulating iron metabolism.

The proliferation rates of subconfluent T51B cells were
examined to identify a concentration range of FAC suita-
ble for carcinogenesis and tumor promotion studies. Fig-
ure 2A shows there was little effect over the first three days
of treatment at the concentrations examined. However, by
7 days a significant dose-related growth inhibition was
apparent. Nearly complete growth arrest was seen at 500
μM FAC (Figure 2, compare number of cells at 3 and 7
days). In contrast, 200 μM FAC appeared well-tolerated by
T51B cells for extended periods. After 7 days at this con-
centration, cell proliferation was significantly slowed
compared to untreated cells (30% decrease, p < 0.01) but
was not blocked. Similar dose-dependent effects of FAC
were seen when cell toxicity was measured by MTT assay,
which reflects cell viability as well as number (Figure 2B).
The modest effect at 200 μM (a 22% decrease at 5 days)
was much greater at 500 μM FAC (51% decrease; p <
0.001). At this concentration FAC was unacceptably toxic
to the cells. These experiments defined an upper limit for
the transformation experiments: the dose of FAC (given
with each media renewal) at which T51B cells can be sub-
cultured and continue to grow.

FAC acts as a tumor promoter in T51B cells
Growth in soft agar is an in vitro indicator of neoplastic
transformation [46]. If iron is a complete carcinogen in
T51B cells, then FAC treatment alone should cause these
non-neoplastic cells to form colonies in soft agar. If iron
is a tumor promoter, then prior initiation of the cells is

required. To test for these possibilities, we examined soft
agar growth of FAC-treated cells with and without initia-
tion by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG).
The effects of MNNG at different FAC concentrations are
shown in Table 1. Colony formation was greatest in
MNNG-initiated cells also promoted with FAC. There was
a dose-dependent effect of FAC: colony formation
increased from 20 μM to 200 μM FAC. Further increase to
the more toxic concentration of 500 μM FAC was less
effective. Table 2 shows results from a second experiment,
evaluating the time dependence of promotion at two FAC
concentrations. As seen in experiment 1, colony forma-
tion at 12 weeks was greatest in cells exposed to MNNG
and 200 μM FAC. This increased with time of promotion
(Table 2, compare 200 μM FAC values from 12 to 20
weeks). Time dependence was also seen at 50 μM FAC,
though it was lesser in magnitude and delayed. Cells
treated with MNNG and 200 μM ammonium citrate (i.e.
without iron) showed no significant colony formation
(Table 2). Altogether, results from four independent
experiments demonstrated that optimal colony formation
required initiation by MNNG and promotion by FAC
(Figure 3). It was much less apparent if iron was omitted
from the protocol or chelated by desferoxamine. These
data indicate that NTBI administered as FAC is a tumor
promoter, but not a complete carcinogen, in T51B cells.

Iron loading elicits changes in cell cycle proteins in T51B 
cells
At tumor promoting concentrations, FAC did not increase
T51B cell proliferation, but rather inhibited it slightly
(Figure 2A). The levels of cyclin proteins should inform

Anti-proliferative effects of FACFigure 2
Anti-proliferative effects of FAC. T51B cells were treated with FAC in complete culture media starting one day after plat-
ing. The FAC concentrations were: none (open bars), 50 μM (light stipled bars), 100 μM (medium stipled bars), 200 μM (dark 
stipled bars), and 500 μM (solid bars). A. Cell number. Triplicate wells were harvested and counted after 3 days or after 7 
days (with one renewal of FAC in fresh media). The dashed line indicates the plating density of 40,000 cells per well. B. Cell 
viability. Triplicate wells were assayed using MTT after 5 days as described under Methods. In all panels the means and stand-
ard errors determined from three separate experiments are shown (*p<0.01, **p<0.001 compared to untreated control cells).
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on the nature of this effect and may suggest a basis for
tumor promotion [47]. Figure 4 shows the effect of FAC
on the levels of cyclin proteins in T51B cells. Modest
reductions in a G1-phase cyclin (D1) and the S-phase cyc-
lin (A) correlated well with the slight decrease in prolifer-
ation seen in cells exposed to tumor promoting
concentrations of FAC (200 μM). And, a more complete
loss from cells exposed to 500 μM FAC correlated well
with the proliferative block seen at that concentration.
There was a concomitant decrease in junB levels and AP-1
activity (data not shown) that may partially explain these
decreases. Other cyclins not primarily regulated by AP-1,
including a G1 cyclin (E) and the M-phase cyclin (B1), did
not decrease in FAC-treated cells. Cyclin E levels remained
unchanged, while cyclin B1 levels increased significantly
(Figure 4). The increase in cyclin B1 was not seen in cells
treated with ammonium citrate controls or when the bulk
of the iron was chelated by dfo (not shown).

Discussion
The current study demonstrated that FAC acts as a tumor
promoter in T51B liver cells. We also found tumor-pro-
moting concentrations of FAC decreased, rather than
increased, the proliferation of normal T51B cells. To our

knowledge, this is the first report to describe tumor pro-
motion by a physiologically and pathologically relevant
form of iron. This is an important point missing from ear-
lier studies of iron overload and neoplastic transforma-
tion. Previous experiments used various non-
physiological chelating ligands to increase the bioavaila-
bility of iron. For example, carbonyl iron caused moderate
iron overload in rats, but ferrocene was required for severe
iron overload, liver neoplasms, and HCC [28,29]. Iron
given as the nitrilotriacetate (NTA) complex caused DNA
damage and transformation of cells in culture, whereas
iron citrate did not [31,48,49]. Iron-NTA was a liver
tumor promoter in rats [30]. Co-administration of an iron
ionophore significantly increased iron effects [35]. Until
now it was unclear whether ionic iron alone had transfor-
mation-related effects in a mammalian system. Our find-
ing, that FAC had tumor promotion activity in the absence
of non-physiological chelating ligands, settles this dis-
pute. This has potential clinical implications, as the goal
to reduce the incidence of HCC among iron overload
patients may be accomplished through long-term reduc-
tion of iron levels [9]. Novel strategies that target NTBI
may be particularly effective in achieving this goal.

By definition, tumor promotion involves the selective
proliferation of pre-neoplastic (vs. normal) cells. Classical
tumor promoters such as phorbol 12-myristate 13-acetate
(TPA) increase DNA synthesis and cell proliferation in cell
and animal models of carcinogenesis [50]. This mitogenic
effect is thought to be critical for tumor promotion, acting
by positive selection to increase proliferation of initiated
cells. Cell proliferation is needed to fix and clonally
expand carcinogenic mutations resulting from chemi-
cally-induced DNA damage. Alternatively, a tumor pro-
moter may cause growth inhibition and/or cell toxicity,
accompanied by outgrowth of a resistant phenotype. This
idea was first proposed for liver by Farber and co-workers
[51,52] as the "resistant hepatocyte model" of tumor pro-
motion. Similarly, a role for compensatory proliferation
in liver tumor promotion has been proposed [53,54].
Essentially, a certain degree of cell toxicity is tumor pro-

Table 2: Time dependence of tumor promotion by iron.

MNNG Promoter Number of soft agar colonies per 25,000 cells1

Week 12 Week 14 Week 16 Week 18 Week 20

0 50 μM FAC 0.8 (+/- 0.5) 0.8 (+/- 0.5) 3.5 (+/- 1.2) 2.3 (+/- 0.5) 4.0 (+/- 2.0)
0.5 50 μM FAC 7.5 (+/- 1.4) 4.5*(+/- 0.5) 7.0*(+/- 0.4) 17.8*(+/- 1.3) 52.7*(+/- 1.2)
0 200 μM FAC 5.3 (+/- 1.2) 1.0 (+/- 0.4) 10.8 (+/- 2.4) 9.3 (+/- 1.0) 2.3 (+/- 1.2)
0.5 200 μM FAC 12.8*(+/- 1.0) 21.5*(+/- 0.3) 32.5 (+/- 8.5) 66.0*(+/- 9.0) >99* (n.d.)
0 200 μM AmCit 1.5 (+/- 0.3) 0.0 (+/- 0.0) 1.3 (+/- 0.6) 0.0 (+/- 0.0) 0.3 (+/- 0.3)
0.5 200 μM AmCit 1.3 (+/- 0.5) 0.0 (+/- 0.0) 0.5 (+/- 0.3) 0.0 (+/- 0.0) 0.7 (+/- 0.7)

1Cells exposed or not to 0.5 μg/ml MNNG were cultured with FAC (or Ammonium Citrate control) for the indicated times, with 2 week passaging 
intervals, prior to soft agar assay (means of n = 4 soft agar dishes; *p < 0.01 compared to 200 μM AmCit only controls). The agar dishes from cells 
treated with 0.5 μg/ml MNNG + 20 weeks 200 μM FAC had too many colonies to accurately count (the s.e.m. was not determined).

Table 1: Transformation of T51B cells by MNNG and FAC1.

MNNG FAC Number of colonies per 25,000 cells

0 0 0.0 (+/- 0.0)
0.5 0 1.3 (+/- 0.8)
0 20 μM 1.5 (+/- 0.5)
0.5 20 μM 4.3 (+/- 1.0)
0 50 μM 1.8* (+/- 0.2)
0.5 50 μM 17.5 (+/- 3.3)
0 200 μM 1.8 (+/- 1.4)
0.5 200 μM 21.5* (+/- 2.1)
0 500 μM 3.0 (+/- 1.4)
0.5 500 μM 5.3 (+/- 1.3)

1 Cells exposed or not to 0.5 μg/ml MNNG were cultured in FAC for 
12 weeks (6 passages) prior to soft agar assay: means of n = 4 dishes 
(+/- s.e.m); *p < 0.01 compared to untreated cells.
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moting in liver because it allows for compensatory prolif-
eration of chemically initiated cells, which would
otherwise remain quiescent. These previously described
negative selection models are consistent with our findings
and offer insight into how NTBI may contribute to HCC
in iron overload. We propose that anti-proliferative or
other toxic effects of iron loading on normal cells, rather
than mitogenic effects on pre-neoplastic cells, explain
tumor promotion in the T51B cell model. Consequently,
agents which prevent NTBI toxicity are predicted to also
block tumor promotion.

HCC may originate from hepatocytes or oval cells, a pre-
cursor stem cell type in liver [55-61]. Differentiated hepa-
tocytes do not readily proliferate in culture, and so are not
suitable for the type of study presented here. To model
iron-related HCC, therefore, we used T51B cells, a cell
type similar to liver oval cells. In addition, we used
50–200 μM FAC for 12–16 weeks to establish iron over-
load. Although development of HCC in humans with
hemochromatosis occurs at lower serum iron citrate con-
centrations (5–20 μM) over several decades
[9,11,12,62,63], several considerations suggest our exper-
imental conditions are appropriate. First, studies of serum
NTBI in humans are only partially informative. Iron cit-
rate (unlike transferrin iron) is very rapidly cleared from

the blood by the liver [18], and so the serum concentra-
tion likely underestimates liver exposure. Second, iron-
related HCC occurs primarily in the setting of liver cirrho-
sis. The effect of cirrhosis on iron citrate concentrations in
the liver itself is unknown, but exposure of preneoplastic
cells to levels higher than reported in blood seems possi-
ble. Finally, studies of high concentrations of carcinogens
and tumor promoters given for short times are generally
accepted as useful predictors of effects caused by exposure
to lower concentrations for longer times. These points
argue that findings from the T51B cell model are applica-
ble to the promotion phase of iron-related HCC in
humans.

The route of NTBI uptake in T51B cells is unknown, but
there are several possibilities. The divalent metal trans-
porter DMT-1 (NRAMP2) is thought to be important in

Iron alters the cell cycle distribution of T51B cellsFigure 4
Iron alters the cell cycle distribution of T51B cells. 
Proliferating cells were treated with the indicated concentra-
tions of FAC (in μM) for 5 days and processed for western 
blots using antibodies specific for cyclin D1, cyclin E, cyclin A, 
cyclin B1, and GAPDH as gel loading control. All panels are 
from a single experiment and are representative of results 
obtained at least 4 times.
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Iron acts as a tumor promoter in T51B cellsFigure 3
Iron acts as a tumor promoter in T51B cells. Cells 
treated with (+) or without (-) 0.5 μg/ml MNNG as initiating 
agent were promoted for an additional 16 weeks in four sep-
arate experiments. Media additions during the promotion 
phase and the number of replicates were: 200 μM ammo-
nium citrate (AmCit), n = 4 (- MNNG), n = 4 (+ MNNG); 
200 μM ferric ammonium citrate (FAC), n = 3 (- MNNG), n 
= 4 (+ MNNG); or 200 μM ferric ammonium citrate,160 μM 
desferoxamine (FAC, dfo), n = 2 (+ MNNG). Cell transfor-
mation was assayed by growth in soft agar as described 
under Methods. Mean values and standard errors from up to 
four separate experiments are shown (*p<0.01, **p<0.001 
compared to AmCit only controls).
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most cell types [2,64-66]. This protein has been localized
to the cell surface in hepatocytes [67], and iron transport
at pH 7.4 has been documented [65]. However, iron
transport by DMT-1 is optimal near pH 5.5, consistent
with a primary function in recovery of iron released from
transferrin in endosomes. In AML12 hepatocytes, the cell
surface zinc transporter zip14 is an additional pathway
[68]. This protein is particularly interesting with respect to
neoplastic transformation, as zip14 was reported to be
under expressed in HCC [69]. Downregulation of NTBI
uptake is one potential mechanism by which initiated
cells could minimize iron-related toxicity and gain a pro-
liferative advantage over normal cells in our model. Alter-
nate NTBI uptake pathways identified in other cell types
include the TRP family of cell surface non-selective cation
channels [70], and L-type calcium channels [71].

At present, we surmise that NTBI toxicity impaired pro-
gression of T51B cells into or through mitosis, based on
high levels of cyclin B1. ROS generated by a Fenton-type
reaction involving vanadate was shown previously to
cause increased cyclin B and M-phase arrest [72,73].
Decreases in cyclins D1 and A are expected if proliferating
cells become delayed at this point in the cycle. Impor-
tantly, these changes were evident at tumor promoting
concentrations of FAC (200 μM). Relatively minor pheno-
typic distinctions may allow pre-neoplastic initiated cells
to evade the selective pressure exerted by FAC at this con-
centration. However, these distinctions were insufficient
to overcome additional toxic effects of higher concentra-
tions, since tumor promotion decreased at 500 μM FAC.
The cause(s) of increased cyclin B and cell cycle delay are
unknown; dissecting potential mechanisms is a goal of
future experiments. The step taken here, of demonstrating
that these changes are caused by a physiologically and
pathologically relevant form of NTBI under conditions of
tumor promotion, is a critical one towards understanding
and preventing iron-related carcinogenesis in humans.

Conclusion
We conclude that NTBI is a tumor promoter, but not a
complete carcinogen, in T51B rat liver epithelial cells. This
study is the first demonstration that a form of iron present
in humans has cancer-related effects. It defines an experi-
mental model for future studies on mechanism and pre-
vention of iron-related liver cancer.
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