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Abstract

protection of normal intestinal barrier function.

postoperative septicemia.

injury, which could be related to the zonulin pathway.

Background: Previous studies indicated that the micro integral membrane protein located within the media place
of the integral membrane protein of Lactobacillus plantarum CGMCC 1258 had protective effects against the intestinal
epithelial injury. In our study, we mean to establish micro integral membrane protein -knockout Lactobacillus plantarum
(LPKM) to investigate the change of its protective effects and verify the role of micro integral membrane protein on

Methods: Binding assay and intestinal permeability were performed to verify the protective effects of micro integral
membrane protein on intestinal permeability in vitro and in vivo. Molecular mechanism was also determined as the
zonulin pathway. Clinical data were also collected for further verification of relationship between zonulin level and

Results: LPKM got decreased inhibition of EPEC adhesion to NCM460 cells. LPKM had lower ability to alleviate the
decrease of intestinal permeability induced by enteropathogenic-e.coli, and prevent enteropathogenic-e.coli -induced
increase of zonulin expression. Overexpression of zonulin lowered the intestinal permeability requlated by Lactobacillus
plantarum. There was a positive correlation between zonulin level and postoperative septicemia. Therefore, micro
integral membrane protein could be necessary for the protective effects of Lactobacillus plantarum on intestinal barrier.

Conclusion: MIMP might be a positive factor for Lactobacillus plantarum to protect the intestinal epithelial cells from

Keywords: Lactobacillus plantarum, Micro integral membrane protein, Zonulin, Intestinal permeability

Background

It has been proved that gut flora homeostasis in human
intestine is mediated largely by probiotics, including
Lactobacillus plantarum (LP) and other microorganisms
[1-3]. LP can improve intestinal pathological disorders
through the modulation of intestinal functions [2].
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Therefore, as one of the best-characterized probiotic bac-
teria, LP can be selected in clinical trials assessing the pre-
vention and treatment of intestinal disorders, such as the
complications after surgical operation [2,4,5]. However,
which components mostly contribute to the protective ef-
fects of LP still remains an interesting question to be fur-
ther investigated [6].

Recently, the lactobacillus surface layer protein (SLP)
has been raised as a key component mediating the protec-
tion conferred by LP to intestinal epithelial cells (IECs)
[7,8]. It is found that a 50-kDa protein extracted from the
surface layer of lactobacillus could adhere to IECs and its
mimic protein mucin [9]. SLP isolated from Lactobacillus
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crispatus showed the ability to inhibit adherence of en-
terotoxigenic E. coli to a synthetic basement membrane
[10], and reduce both dextran flux and trans-epithelial
electrical resistance (TER) [11]. SLP also reduced the
number and rearrangement of a-actin foci, and attenuated
bacterial colonization on IECs and pathogen-induced
changes in cellular permeability [12]. Furthermore, sol-
uble factors, including p75 and p40, extracted from
Lactobacillus rhamnosus GG culture broth supernatant,
showed protective effects on IECs, which was mediated
by Akt pathway [13,14]. Only a few studies have, how-
ever, investigated the structure and functions of SLP
[8,10,15-18], due to the specific hydrophilic and hydro-
phobic properties and technical difficulties associated
with SLP purification, thus limiting the investigation of
SLP binding domains.

Zonulin has recently been discovered as a protein in-
volved in tight junctions (T]) between IECs [19]. Zonulin
was originally discovered as the target of zonula oc-
cludens toxin, which has been reported with the in-
creased gut permeability in the pathogenesis of coeliac
disease [20]. Recent studies have indicated that zonulin
got the regulative function of intestinal permeability and
barrier [19,21], suggesting that high expression of zonu-
lin may cause the increase of intestinal permeability [22].

Our previous studies have demonstrated that LP was
able to prevent IECs from injury induced by EPEC [23],
regulate dendritic cells maturation and T-lymphocytes
differentiation [24]. In addition, a protective role of TJ
microstructure both in vivo and in vitro was also evi-
denced [25,26]. In our study, the SLP (the integrated
membrane protein, IMP) isolated from LP was extracted
and purified [27]. To increase the specificity and valence
of SLP, we further identified the small functional protein
domain, the micro IMP (MIMP) [8], and confirmed the
protective function of MIMP on IECs [16]. An additional
study indicated that the molecular mechanism is related
to the activation of protein kinase C-n and occludin
phosphorylation [15]. Moreover, we identified the recep-
tor of MIMP on NCM460 cells, and the mechanism of
p38 MAPK signaling pathway [17], and showed that pro-
biotics may exert its protective effects on the intestinal
barrier through the zonulin pathway [28]. To verify the
protective effects of MIMP, here we mean to establish
MIMP-knockout LP (LPKM) and investigate the change
of protective effects of LPKM on IECs against EPEC infec-
tion. Furthermore, we will also investigate the molecular
signal transduction pathway during the interaction be-
tween LP and intestinal permeability.

Methods

NCM460 cells culture

NCM460 cells were purchased from INCELL Corpor-
ation (San Antonio, TX, USA) and cultured in M3 media
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supplemented with 10% Fetal bovine serum (FBS), 100
U/ml penicillin and 100 pg/ml streptomycin at 37°C in a
95% humidified atmosphere with 5% CO,. Cells were
passaged at pre-confluent densities using 0.05% trypsin
and 0.5 mm EDTA (Invitrogen, Carlsbad, CA) [17].
NCM460 cells were passaged 24 h before transfection.

IL-10~"~ mice breeding and grouping

IL-107" mice were generated on a wild-type 129 Sv/Ev
genetic background, bred and raised in the animal facility
at Shanghai Jiao Tong University, School of Medicine.
Mice were housed under specific pathogen-free conditions
until weaning (3 weeks) when they were moved to a con-
ventional Animal Care Unit. Therefore, mice were housed
in cages with a high-efficiency particulate air filter and fed
with a standard mouse chow diet. IL-107~ mice at age of
3.5 weeks were randomized into three groups (n =10 for
each group), and were treated with oral gavage of milk
alone or added with 1x 10” cfu/mL LP or LPKM. Wild-
type (WT) mice were treated with oral gavage of milk
(n =10 for each group). The volume of gavage was
0.5 mL. Mice were treated up to the age of 17 weeks and
then sacrificed by cervical dislocation. The Animal Care
and Use Committee and the Ethics Committee of Shanghai
Jiao Tong University approved the experimental protocol in
compliance with the Helsinki Declaration (G2012007).

Bacterial strains and culture conditions

The EPEC strain ATCC 43887 (O111:NM) (Shanghai
Municipal Center for Disease Control and Prevention,
Shanghai, China) was grown in DMEM at 37°C for 24 h.
The LP strain (CGMCC 1258) was provided by the
Institute of Bio-medicine, Shanghai Jiaoda Onlly Company
Ltd, and cultured in MRS broth (Difco, Sparks, MD, USA)
at 37°C. Quantification of bacteria was carried out by
measuring the optical density at 600 nm using a Beckman
DU-50 spectrophotometer to determine the colony form-
ing units (CFU).

MIMP targeting

The mutant strain LPKM was constructed with a deletion
of MIMP using standard integration and excision methods,
tools, and strains, as previously described [29,30]. A pET32
deletion vector was constructed containing two targeting
fragments, using the incision enzyme BglIl and Xhol,
which flank MIMP gene as previously described [8]. After
a double crossover integration and excision event, LPKM
was recovered harboring a 183-bp deletion of MIMP in the
genome. PCR products over the IMP region in LPKM con-
firmed the loss of ~200 bp in the genes surrounding the
deletion [31].
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Western blot analysis

Western blot was performed as previously described [17].
Visualization was performed using enhanced chemilumin-
escence according to the manufacturer’s instructions
(ECLKit; Pierce, IL, USA).

Binding assay of LP and the competitive inhibitive effect
on MIMP

Cells were cultured as monolayers (~1 x 10 for each well)
and divided into experimental groups in triplicate as previ-
ously described [17]. In LP groups, LP (100 pL of 1.0 x
10°%/mL) was added onto the monolayer of NCM460 cells
simultaneously with EPEC infection. In LPKM groups,
LPKM (100 pL of 1.0x 10®/mL) was added onto the
monolayer of NCM460 cells simultaneously with EPEC
infection. In antibody groups, NCM460 cells were pre-
incubated with the serum containing polyclonal anti-
MIMP antibodies (100 pL of dilution 1:5000) prepared as
previously described [8], prior to infection with EPEC
which was simultaneously incubated with LP.

Measurement of transepithelial electrical resistance (TER)
and dextran permeability

The methods were described previously [17]. The intes-
tinal epithelial monolayers were divided into five differ-
ent experimental groups in triplicate.

Measurement of the intestinal permeability and colonic
damage in mice

The intestinal permeability was determined in treated or
untreated IL-10""~ and wild-type mice as previously de-
scribed [17]. Final data were reported as either the frac-
tional excretion (for sucralose) to determine the colonic
permeability or a ratio of fractional excretion (for lactu-
lose/mannitol) to quantify the small intestinal perme-
ability. Fractional excretion was defined as the fraction
of the gavaged dose recovered in the urine, and the ratio
of fractional excretion was defined as the ratio of the
fraction of the gavaged dose of lactulose recovered in
the urine over the fraction of the gavaged dose of man-
nitol recovered in the urine.

Ussing chamber assay to determine the intestinal
permeability measurement in isolated mice colons
Treated or untreated IL-107~ and wild-type mice were
sacrificed at 8 weeks and a Ussing chamber assay was
performed as described previously [16,32]. Tissue ion re-
sistance (1/G, where G represents the conductance) was
calculated from the potential difference and short-circuit
current according to Ohm’s law.
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Determination of zonulin protein expression levels by
western blot

LP or LPKM treated NCM460/MIMP samples were
subjected to SDS-PAGE and transferred onto PVDF
membranes. Membranes were incubated with the anti-
bodies raised against zonulin (Lsbio) at a dilution of
1:100 for 2 h at room temperature, washed in TBS and
then incubated for 1 h with corresponding HRP-
conjugated secondary antibodies, and visualized using
enhanced chemiluminescence.

Detection of zonulin mRNA expression by quantitative
real time PCR

Quantitative real time PCR (qRT-PCR) was used to de-
termine the expression of Zonulin at the level of mRNA
[17,19]. Primers used in our study included:

forward primer, 5'-TCATCACGGCGCGCCAGG-3'
reverse primer, 5'-GGAGGTCTAGAATCTGCCCGAT-3'.

Total RNA was isolated from NCM460/MIMP cells
using Trizol reagent (Invitrogen) followed by DNase I
treatment. The quantity and quality of RNA was verified
by determining the absorbance ratio at 260 and 280 nm,
and by visualization of respective bands on agarose gels.
For each sample, 600 ng mRNA was used in the reverse
transcription reaction according to the manufacturer’s spec-
ifications (iScript kit, BioRad). mRNA was also detected by
RT-PCR using a light-cycling system (LightCycler, Roche
Diagnostics GmbH, Mannheim, Germany). The level of
mRNA expression was expressed as the ratio of the mean
reading of the experimental group over that of the control
group for NCM460/MIMP cells.

Verification of the zonulin pathway by examination of
intestinal permeability in vitro

A zonulin overexpressing adenovirus was constructed as
previously described [33]. Briefly, human zonulin cDNA
was cloned into Kpnl and Xhol sites of the pENTR 2B
vector (Invitrogen), and then transferred to the pAd/CMV/
V5-DEST vector (Invitrogen). The plasmids were linearized
with Pacl (Promega, Madison, WI) and transfected into
293A cells using Lipofectamine 2000. As a control, the
pAd/CMV/V5-GW/lacZ vector (Invitrogen) was used to
produce a lacZ-bearing adenovirus. NCM460 cells were
transfected with Ad-zonulin or Ad-lacZ for 12 h. After
transfection, the cells were washed with PBS and placed in
fresh medium for western blot analysis and examination of
intestinal permeability as described above.

Clinical verification of zonulin pathway

It has been reported that postoperative septicemia is as-
sociated with bacterial translocation, which may be
caused by the increase of intestinal permeability and
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barrier injury [2]. We used the postoperative septicemia
to evaluate the relationship between human serum
zonulin level and intestinal permeability [34]. 121 pa-
tients with colorectal cancer staged asT2-T3, N1, MO,
according to the TNM staging system, were enrolled in
this study. All patients underwent a radical colectomy
at the Shanghai Sixth People’s Hospital, affiliated
to Shanghai JiaoTong University in Shanghai or the
Sixth Affiliated Hospital of Sun Yat-sen University in
Guangzhou, between April 2009 and September 2012.
The study design and protocols were reviewed and ap-
proved by the Human Research Review Committee in
both the Shanghai Sixth People’s Hospital and the
Sixth Affiliated Hospital of Sun Yat-sen University, and
written informed consent for participation was ob-
tained from each patient before their enrollment into
the study. Serum samples were collected 1 day pre-
operatively,and 3 and 10 days after the surgical proced-
ure. The concentrations of zonulin were determined
using an ELISA kit, as previously described [35]. Briefly,
plastic microtiter plates (Costar, Cambridge, MA) were
coated with rabbit zonulin cross-reacting Zot derivative
AG IgG antibodies (10 pg/ml in 0.1 mol/l sodium carbon-
ate buffer, pH 9.0), which were generated as previously de-
scribed [35]. After an overnight incubation at 4°C, plates
were washed four times in TBS and blocked by incubation
for 1 h at 37°C with TBS. After four washes, five AG serial
standards (50, 25, 12.5, 6.2, 3.1, and 0 ng/ml) and patient
sera samples (1:10 dilution in TBS) were added and incu-
bated overnight at 4°C. After four washes with TBS + 0.2%
Tween 20, plates were incubated with biotinylated anti-
ZotlgG antibodies for 4 h at 4°C. A color reaction was de-
veloped using a commercial kit (ELISA amplification kit;
Invitrogen). The absorbance at 495 nm was measured with
a microplate auto-reader (Molecular Devices Thermomax
Microplate Reader).

Statistical analysis

The data were expressed as the mean + standard devi-
ation (SD) when normally distributed or as a median
(range) when abnormally distributed. Statistical analyses
were performed using the SPSS 13.0 software (SPSS Inc.,
Chicago, IL). SD between multiple groups was assumed
to satisfy a normal distribution. Data were analyzed by
one-way ANOVA when conditions of homogeneity of
variance were present. P values <0.05 were considered to
be statistically significant. Spearman’s correlation was
used to assess the relationship between zonulin level and
postoperative septicemia using SPSS 13.0.

Results

Loss of the MIMP sequence and expression in LPKM

PCR and western blot were performed to confirm the
deletion of MIMP gene for LPKM. PCR amplicons over
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the IMP region indicated that compared with LP of near
1000 bp, LPKM (about 800 bp) lost about 200 bp in the
genes surrounding the deletion of LPKM (Figure 1A).
Western blot showed a band of about 120 kd in the
whole bacteria protein of LP butundetectable in the
LPKM (Figure 1B).

Decreased competitive inhibition of LPKM to EPEC
adherence to NCM460 cells

The adhesion rate of LP to NCM460 cells was significantly
lower compared with the LPKM (P <0.001, Figure 1C).
Detection of EPEC adherence indicated that the adhesion
rate of EPEC to NCM460 cells was reduced significantly
when LP was added, while adding LPKM had no effects
on the inhibition of EPEC adhesion. However, the anti-
MIMP deprived the effect of LP on the reduction of EPEC
adhesion (P < 0.05, Figure 1D).

LPKM had no effect on the EPEC-induced reduction of
intestinal permeability

TER in the NCM460 cell monolayers was found signifi-
cantly decreased in response to EPEC infection, com-
pared with uninfected control cells at 3-24 h (P <0.05,
Figure 2A). The EPEC-induced TER decrease was pre-
vented by the simultaneous treatment of LP (P <0.05,
Figure 2A). However, treatment with LPKM showed a
small effect on the EPEC-induced TER decrease (P >
0.05, Figure 2A). Anti-MIMP antibody also inhibited the
effect of LP on EPEC-induced decrease in TER (P > 0.05,
Figure 2A). Similar results were indicated for dextran
permeability (Figure 2B).

The intestinal permeability and colonic damage in vivo
were investigated using a sugar probes. Increased small in-
testinal permeability was observed in the IL-107'~ mice at
age of 4 weeks and onwards. Compared with the wild-type
mice (P <0.05, Figure 2C). Oral daily administration of
pure milk containing LP for 4-17 weeks decreased
small intestinal permeability in IL-10'~ mice, and the
effect was more evident at the age of 8—14 weeks when
the small intestinal permeability returned to the normal
level (P<0.05, Figure 2C). However, administration of
pure milk containing LPKM for 4-17 weeks showed no
help in decreasing small intestinal permeability in IL-107"~
mice (P > 0.05, Figure 2C). Meanwhile, IL-10""" mice had
a significantly increased colonic permeability, compared
with the wild-type mice (P <0.05, Figure 2D). Treatment
of LP had no significant effect on the intestinal permeabil-
ity until week 10. At week 10-15, administration of pure
milk containing LP was effective in decreasing colonic per-
meability in IL-10""~ mice (P < 0.05, Figure 2D). However,
administration of pure milk containing LPKM for 4-17
weeks showed no effect in decreasing colonic permeability
in IL-10~" mice (P > 0.05, Figure 2D).
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Figure 1 Validation of the knockout of MIMP protein in LPKM and the adhesion of EPEC or LP to NCM460 cells. (A) PCR amplicons over
the integrated membrane protein region in LPKM confirmed the loss of ~ 200 bp in the genes surrounding the deletion; (B) Western blotting
confirmed the non-expression of MIMP protein section in the whole bacteria protein of LPKM; (C) Adhesion of LP to NCM460 cells. The adhesion
rate of LP to NCM460 cells was lower compared with the LPKM; (D) Adhesion of EPEC to NCM460/MIMP cells. The adhesion rate of EPEC to
NCM460 cells was reduced when LP was added, while addition of LPKM had no effect about the inhibition of EPEC adhesion. However, the
anti-MIMP deprived the effect of LP on the reduction of EPEC adhesion. *, P < 0.05, vs. Control; #, P < 0.05, vs. *group(s).
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Figure 2 Loss of effects of LPKM on the EPEC-induced reduction of intestinal permeability in vitro and in vivo. (A) TER was found
significantly decreased in the EPEC group, compared with control (P < 0.05), which was prevented by the simultaneous treatment of LP (P < 0.05).
However, treatment with LPKM showed no effects on the EPEC-induced TER decrease (P > 0.05). Anti-MIMP antibody also inhibited the effect of
LP on TER decrease (P > 0.05). (B) Similar findings were obtained for dextran permeability. (C) An increased small intestinal permeability was
observed in the IL-107" mice at age of 4 weeks and onwards, as compared with the wild-type mice (P < 0.05). LP could decrease small intestinal
permeability in IL-107~ mice, and the effects were more evident at the age of 8-14 weeks when the small intestinal permeability returned to the
normal level (P < 0.05). However, LPKM showed no decrease of small intestinal permeability in IL-107~ mice (P> 0.05). (D) IL-107~ mice had a
significantly increased of colonic permeability, compared with control (P < 0.05). Treatment of LP had no significant effects on the intestinal
permeability until week 10. At week 10-15, oral daily administration of pure milk containing LP effectively decreased colonic permeability of
IL-107~ mice (P < 0.05). However, LPKM showed no help in decreasing colonic permeability of IL-107~ mice (P > 0.05). The intestinal epithelial
monolayers were divided into five different experimental groups in triplicate. Each group used 10 animals for determination. *vs. EPEC group,

P <0.05; # vs. *, P <0.05. The data were expressed as the mean + standard deviation. Statistical analyses were performed using the SPSS 13.0
software (SPSS Inc,, Chicago, IL). Data were analyzed by one-way ANOVA when conditions of homogeneity of variance were present.
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Ussing chamber assay was performed to evaluate the in-
testinal and colonic permeability in 8-week old mice tis-
sues. The small intestinal permeability to mannitol in the
IL-107" mice was increased with a corresponding decrease
in TER, compared with the wild-type group. In LP group,
the small intestinal permeability to mannitol significantly
decreased whereas TER significantly increased, as com-
pared with the mice in control group (P <0.05, Figure 3A
and B). However, in LPKM group, the small intestinal per-
meability to mannitol and TER did not change significantly,
compared with the mice in control group (P > 0.05, Figure 3A
and B). Similar results were observed in colonic tissues. Co-
lonic permeability to mannitol increased in the IL-107~ mice
with a corresponding decrease in TER, both of which were
prevented by not LPKM but LP (P < 0.05, Figure 3C and D)

Loss of prevention of EPEC-induced increased zonulin
expression level for LPKM

Semi-quantitative analysis of the western blots showed
that zonulin protein expression level was higher in EPEC

Page 6 of 10

group, compared with the uninfected control group (P <
0.05, Figure 4A and B). After the simultaneous treatment
of LP, the increased zonulin protein expression level was
lost (P <0.05, Figure 4A and B). However, simultaneous
treatment of LPKM did not change the increased zonu-
lin protein expression level (P> 0.05, Figure 4A and B).
qRT-PCR also showed that EPEC enhanced the zonulin
protein expression level (P <0.05, Figure 4C), which
could be prevented by not LPKM (P >0.05, Figure 4C)
but LP (P < 0.05, Figure 4C).

Loss of reduced intestinal permeability for LP after
overexpression of zonulin protein

Zonulin protein expression level was higher in EPEC
group, compared with the uninfected control group (P <
0.05, Figure 5A and B). After the simultaneous treatment
of LD, the increased zonulin protein expression level was
lost (P <0.05, Figure 5A and B). The LP-induced increase
level of zonulin was not changed after Ad-zonulin was
transfected to NCM460 cells (P > 0.05, Figure 5A and B),
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Figure 3 Loss of alleviation of intestinal permeability of LPKM induced by EPEC ex vivo. (A) The small intestinal permeability to mannitol in
the IL-107 mice was increased, compared with the wild-type group. In LP group, the small intestinal permeability to mannitol significantly decreased,
compared with control (P < 0.05). However, in LPKM group, the small intestinal permeability to mannitol did not changed significantly (P > 0.05).

(B) Similar results were indicated for intestinal resistance. (C & D) Similar results were observed in colonic tissues. Colonic permeability to mannitol
increased in the IL-107~ mice with a corresponding decrease in TER, both of which were prevented by LP (P < 0.05). However, in LPKM group, colonic
permeability to mannitol and TER did not changed significantly, compared with control (P > 0.05). Each group used 10 animals for determination. *vs.
EPEC group, P < 0.05; # vs. *, P < 0.05. The data were expressed as the mean = standard deviation. Statistical analyses were performed using the SPSS
13.0 software (SPSS Inc,, Chicago, IL). Data were analyzed by one-way ANOVA when conditions of homogeneity of variance were present.
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Figure 4 Loss of prevention of EPEC-induced increased zonulin expression level for LPKM. (A) Western blotting showed that zonulin
protein expression level was higher in EPEC group, compared with the uninfected group. After the simultaneous treatment of LP, the increased
zonulin protein expression level was lost. However, simultaneous treatment of LPKM did not change the increased zonulin protein expression

level; (B) Semi-quantitative analysis of western blots results; (C) Detection of zonulin mRNA expression levels by gRT-PCR found that EPEC
enhanced the zonulin protein expression level, which could not be prevented by LPKM but LP. *vs. EPEC group, P < 0.05; # vs. *, P < 0.05.

while the increase was continueing after Ad-lacZ was
transfected (P < 0.05, Figure 5A and B).

TER in the NCM460 cell monolayers was found signifi-
cantly decreased, and dextran permeability was found sig-
nificantly increased in response to EPEC infection, as
compared with uninfected control cells (P < 0.05, Figure 5C
and D). The EPEC-induced change of TER and dextran
permeability was prevented by the simultaneous treatment
of LP (P <0.05, Figure 5C and D). However, the effects of
LP to the EPEC-induced change of intestinal permeability
was inhibited with the transfection of Ad-zonulin to
NCM460 cells (P > 0.05, Figure 5C and D), while the im-
pact did not existed when Ad-lacZ was transfected instead
(P <0.05, Figure 5C and D).

Relationship between zonulin level and postoperative
septicemia

A direct correlation was found between the serum zonulin
level and the postoperative septicemia (r = 1.000, P < 0.001).

Discussion

In previous studies, we have identified and characterized
MIMP as a domain of LP surface layer protein [8,16], and
it showed a key role in conferring the protection against
pathogenic bacteria. A recent study found that knockout
of the specific gene in lactobacillus could be a good model
for investigating the mechanism of lactobacillus compo-
nents [31]. Therefore, we established MIMP-knockout

LPKM bacteria to investigate the mechanism of MIMP on
the regulation of intestinal permeability in the present
study. PCR amplicons over the integrated membrane pro-
tein region indicated the loss of ~ 200 bp in the genes sur-
rounding the deletion of LPKM. Western blot confirmed
that non-expression of MIMP protein section in the whole
bacteria protein of LPKM. Our findings suggested that
LPKM lost the MIMP sequence and did not expressed
MIMP protein. It is proved that adhesion may be the first
step of the interaction between lactobacillus and IECs,
which could then exert its protective function against the
intestinal barrier injury [27,36,37]. Our results indicated
that after knockout of the MIMP [8,16], LPKM lost the ad-
hesive effects to NCM460 cells. EPEC adhesive assay con-
firmed that the competitively inhibitive effects of LPKM
decreased significantly compared with LP, and showed simi-
lar effects in LP group added with anti-MIMP, which might
be due to the loss of adhesive MIMP protein. To inves-
tigate the effects of LPKM on intestinal permeability,
we performed the assay of TER, dextran permeability
in vitro, sugar probe permeability in vivo, and Ussing
chamber ex vivo. The intestinal permeability assay of
NCM460 cells indicated that LPKM lost preventive ef-
fects on the EPEC-induced TER decrease and dextran
permeability increase, which was similar to the role of
anti-MIMP antibody [16]. Therefore, we deduce that
the sequence of MIMP have an inhibitive effect on the
increase of permeability of NCM460 cell monolayer.
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Figure 5 LP lost the ability to reduce intestinal permeability after overexpression of zonulin protein in NCM460 cells. (A) Zonulin
protein expression level was higher in EPEC group, compared with the uninfected control group. After the simultaneous treatment of LP, the
increased zonulin protein expression level was lost. The LP-induced increase level of zonulin was not changed after Ad-zonulin was transfected to
NCM460 cells, while the increase was continue increased after Ad-lacZ was transfected; (B) Semi-quantitative analysis of western blots results;

(C) TER in the NCM460 cell monolayers was found to be significantly decreased in response to infection with EPEC, as compared with uninfected
control cells. The EPEC-induced change of TER was prevented by the simultaneous treatment of LP. However, the effects of LP to the EPEC
induced change of intestinal permeability was inhibited with the transfection of Ad-zonulin to NCM460 cells, while that impaction did not existed
when the Ad-lacZ was transfected instead of Ad-zonulin; (D) Dextran permeability was found to be significantly increased in response to infection with
EPEC, as compared with uninfected control cells. The EPEC-induced change of dextran permeability was prevented by the simultaneous treatment of
LP. However, the effects of LP to the EPEC induced change of intestinal permeability was inhibited with the transfection of Ad-zonulin to NCM460 cells,
while that impaction did not existed when the Ad-lacZ was transfected instead of Ad-zonulin. *, P < 0.05, vs. LP + EPEC group; #, P < 0.05, vs. *.

We also determined the intestinal permeability and co-
lonic damage in vivo and ex vivo using the IL-107'~
mice model, and found that LPKM lost the ability to
lower both the small intestinal and colonic permeabil-
ity of mice, as the permeability to mannitol and TER
did not change significantly both in intestinal and co-
lonic tissues. Importantly, our results suggested that
LPKM lost the effects on the intestinal and colonic perme-
ability, and MIMP might have inhibitive effects on the in-
crease of intestinal and colonic permeability. Because it
has been reported that the reduction of small intestinal
permeability could attenuate the colitis and protect the in-
testinal barrier function in the IL-107~ mice [16,32],
MIMP may alleviate the intestinal inflammation by redu-
cing small intestinal and colonic permeability.

Zonulin is a recent discovered protein that partici-
pates in T] between IECs in the digestive tract [19]. Zonulin
was originally discovered as the target of zonula occludens
toxin, which is secreted by cholera pathogen Vibrio

cholerae [38]. It has been reported as a marker of the
increased gut permeability in coeliac disease [20] and
type ldiabetes mellitus [35]. High expression of zonulin
could reflect the increase of intestinal permeability [22].
However, the relationship between probiotics and zonulin
protein remains uninvestigated. The molecular mechan-
ism underlying how LP can exert its effects on intestinal
permeability has still not been clarified. Therefore, we pro-
mote our hypothesis that LP may exert the regulative ef-
fects on intestinal permeability via the zonulin pathway.
Results indicated that LP could inhibit the EPEC-induced
increase of zonulin expression, while LPKM could not,
which suggested that MIMP may lower the intestinal per-
meability by inhibiting the expression of zonulin in IECs,
and then alleviate the intestinal inflammation and protect
the normal intestinal barrier function. To verify the zonulin
pathway, during the interaction between LP and the intes-
tinal permeability, the zonulin overexpressing adenovirus
was constructed and transfected into the NCM460 cells.
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Results indicated that overexpression of zonulin protein de-
prived the reduced effects of LP to intestinal permeability,
including the increase of TER and decrease of macro mo-
lecular dextran permeability. Furthermore, we evaluated
the correlation between serum zonulin levels and postoper-
ative septicemia, which was found positive. In this study,
we first verified the critical role of zonulin in the regulation
of intestinal permeability.

Above all, MIMP might be an important protein with
protective effects on intestinal barrier, which could be used
as a new drug to prevent and treat intestinal barrier dys-
function [2,7,17]. Since lactobacillus may have a risk of
translocation and could not be used combined with antibi-
otics, MIMP will show its own advantages [17,39,40]. Add-
itionally, zonulin could also be used as a biomarker of
intestinal dysfunction [41].

One limitation of our study is that we did not have a
verification of zonulin using the human serum samples
after administration of LP. And this test is now in progress
in our hospital. Furthermore, recently, some studies on
barrier function mediated by newly discovered molecules
or cells of IEC itself are drawing more attention [42], such
as intestinal villi brush border alkaline phosphatase (IAP)
[43-45], intracytoplasmic protein phosphatase 2A (PP2A)
[46,47], their interaction with MIMP should be further in-
vestigated in the following study [40].

Conclusion

MIMP-knockout LPKM lost the protective effects against
the injury of IECs, therefore, MIMP might have protective
effects on the intestinal epithelial cells associated with the
zonulin pathway.
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