Mehta et al. BMC Gastroenterology 2014, 14:72

http://www.biomedcentral.com/1471-230X/14/72
P BMC

Gastroenterology

RESEARCH ARTICLE Open Access

Expression of energy metabolism related genes
in the gastric tissue of obese individuals with
non-alcoholic fatty liver disease

Rohini Mehta'*", Aybike Birerdinc?", Lei Wangm, Zahra Younoszai'?, Amir Moazzez'?, Hazem Elarinym,
Zachary Goodman'?, Vikas Chandhoke?, Ancha Baranova'? " and Zobair M Younossi'"

Abstract

Background: Stomach is an integral part of the energy balance regulating circuit. Studies exploring the effects of
cross-system changes in the energy homeostasis in stomach tissue are scarce. The proximity of the stomach to liver -
the most common secondary target affected by obesity — suggests that these two organs are exposed to each
other’s local secretion. Therefore, we aimed at expression profiling of energy metabolism associated genes in the

gastric tissue of obese non-alcoholic fatty liver disease (NAFLD) patients.

Methods: A total of 24 patients with histologically-proven NAFLD were included. In the gastric tissue, gene
expression profiling of 84 energy metabolism associated genes was carried out.

Results: The accumulation of the fat in the liver parenchyma is accompanied by downregulation of genes
encoding for carboxypeptidase E (CPE) and Interleukin 1B (/L1B) in the gastric mucosa of same patient. In patients
with high grade hepatic steatosis, Interleukin 1 beta encoding gene with anorexigenic function, /L1B8 was
downregulated. The levels expression of 21 genes, including ADRA2B, CNRT and LEP were significantly altered in the
gastric tissue of NAFLD patients with hepatic inflammation. There were also indications of an increase in the opioid
signaling within gastric mucosa that may results in a shift to proinflammatory environment within this organ and
contribute to systemic inflammation and the pathogenic processes in hepatic parenchyma.

Conclusions: We have shown differential expression of energy metabolism associated genes in the gastric tissue of
obese NAFLD patients. Importantly, these gene expression profiles are associated with changes in the hepatic
parenchyma as reflected in increased scores for hepatic steatosis, inflammation, fibrosis and NASH. This study suggests
the complex interplay of multiple organs in the pathogenesis of obesity-related complications such as NAFLD and
provides further evidence supporting an important role for gastric tissue in promoting obesity-related complications.

Background

Energy balance is regulated by a milieu of hormones,
cytokines and neurotransmitters. This homeostatic regu-
lation integrates signals from the central nervous system
and various peripheral organs and ensures that despite
fluctuations in daily food and energy intake, the vari-
ation in day to day weight, in most cases, remains
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negligent [1]. This system-wide crosstalk suggests that
the network balancing appetite and satiety is highly
complex and, in part, redundant. Stomach is an integral
part of this energy balance regulating circuit and is
known to relay satiety signals to the hypothalamus [2].
Interestingly, studies exploring the participation of the
stomach in energy homeostasis and the effects of cross-
system changes in the energy homeostasis on stomach
function are scarce [3-5]. Aside from its obvious role in
the digestion and absorption of nutrients, the stomach
has endocrine function [3,4]. One of the best examples
of the endocrine role of the stomach is seen in its pro-
duction of the ghrelin, obestatin and leptin, hormones
that are known to contribute to many chronic diseases
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asscociated with obesity [5-7]. Additionally, several re-
cent studies have suggested a role of these molecules in
systemic inflammation [8-10]. This indicates the neces-
sity of further studies on the role of gastric tissue in
obesity and obesity-related disorders.

Importantly, obesity is associated with changes in gene
expression pattern within many types of non-adipose
peripheral tissues, including muscle [11], liver [12] and
peripheral blood mononuclear cells [13]. Notably, the ef-
fect of obesity on the stomach tissue and the role of the
stomach in metabolic dysfunction has been largely over-
looked. Histological studies of the stomach tissue in
obese patients reported a number of visible changes
within the mucosa in a majority of samples [14,15]. It is
very difficult to say if these changes are sequelae of sys-
temic inflammation or active contributors to weight
gain. It is possible that altered secretory patterns associ-
ated with gastric inflammation augment the develop-
ment of obesity-associated conditions. The proximity of
the stomach to liver - the most common secondary tar-
get affected by obesity — suggests that these two organs
are exposed to each other’s local secretion. Thereby, the
gene expression responses of these organs in responder
to central adiposity can be potentially inter-related.

An important complication of obesity, non-alcoholic
fatty liver disease (NAFLD), is estimated to affect ~30%
of the US adults [16]. The progressive form of NAFLD
or non-alcoholic steatohepatitis (NASH) is characterized
by the accumulation of fat in the liver along with bal-
looning of hepatocytes, lobular inflammation with or
without fibrotic changes in hepatic parenchyma. It is im-
portant to note that deposition of the fat in the liver is
associated with impaired sensitivity to insulin [17,18].
Various adipokines and hormones produced by visceral
adipose tissue, gastric tissue and liver tissue can poten-
tially contribute to the development of NAFLD and its
progression to NASH [10,12].

In a previous study, we demonstrated an altered pat-
tern of gene expression for cytokine and chemokine en-
coding genes in the gastric tissue of obese individuals
with NAFLD [19]. In this study, we further explore this
relationship by gene expression profiling of energy me-
tabolism associated genes in the gastric tissue of obese
NAFLD patients.

Methods

Samples

Stomach tissue samples were collected after informed
consent from morbidly obese NAFLD patients during
laparoscopic sleeve gastrectomy. The tissue was snap
frozen in liquid nitrogen and stored at —80°C. A liver bi-
opsy was performed at the same time; all biopsies were
read by same hepatopathologist. Clinical and laboratory
variables from the time of surgery were extracted from
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medical records (Table 1). Other causes of chronic liver
disease were excluded based on negative serology for
hepatitis B and C, no reported history of toxic exposure
and excessive alcohol consumption (> 10 gram/day in
women and >20 gram/day in men) was also considered
as an exclusion criteria. No patients were receiving thiazoli-
dinediones (TZDs), proton pump inhibitors or other medi-
cations for gastritis as well as those associated with fatty
liver. The study was approved by Internal Review Board of
Inova Hospital (Federal Assurance FWA00000573).

All liver biopsies were read by same hepatopathologist.
Histological features such as portal inflammation, lympho-
plasmacytic lobular inflammation, polymorphonuclear lobu-
lar inflammation, Kupffer cell hypertrophy, apoptotic bodies,
focal parenchymal necrosis, glycogen nuclei, hepatocellular
ballooning, and Mallory-Denk bodies were evaluated in
the H & E sections. The extent of steatosis was graded
based on an estimate of the percentage of tissue occu-
pied by fat vacuoles as follows: 0 =none, 1=<5%, 2=
6-33%, 3 = 34-66%, 4 = >66%. NASH was defined as steato-
sis, lobular inflammation, and ballooning degeneration
with or without Mallory Denk bodies, and with or without
fibrosis. The extent of various immune cell infiltration
such as lymphoplasmacytic cells, polymorphonuclear
cells and Kupffer cell hypertrophy was assessed by
hematoxylin-eosin (H&E) staining. For each category,
scores were assigned based on the following system:
0 =none, 1 =few, 2 = moderate, 3 = many. The extent of

Table 1 Clinical and demographic data of the patient
cohorts profiled for expression of obesity-related genes

Mean = SD, or %

Demographic or clinical parameter

(N=24)
BMI (¥) 4796+82
AST, (U/L) (%) 2492 +837
ALT, (U/L) () 30.38+12.88
Total cholesterol, mg/dL (¥) 205.08 +41.82
HDL, mg/dL (*) Females 50.33+11.85
HDL, mg/dL (*) Males 39.66 +41.82
Triglyceride, mg/dL (*) 197 +£105.39
Age 4393 +10.2
Gender (Females) 79% (N=19)
Race (caucasian) 67% (N=16)
Advanced inflammation (score = 3) 54% (N =13)
NASH 63% (N=15)
Advanced steatosis 42% (N=10)
Fibrosis 79% (N =19)
Steatosis with presence of hepatic inflammation 96% (N = 23)
NASH with presence of hepatic inflammation 62.5% (N=15)

Values marked by asterisk (*) are given as Mean + SD. SD: standard deviation;
BMI: Body Mass Index; NASH: Non-Alcoholic Steatohepatitis; AST: aspartate
aminotransferase; ALT: Alanine transaminase; HDL: High-density lipoprotein.
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hepatic inflammation was determined based on the
sum of the above individual scores with a score of >3
being considered as advanced hepatic inflammation and
score of <3 being considered as mild/no hepatic inflam-
mation. Severity of pericellular and portal fibrosis was
determined by Masson trichrome staining of the biopsy,
respectively. The scoring was as follows: 0 = no fibrosis,
1 =mild fibrosis, 2 =moderate fibrosis, 3 = marked fi-
brosis. Severity of total hepatic fibrosis was determined
based on sum of the individual scores (pericellular and
portal fibrosis) with score of > 3 being considered as ad-
vanced hepatic fibrosis and score of <3 being consid-
ered as mild/no hepatic fibrosis. Patients with hepatic
steatosis or NASH were considered to have NAFLD.

RNA extraction and reverse transcription

Total cellular RNAs were extracted from fundic stomach
tissue samples (N = 24) using RNeasy kit (Qiagen, USA) ac-
cording to manufacturer’s instructions. Concentration and
quality of the extracted RNAs were measured using ab-
sorbance at 260 nm (A,go) and 280 nm (A,gy) with Gene-
Quant1300 spectrophotometer (GE Healthcare, USA).
Only mRNA samples with Ajgy/Asgo ratio in range of 1.8 -
2.1 were utilized. Additionally, integrity of each total RNA
was evaluated by 1% agarose gel electrophoresis with eth-
idium bromide. Extracted total RNAs were reverse tran-
scribed to single strand cDNA using RT? first strand kit
(Qiagen, USA), per manufacturer’s protocol.

Quantitative real time PCR analysis

Gene expression profiling experiments were performed on
cDNA samples using RT Profiler PCR Arrays (Qiagen,
USA) that include 84 orexigenic, anorexigenic, and energy
expenditure related genes and their receptors along with
five housekeeping genes, according to the manufacturer's
protocol (Additional file 1: Table S1). Quantitative real-
time PCR reactions were performed in 96 well PCR for-
mat using Bio-Rad CFX96 Real Time System (BioRad
Laboratories, USA) with a ramp speed of 1°C/sec. The
Real Time PCR mixtures consisted of 1 puL cDNA,
7.5 uL of RT PCR Master mix (Qiagen, USA) in a final
volume of 25 pL. The thermal profile of the RT-PCR
procedure was repeated for 50 cycles: 1) 95°C for
10 min; 2) 10 s denaturation at 95°C, 15 s annealing at
60°C (amplification data collected at the end of each
amplification step); 3) dissociation curve consisting of
10 s incubation at 95°C, 5 s incubation at 65°C, a ramp
up to 95°C (Bio-Rad CFX96 Real Time System, USA).
Melt curves were used to validate product specificity.

Analysis of gene expression profiles

The threshold cycle (C;) values were obtained for each
gene; only C, values less than 40 were considered for
analysis. C, values of control wells (genomic DNA
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control, reverse transcriptase control, positive PCR con-
trol) were examined separately and used for determining
the quality of the run, according to manufacturer’s rec-
ommendations. The average of five housekeeping genes:
B2M, HPRTI1, RPL13A, GAPD, and ACTB, was used to
normalize the C; values. Relative expression was deter-
mined using the delta delta Cz method (1). Fold change
(2) for each gene was calculated as follows:

AAC, = 278¢ (1)

Fold Change = AC?" JAC"r!, (2)

Statistical analysis

The study was designed to detect changes in gene ex-
pression in the stomach of patients with advanced forms
of NAFLD as compared to those with milder forms. The
scorings for each histopathological state were as de-
scribed above. Following comparisons were performed:

1. Severe disease state as compared to mild/no disease
state or
2. Presence of the disease as compared to no disease

The significance of differences in gene expression be-
tween the groups was assessed using univariate non-
parametric Mann—Whitney tests. Spearman’s coefficients
of correlation were used to determine whether two vari-
ables co-vary, and to measure the strength of their rela-
tionship. The independent effects of significant variables
(P < 0.05) on advanced inflammation, NASH and steatosis
were assessed using multiple stepwise regression analysis,
with both the backward and forward stepwise selection
procedures.

Results

A total of 24 patients with histologically-proven NAFLD
were included. Clinical and demographic data for pa-
tients are summarized in Table 1. In the gastric tissue,
gene expression profiling of 84 energy metabolism asso-
ciated genes (Additional file 1: Table S1) was carried out.

Gene expression signature associated with advanced
hepatic steatosis

When mRNA expression levels were compared in sam-
ples of patients with advanced steatosis (Grade >3) to
that with mild or no steatosis (Grade < 3), significant de-
creases in expression levels of mRNAs encoding CPE
(-1.88, p<0.04) and ILIB (-2.5, p < 0.05) genes were ob-
served (Table 2).
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Table 2 List of obesity related genes significantly
upregulated in gastric tissues of patients with the
following pathological conditions

Genes Fold regulation P value

Advanced steatosis (grade = 3) vs mild/no steatosis (score < 3)

CPE -18 0.04
IL1B =25 0.05
NASH present vs No NASH

ILTR1 1.99 0.04
OPRM1 265 0.02
SIGMART 3.13 0.03
THRB 1.94 0.02
ZFPI1 3.09 0.01

Advanced hepatic inflammation (score 2 3) vs mild/no hepatic
inflammation (score < 3)

ADCYAPT 55 0.04
ADRA2B 2.1 0.02
BDNF 35 0.03
CNR1 5.1 0.001
CNTFR 32 0.02
GALR1 25 0.04
GH2 5.1 0.01
GRPR 4.1 0.004
IAPP 25 0.03
LEP 23 0.04
LEPR 23 0.02
MC3R 4.1 0.02
NMB 24 0.04
NMU 39 0.004
NMURT 6.9 0.03
PPARGCTA 4.1 0.006
PRLHR 42 0.02
RAMP3 25 0.02
SIGMAR]1 23 0.01
SSTR2 32 0.04
UCN 49 0.04
Fibrosis present vs no fibrosis
NTS 6.7 0.02
OPRK1 56 0.01
Gastritis present vs no gastritis
a =21 0.04
DRD1 26 0.02

Advanced Liver Inflammation (score > 3) (N = 13), Advanced Steatosis (score > 3)
(N =10), NASH#* (N = 15), Fibrosis* (N = 19), Gastritis¥ (N = 11). #¥Comparison was
performed to groups of patients without the condition listed.

Gastric gene expression signature associated with NASH
mRNAs encoded by ILIRI (1.99, p<0.04), OPRMI
(2.65, p<0.02), SIGMARI (3.13, p <0.03), THRB (1.94,
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p<0.02) and ZFP91 (3.09, p < 0.01) genes were upregu-
lated in gastric samples of patients with NASH as com-
pared to those without NASH (Table 2).

Gene expression signature associated with advanced
hepatic inflammation

When samples collected from patients with advanced hep-
atic inflammation (score > 3) were compared to that of pa-
tients with mild inflammation, 21 genes (0.001 < p < 0.05)
were found to have increased gene expression (fold
change range: 2.1 — 6.9) (Table 2). Among these genes, ex-
pression levels of ADRA2B, CNRI and LEP were also
found to be correlated (r > 0.5, p < 0.05) with the degree of
hepatic inflammation (Table 3). Additionally, expression
levels of ILIA and OPRM1I were also correlated with the
degree of hepatic inflammation (r > 0.5, p < 0.05) (Table 3).

Gene expression signature associated with hepatic
fibrosis

Comparison of gastric samples collected from patients
with fibrosis and samples from those without fibrosis
showed the mRNAs for NTS and OPRK1 genes were more
than 5-fold upregulated in presence of fibrosis (p <0.02)
(Table 2). Analysis of correlations showed that mRNA
levels for GHR and ILIA genes consistently increase along
with a progression of fibrosis (r > 0.5, p < 0.05) (Table 3).

Association of gene expression with risk factors for
NAFLD

The levels of mRNA expression for CPE were correlated
positively to BMI, while mRNA expression levels for ZFP91
and BMI were correlated negatively (P <0.01) (Table 3).
Furthermore, fasting glucose levels were positively corre-
lated with expression levels of mRNAs encoded by AGRP,
NMB, THRB, TNF and UCPI1 genes Serum triglyceride
levels was positively correlated with expression levels of 14
genes (Table 3), including ADIPOQ and APOA4 and nega-
tively correlated with that of CPD (Table 3).

Discussion
Obesity is commonly viewed as an accumulation of ex-
cessive number of enlarged adipocytes within an abdom-
inal cavity and in subcutaneous depots. In addition,
obesity is also associated with fat accumulation in a
number of organs, in particular, muscle and liver [20].
These ectopic sites are not well adapted for fat storage
and even modest increases in lipid concentrations can
be manifested as tissue dysfunction due to lipotoxicity
[21]. A spectrum of lipotoxicity-associated changes in ex-
pression patterns has been demonstrated both in muscle
and liver of obese patients [22-24] as well as in the animal
models of obesity [25].

In addition to fatty infiltration of these organs, a num-
ber of other changes can happen in obese patients. For
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Table 3 Analysis of correlations between expression
levels of various genes and scored characteristics of

NAFLD
Gene Correlation (r) p value
NASH
ILTRT 042 0.03
OPRM1 043 0.034
SIGMART 0.51 0.009
THRB 040 0.05
ZFP91 043 0.03
Degree of inflammation
ADRA2B 045 0.02
CNR1 043 0.03
LEP 040 0.04
ILTA 043 0.03
OPRM1 042 0.03
Fibrosis
GHR 042 0.03
ILTA 048 0.01
Gastritis
DRD1 046 0.02
GHRL 041 0.04
BMI
CPE 047 0.01
ZFP91 -048 0.01
Fasting glucose (mg/dL)
AGRP 0.52 0.008
NMB 041 0.04
THRB 0.55 0.005
TNF 042 0.04
uce1 065 0.0005
Serum triglycerides (mg/dL)

ADCYAPIRIT 048 0.01
ADIPOQ 0.50 0.01
APOA4 044 0.02
CNTFR 041 0.04
CALCA 044 0.02

DRD2 049 0.01
GCGR 043 0.03
GH2 041 0.04
GLPIR 0.56 0.003
IL6 042 0.03
NMURT 048 0.01
NTRK2 040 0.04
PPARGCTA 042 0.04
PRLHR 043 0.03
CPD —042 0.03
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instance, the gastric tissue of obese individuals undergoes
changes that are visible by histologic assessment. In fact,
oxyntic mucosa of morbidly obese patients without meta-
bolic syndrome contains more ghrelin-immunoreactive
cells as compared to that of non-obese subjects [26]. Fur-
thermore, serum levels of three protein products of
ghrelin gene (acylated ghrelin, des-acylated ghrelin, and
obestatin) have been shown to be elevated in obese pa-
tients with NAFLD [10,27]. Finally, in a previous study, we
have shown that mRNAs encoding for various soluble
molecules are overproduced in the gastric tissue of mor-
bidly obese patients with advanced forms of NAFLD.

In this study, we assessed the gene expression patterns
for energy metabolism-related genes in the gastric tissue
of morbidly obese patients with NAFLD. In particular,
we observed that accumulation of the fat in the liver
parenchyma is accompanied by downregulation of genes
encoding for carboxypeptidase E (CPE) and Interleukin
1B (IL1B) in the gastric mucosa of same patient. Given
the proximity and intimate interaction of stomach with
liver, we believe these observations in the gastric tissue
may have important implications for changes seen in the
hepatic tissue.

Carboxypeptidase E is involved in the post-translational
processing of many prohormones and neuropeptides, in-
cluding those expressed predominantly in gastrointestinal
tract and playing a central role in energy homeostasis [28].
In models animals, inactivating of both CPE alleles result
in obesity that is caused by defective nutrient partitioning
rather than by increased food consumption [28]. Not
much is known about an expression of CPE in humans,
however, there are indications that allelic variations in this
gene may contribute to coronary atherosclerosis, another
complication of obesity and metabolic syndrome [29]. To
date, ours is the first report to link the decrease in human
non-adipose peripheral tissue expression of CPE to obesity
related condition.

Another mRNA downregulated in gastric tissue of pa-
tients with high grade hepatic steatosis encodes for
Interleukin 1 beta (IL1B), an inflammatory cytokine with
anorexigenic function [30,31]. IL1P inhibits gene expres-
sion of orexigenic ghrelin [32] and suppresses the pro-
duction of gastric acid and gastrin [32]. However, it was
shown recently that IL1J supports ectopic fat accumula-
tion in hepatocytes and adipose-tissue macrophages [33].
Interestingly, high-fat-fed (HFF) mice exhibited a prefer-
ential increase of IL-1B concentration in portal com-
pared to systemic blood [34], thus, indicating that the
liver may differ in its IL-1f regulation from other peri-
hearl tissues.

It important to note that obesity is known to be asso-
ciated with low grade systemic inflammation. Further-
more inflammation plays an important role in the
pathogenesis of progressive NAFLD or NASH. In our
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Figure 1 Increased expression of opioid receptors within gastric
mucosa may trigger the release of inflammatory cytokines into
circulation. The close proximity of liver to stomach and thus the

secreted cytokines results in increased hepatic inflammation.
A\ J

study, the levels of 21 genes were significantly altered in
the gastric tissue of NAFLD patients with hepatic in-
flammation (Table 2). Amongst these, ADRA2B, CNRI,
LEP also significantly correlated (r=0.5, p <0.05) with
the degree of hepatic inflammation.

Another interesting finding of our study relates to ex-
pression of leptin in the gastric tissue. The secretion of
the leptin is acutely increased in response to inflamma-
tion and inflammatory cytokines such as TNF-a and IL-
1B. Although, the major site of leptin production is
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white adipose tissue, the leptin gene expression has also
been detected in the gastric epithelium and in the glands
of the gastric fundic mucosa in both rats [35], and
humans [36]. There is a body of evidence implicating
the leptin in the pathogenesis of NAFLD. In a study by
Chitturi et al., the leptin levels in patients with biopsy
proven NASH were twice those found in non-NASH
matched controls [37]. Our measurement of LEP mRNA
in the gastric tissue of patients with various stages of
NAFLD showed similar trends. LEP was upregulated in
the in gastric tissue of patients with advanced hepatic in-
flammation and positively correlated with the inflamma-
tion scores of patients with NAFLD (Table 3). It is
important to note that the leptin also functions as an an-
orexigenic hormone as it suppresses appetite [38]. Thus,
an increase in its production within gastric mucosa may
be a compensatory response to metabolic shift of obes-
ity. Alternatively, observed increase in LEP expression
may serve as an indicator of leptin tolerance or leptin re-
sistance which is commonly reported in obese individ-
uals [39].

It is also interesting to note that the leptin has also
been shown to stimulate gene expression of neurotensin
(NTS), a neuropeptide that is known for its expression
in the small intestine [40] and for its involvement in
food intake and glucose homeostasis in the peripheral
tissues [41]. Furthermore, receptors to neurotensin are
present at the membranes of hepatocytes. It is postu-
lated that neurotensin protects stressed liver paren-
chyma as evident from reduced ALT levels and hepatic
oxidative stress and increase in hepatocyte proliferation
in NTS-treated cholestatic model animals [42]. In our
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Figure 2 Model depicting the changes in the expression landscape in gastric tissue of obese patients with NAFLD. Differentially
expressed genes (p < 0.05) are unique and non-overlapping among the cohorts analyzed. Genes showing fold up-regulation are indicated by ¢
symbol, while genes showing a fold down-regulation are indicated by & symbol.
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study an increase in expression of NTS was also seen in
stomach samples of subjects with liver fibrosis as com-
pared to those with no/mild fibrosis (Table 2). It is thus,
plausible that gastric neurotensin enters the liver via the
portal vein and alleviates liver fibrosis. It is also possible
that gastric-produced neurotensin may, at least in part,
counteract pro-fibrotic action of its inducer, the leptin in
the hepatic parenchyma.

Another important gene with expression of our
NAFLD patients with significant inflammation is CNR1/
CBI. Endocannabinoid receptor CNR1 is known for its
expression throughout the gastrointestinal tract [43].
CNR1 is implicated in de novo fatty acid and cholesterol
biosynthesis, in both the liver and the adipose tissue
[44]. In mouse models, an activation of this receptor in
the liver increases de novo synthesis of fatty acids [45].
Furthermore, CNR1 antagonists improve metabolic pa-
rameters by exerting an anorexigenic effect, suppressing
lipogenesis and reducing inflammation [44]. Peripheral
CNRI1 blockade has also been shown to reverse leptin
resistance commonly seen in obese patients. This rever-
sal is mediated by a decrease in leptin secretion through
adipose tissue [46]. Thus, the concomitant increase in
expression of gastric CNRI and LEP in patients with
hepatic inflammation seen in this study may be another
indication of contribution of peripheral leptin resistance
to obesity-associated NASH. On the other hand, CNR1
was recently implicated in the pathophysiology of acute
and chronic liver conditions, including inflammation,
fibrogenesis and steatosis [47]. While faintly expressed in
normal livers, CNR1 undergo substantial up-regulation
after liver injury induced by various causes [48]. It is
tempting to speculate that observed increase in expression
of gastric CNR1 in morbidly obese patients with advanced
hepatic inflammation may point to a similar regulatory
process within the stomach and the liver under conditions
of positive energy balance.

Another interesting finding of our study is related to
an increase in the gene expression of opioid receptors
OPRM1I1 and OPRKI (Figure 1). Involvement of opioid
receptors in the development of obesity has been widely
recognized. This is potentially due to well-documented
anorexigenic effects of administering general opioid re-
ceptor antagonists [49]. Interestingly, recent studies have
also implicated opioid receptors in inflammation. In fact,
polymorphism in the human mu-opioid receptor OPRM1
gene was associated with baseline proinflammatory cyto-
kine levels in healthy subjects [50]. We have previously
shown an altered inflammatory cytokine profiles in the
gastric tissue of morbidly obese patients with NAFLD
[19]. It is possible that an increase in the opioid signaling
within gastric mucosa results in a shift to proinflamma-
tory environment within this organ. In turn, an increase
in the gastric production of proinflammatory cytokines
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may contribute to systemic inflammation and augment in-
flammatory processes in hepatic parenchyma (Figure 1).

Conclusions

In conclusion, we have shown differential expression of
energy metabolism associated genes in the gastric tissue of
obese NAFLD patients. Importantly, these gene expres-
sion profiles are associated with changes in the hepatic
parenchyma as reflected in increased scores for hepatic
steatosis, inflammation, fibrosis and NASH (Figure 2). Im-
portantly, we see that the gene expression changes in
stomach are distinct and non-overlapping in different
stages of NAFLD. This study suggests the complex inter-
play of multiple organs in the pathogenesis of obesity-
related complications such as NAFLD and provides
further evidence supporting an important role for gastric
tissue in promoting obesity-related complications.

Additional file

Additional file 1: Table S1. Metabolism related genes profiled for their
expression levels in fundic gastric samples of 24 obese subjects.
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