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Abstract

translocation.

Background: WHO guidelines recommend zinc supplementation as a key adjunct therapy for childhood diarrhea
in developing countries, however zinc's anti-diarrheal effects remain only partially understood. Recently, it has been
recognized that low-grade inflammation may influence stunting. In this study, we examined whether oral zinc
supplementation could improve weight, intestinal inflammation, and diarrhea in undernourished weanling rats.

Methods: Rats were undernourished using a northeastern Brazil regional diet (RBD) for two weeks, followed by
oral gavage with a saturated lactose solution (30 g/kg) in the last 7 days to induce osmotic diarrhea. Animals
were checked for diarrhea daily after lactose intake. Blood was drawn in order to measure serum zinc levels by
atomic absorption spectroscopy. Rats were euthanized to harvest jejunal tissue for histology and cytokine profiles
by ELISA. In a subset of animals, spleen samples were harvested under aseptic conditions to quantify bacterial

Results: Oral zinc supplementation increased serum zinc levels following lactose-induced osmotic diarrhea. In
undernourished rats, zinc improved weight gain following osmotic diarrhea and significantly reduced diarrheal scores
by the third day of lactose intake (p < 0.05), with improved jejunum histology (p < 0.0001). Zinc supplementation
diminished bacterial translocation only in lactose-challenged undernourished rats (p = 0.03) compared with the
untreated challenged controls and reduced intestinal IL-13 and TNF-a cytokines to control levels.

Conclusion: Altogether our findings provide novel mechanisms of zinc action in the setting of diarrhea and
undernutrition and support the use of zinc to prevent the vicious cycle of malnutrition and diarrhea.
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Background

The vicious cycle of malnutrition and enteric infections in
poor settings of the developing world may cause an envir-
onmental enteropathy postulated to result from the com-
bined effects of marginal diets, unsanitary environments,
and repeated and persistent enteric infections [1,2]. Recent
data from studies in developing countries, including Brazil
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and Peru, have documented a lasting impact of diarrhea
(as with malnutrition and intestinal helminthic infections)
on child development with ill effects on cognition, growth,
and educational performance [3-5].

In addition, the vicious cycle of childhood undernutri-
tion and infection may impair the efficacy of oral vaccines
against life-threatening enteric pathogens and therefore
amplify this loop of intestinal barrier breakdown, bacterial
translocation, and inflammation leading to poor nutrient
absorption [6,7]. All of this could potentially increase
the global DALY (disability adjusted life years) due to
diarrheal diseases or enteric infections to a level not
previously considered [8]. Any improvements in water
sanitation, food security, and antimicrobials may lead to
better mucosal immunity, adapted gut microbiome, and
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improved intestinal barrier function. All these factors
are key to reduce the long-term and devastating effects
of this vicious cycle on children’s development, there-
fore helping to achieve full human potential.

Zinc is an essential component of many enzymes and
is necessary for the activity of many others [9]. Zinc also
has a role in the acute phase of inflammation and the im-
mune response, although the mechanisms through which
it acts are still unclear [10]. Zinc participates in DNA
and RNA syntheses, which directly correlate with cellular
replication, chondrocyte and osteocyte differentiation, and
cellular transcription. In addition, it is a key co-factor for
IGF-1, collagen, osteocalcin, and alkaline phosphatase syn-
theses [11].

Zinc supplementation lowers the risk of diarrhea
in children [12]. Additionally, chronic diarrhea causes
zinc deficiency, which further contributes to diarrhea
[13,14]. The duration and severity of diarrheal diseases
and immunosuppression in undernourished children from
developing countries are greater than their nourished coun-
terparts. All these factors can be associated with zinc defi-
ciency because zinc supplementation improves theses
outcomes [15].

Recently, it has been recognized that a chronic low-
grade systemic pro-inflammatory state may influence
stunting in children [16], which may be caused by intes-
tinal barrier disruption and bacterial translocation [17].
Zinc supplementation has been shown beneficial to
improve chronic inflammation [18,19] and may have
a role in protecting undernourished children with acute
diarrhea. In this study, we have addressed whether zinc
supplementation could benefit weight gain, intestinal
inflammation and gut-to-blood bacterial translocation in
weanling rats challenged by undernutrition, with or without
lactose-induced osmotic diarrhea.

Methods

Animals

We used 60 weaned male Wistar rats, weighing 40-60 g,
provided by the Department of Physiology and Pharma-
cology/Federal University of Ceard. Immediately after
weaning (21 days old), experimental rats were randomly
divided in five groups, as following: nourished controls,
undernourished controls, undernourished controls chal-
lenged with saturated lactose, undernourished rats re-
ceiving zinc supplementation, and undernourished and
lactose challenged rats receiving zinc supplementation.
All animals had free access to food and water and were
monitored daily for weight gain.

Study protocols were in accordance with the Brazilian
College for Animal Care guidelines and were approved
by the Federal University of Ceard Animal Care and Use
Committee.
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Experimental undernutrition

During 14 days post-weaning, nourished control rats re-
ceived standard chow diet while undernourished control
rats received isocaloric Brazilian northeastern regional
basic diet (RBD). In the last 7 days, these two groups re-
ceived 2 ml of PBS by gavage. The RBD is a well-studied
rodent diet high in carbohydrates and marginally deficient
in protein, fat, and minerals. It was formulated accord-
ing to Teodosio et al. [20] to represent the multidefi-
cient diet of poor populations in northeastern Brazil.
RBD and commercial chow (Purina®) diets present the
following nutrients, respectively: protein (9.35% and
20.30%), carbohydrate (70.60% and 56.0%), and fat (0.36%
and 3.33%). The RBD has been shown to reduce growth
velocity and to cause intestinal barrier disruption in suck-
ling mice [21].

Induction of osmotic diarrhea and zinc treatment

In order to evaluate the effect of zinc supplementation
on acute diarrhea, lactose-driven osmotic diarrhea was
induced to the study rats, as described by Teichberg
et al. [22]. A subset of undernourished rats that received
RBD was also challenged by a saturated lactose solution
(monohydratated sodium lactose, Vetec Quimica, Rio de
Janeiro, Brazil), which was given by gavage diluted in
2 mL of PBS, 30 g/Kg, starting on day 8 until day 14 to
induce osmotic diarrhea. Non-lactose challenged groups
received PBS at the same volume by gavage in the last
7 days of the experiment as well. Zinc-treated rats re-
ceived zinc acetate (Sigma, Sdo Paulo, Brazil) in the
drinking water (500 mg/L) on day 8 until day 14 in order
to determine whether zinc could reduce diarrheal epi-
sodes. Zinc supplementation solution was chosen based
on a previous study in mice showing improvements in
the immune system [23] and after a pilot done to wean-
ling Wistar rats confirming improvements in weight gain
and zinc serum levels (data not shown).

All experimental rats were euthanized by cervical dis-
location on day 15 of the experiment, after being previ-
ously anesthetized with ketamine (8 mg/100 g) and xylazin
(0.8 mg/100 g).

Diarrhea scores

To quantify the incidence of daily diarrhea, a single exam-
ination was conducted 24 hours after the lactose gavage
(30 g/kg/day) by a trained veterinarian who performed a
clinical evaluation of the lactose-challenged rats and con-
firmed and scored the osmotic diarrhea episode. Diarrheal
scores were defined according to stool consistency, ap-
pearance, and humidity. Animals with watery diarrhea
were considered with the maximum score (++++). The
determination of diarrhea scores was performed accord-
ing to the Figure 1.
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Figure 1 Diarrheal scores from experimental rats. Scores were obtained by checking for diarrhea daily by a trained veterinarian, 24 h after
lactose intake by gavage, at the same time of the day for all groups. Scoring criteria accounted for changes in stool consistency and humidity, as
follows: 0- normal stool consistency and dryness; 1-wet stools; 2-pasty stools; 3-semiliquid stools; 4-watery diarrhea.

watery diarrhea

Serum zinc measurement

In order to evaluate whether RBD with or without lactose-
induced diarrhea could cause zinc deficiency, we mea-
sured serum zinc levels in the experimental rats. Blood
was collected by intracardiac puncture. Analyses of serum
zinc levels were conducted in the Clementino Fraga La-
boratory, using atomic absorption spectroscopy (Spec-
trAA 55 AAS, Varian, CA, USA). A standard calibration
curve was obtained using a standard zinc solution (0.2 mg
Zn/L; ].T. Baker), as described elsewhere [24].

ELISA cytokine assay

Since inflammation could cause intestinal barrier impair-
ment, we also assessed key intestinal cytokines previously
shown to be affected by zinc supplementation [18]. Speci-
mens were stored at —80°C until required for assay. The
tissue collected was homogenized and processed as de-
scribed by Azevedo et al. [25]. The detection of TNF-q, IL-
1B, and IL-10 concentrations were determined by ELISA.

Briefly, microtiter plates were coated overnight at 4°C
with antibody against murine TNF-q, IL-1f, and IL-10
(2 pg/ml). After blocking the plates, the samples and
standard at various dilutions were added in duplicate
and incubated at 4°C for 2 h.

The plates were washed three times with a buffer.
After washing the plates, biotinylated sheep polyclonal
anti-TNF-a or anti-IL-1p or anti-IL-10 (diluted 1:1000
with assay buffer 1% BSA) was added to the wells.

After further incubation at room temperature for 1 h,
the plates were washed and 50 pl of avidin-HRP diluted
1:5000 were added. The color reagent o-phenylenediamine.

(OPD; 50 ul) was added 15 min later and the plates
were incubated in the dark at 37°C for 15-20 min. The
enzyme reaction was stopped with 2 N H2SO4 and ab-
sorbance was measured at 450 nm. Values were expressed
as picograms/milliliter (pg/ml).

Gut-to-blood bacterial translocation

Since inflammatory-induced mucosa injury may cause in-
creased gut-to-blood bacterial translocation, we measured
bacterial translocation to the spleen, as this organ is in-
volved in blood bacterial clearance. After sacrifice, an inci-
sion was made in the midline of the animal and the viscera
were exposed. Then, a sample from the spleen tissue was
collected to assess gut-to-blood bacterial translocation.
The fragments were weighed and triturated with 1 mL of
PBS. From this homogenate, 200 pL were seeded in culture
MacConkey agar medium, staying at 37°C for 48 h. After
incubation, the plates were photographed using an inverted
microscope coupled with a CCD camera, and the images
were analyzed with the Image Pro-Plus 5.0 software in
order to quantify the colony forming units (CFU).

Intestinal morphometry
Villus height and crypt depths were measured from
slides stained with hematoxylin and eosin on a light
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microscope (BH-2, Olympus, Tokyo, Japan), n=6, for
each group, equipped with a high-resolution digital cam-
era that was connected to a computer with an image
capture program. Villus height was measured from the
baseline to the villus tip. The crypt depth was measured
from the baseline to the crypt bottom. A villus/crypt ra-
tio was calculated to further address absorptive intestinal
area. At least 10 clear longitudinal sections of villi and
crypts were selected and counted for each sample (6 je-
junal samples for each group). All morphometric mea-
surements were done blindly by the NIH Image J 1.34 S
software (National Institutes of Health, Bethesda, MD).

Western blot

In brief, jejunal segments were harvested and immedi-
ately frozen in liquid nitrogen. Thawed specimens
were pulverized in glass homogenizers, containing lysis
buffer and then transferred to test tubes with protease
inhibitor and centrifuged at 14000 rpm for 10 minutes.
Supernatants were assayed using the bicinchoninic acid
method, BCA Protein Assay Kit (Pierce, Rockford, IL) to
standardize 50 pg of protein product in each well. Samples
were loaded into 10% denaturing polyacryamide gels
(Amersham Biosciences, UK), and gels were transferred
overnight and then blotted onto nitrocellulose membranes.
Membranes were blocked overnight (5% fat-free milk
solution), incubated with rabbit villin (1:500) or B-actin
(1:1000) antibody for 1 hour rinsed 3 times in rinsing
buffer, incubated in a biotinylated secondary antibody
(Horseradish Peroxidase, 1:1000), and then rinsed as
described above. Each membrane was washed with
cumaric acid, luminol, Tris e H,O, and exposed to Kodak
X-Omat AR film (Kodak, Rochester, NY). Western blot
bands were identified and the densitometry analyzed by
Image ] (Media Cybernetics, CA, USA), and were expressed
as villin/B-actin ratio.

Immunohistochemistry

The immunohistochemistry targeted villin, a 92.5 kDa
actin-binding protein, and one scaffold component of
the intestinal microvilli in order to additionally evaluate
the absorptive intestinal area. Jejunal samples were sec-
tioned in 5 pm-thick cross-sections, placed in 10 mM
citrate buffer of pH 6.0, and heated for 10 min. Sections
were incubated for 15 min in 3% hydrogen peroxide
(SigmaAldrich), washed with distilled water and phos-
phate buffered saline for 5 min each, permeabilized in
0.3% Triton (SigmaAldrich) for 15 min and in 0.1%
Tween (Fisher Scientific, Pittsburg, MA) for 5 min,
blocked in 10% normal goat serum in PBS for 1 h at
room temperature (RT), and then incubated overnight
(4°C) with rabbit primary polyclonal villin antibody (Santa
Cruz) diluted in PBS-BSA. Afterwards slides were incu-
bated in biotinylated anti-rabbit secondary antibody in
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PBS-BSA and incubated with Vectastain Elite ABC Re-
agent, according to the manufacturer’s protocol (Vector
Laboratories). After washings, the section was developed
with diaminobenzidine substrate ki, 3,3 = diaminobenzi-
dine (Vector Laboratories), to give a brown to gray/black
color. Slides were counterstained with methyl green, dehy-
drated in serial ethanol and xylene solution and perman-
ently mounted.

Goblet cell count

The slides used for immunohistochemistry were further
used for goblet cell counting. Goblet cells were counted
on a light microscope at high magnification (Olympus,
CX31, Tokyo, Japan) and the data were expressed as num-
ber of cells/villus, as goblet cell villus index. The slides
were viewed under a light microscope, equipped with a
high definition camera, and connected to a computer with
software to capture images (Q-capture, Olympus, Tokyo,
Japan). At least 20 intact villi were used for goblet cell
index for each rat jejunum (400X).

Statistical analysis

Statistical analyses were performed with the aid of Graph-
Pad Prism software, version 5.00 for Windows (San Diego,
Calif,, USA). Results were expressed as mean * standard
error of the mean (SEM). For the results of weight gain,
serum zinc, ELISA, CBC, morphometry, western blot
and goblet cell count, comparisons between groups were
made using analysis of variance (ANOVA) followed by
Bonferroni’s test. Diarrheal scores were analyzed by non-
parametric Mann—Whitney test. Bacterial translocation
data were analyzed using the Kruskal-Wallis test with
Dunn's correction and Mann—Whitney test when appro-
priate. The value of P <0.05 was considered significant.

Results

Weight gain

RBD caused a significant decrease in weight gain since day
3 in the undernourished control group (~9% decrement)
compared with nourished controls (p < 0.001). Undernour-
ished animals receiving RBD barely gained weight during
the first seven days of the experiment. Zinc supplementa-
tion (500 mg/L) was not able to improve weight gain dur-
ing the RBD challenge, compared with undernourished
group without zinc supplementation (Figure 2A). Oral
saturated lactose (30 g/kg by gavage, from the 8™ day of
experiment) induced significant weight loss after the 10™
day (p <0.05) in undernourished rats coinciding with the
onset of osmotic diarrhea, compared with the undernour-
ished group without lactose. After the 10™ day, the weight
curves of undernourished rats receiving lactose and the
undernourished group receiving lactose and zinc began to
diverge. The undernourished groups without lactose (UN
and UN+Zn) showed better gain weight than groups
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Figure 2 Weight curves from experimental Wistar rats A. after challenged by the regional basic northeast diet (RBD) and B. following
lactose administration. The RBD was given ad libitum for 14 days and lactose (30 g/Kg, by gavage) was administered after the 8th day of the
experiment. Results are expressed in mean + SEM and were analyzed by one-way ANOVA, followed by Bonferroni's multiple test. Groups:
nourished control, undernourished control (UN), undernourished control supplemented with zinc (UN + Zn), undernourished control challenged
by lactose (UN + Lac), and lactose-challenged undernourished rats supplemented with zinc (UN + Zn + Lac).

challenged by lactose at days 11, 12 and 14. Zinc supple-
mentation prevented weight loss in animals challenged
with lactose at the last days of the experiment (days 13
and 14) (p < 0.05), Figure 2B.

Serum zinc levels

RBD challenge caused significant reductions in serum zinc
levels compared with the nourished controls (p < 0.05).
Zinc supplementation (500 mg/L) improved zinc serum
levels in the rats with or without lactose challenge. The
groups that received lactose with or without zinc supple-
mentation showed higher serum zinc levels, compared
with their respective controls (p < 0.01), Table 1.

Diarrhea scores

RBD induced malnutrition did not cause osmotic diarrhea.
Undernourished and lactose challenged rats showed diar-
rhea since the second challenge day indicated by the
significant increase in diarrheal score (p < 0.05). From the
10th day of the experiment, animals receiving zinc supple-
mentation showed a significant reduction in diarrhea scores,
compared with the challenged untreated group, Table 2.

TNF-0, IL-1B and IL-10 tissue levels

Tissue levels of TNF-a (p<0.05), IL-1f (p<0.05) and
IL-10 (p<0.001) were increased in the jejunum from
undernourished rats compared with nourished controls.
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Table 1 Zinc serum levels and jejunal morphometrics in experimental rats challenged by lactose-induced diarrhea and
the regional northeast basic diet with their respective controls

Nourished Undernourished
Outcomes PBS PBS P P (Zn vs PBS) Lac Zn+lac P (Zn+Lac vs Lac)
Biochemisty
Zinc serum levels (mg/L) (n) 1.089+0.08 0.712+0.10 < 0.0001 157+£0.12 < 0.0001 112+£024 204+050 < 0.0001
(n=11) (n=10) (n=8) (n=12) (n=8)
Jejunal morphology*
Villus height (um) 8263+£922 5879+983 < 00001 7042+1139 0.001 686+ 1032 667/9+782 0359
Crypt length (um) 15154365 18771667 < 00001 169.8+49.0 0.007 1416+27.7 1272+203 < 0.0001
Villus/crypt ratio 6.03+£17 37414  <00001 515+282 0.0322 51+£08 54+£1.19 0.235

*At least 40 sections of jejunal villi and crypts stained with hematoxylin and eosin in at least four animals per group. Data are presented as mean + SD.
Comparisons were performed by Student’s unpaired t test. Villi and crypts were measured only when their full longitudinal axis was found.

Zn = zinc treated-rats; Lac = lactose challenged-rats.

Zinc supplementation (500 mg/L) reduced tissue levels
of TNF-a (p <0.05) and IL-10 (p < 0.01) compared with
the undernourished group without zinc supplementa-
tion, but did not reduce jejunal IL-1f levels. Lactose
challenge (30 g/Kg) significantly increased TNF-a (p <
0.05), IL-1p (p <0.05), and IL-10 (p <0.01) levels, com-
pared with nourished controls. Zinc supplementation to
the lactose-challenged group reduced tissue TNF-«, IL-
1B, and IL-10 (p<0.05), compared with the lactose-
challenged untreated undernourished controls, Figure 3.

Intestinal bacterial translocation

Undernourishment caused significant intestinal bacterial
translocation (BT) to the spleen (p < 0.05). Zinc treatment
was unable to improve bacterial translocation to the spleen
in RBD-challenged rats. Lactose challenge caused a signifi-
cant increase in BT to the spleen compared to undernour-
ished (p=0.03) and nourished controls (p =0.002). Zinc
treatment significantly decreased the incidence of BT in
groups challenged by lactose (p < 0.05) (Figure 4).

Intestinal morphometry
Villus height was significantly reduced in all undernour-
ished groups compared with the nourished controls (p <

0.0001). On the other hand, crypt depth was significantly
increased in undernourished controls compared with the
nourished group (p < 0.0001). Villus/crypt ratio was lower
in the undernourished control compared with nourished
counterparts.

Zinc supplementation increased villus height (p < 0.0001),
crypt depth (p <0.01), and villus/crypt ratio in under-
nourished rats, compared to untreated controls, even
greater than nourished controls (p < 0.001).

The lactose administration increased villus height
(p <0.01), reduced crypt depth (p < 0.0001), and improved
villus/crypt ratio in undernourished mice. Zinc treatment
increased villus/crypt ratio and reduced crypt depth in
lactose-challenged undernourished rats (Table 1).

Intestinal villin assessment
Jejunal villin expression was significantly reduced (p <
0.0001) with RBD-induced malnutrition as identified by
western blot (Figure 5A, B), but with increased brush border
thickness, compared with the nourished group (Figure 5).
Zinc supplementation increased villin expression (p <
0.05) and the intensity of brush border villin imunostaining.
Lactose administration increased the intestinal villin
expression, compared with unchallenged undernourished

Table 2 Oral zinc supplementation reduced diarrheal scores following lactulose-induced osmotic diarrhea

Day UNN=11 UN+Zn N=12 P UN+Lac N=12 UN+Lac+Zn N=12 P
8 0 (0-0) 0 (0-0) ns 0 (0-0) 0 (0-0) ns
9 0 (0-0) 0 (0-0) ns 2 (0-4) 1(0-4) ns
10 0 (0-0) 0 (0-0) ns 1(0-3) 0 (0-1)* <0.05
1 0 (0-0) 0 (0-0) ns 2 (1-4) 0.5 (0-4)* <0.05
12 0 (0-0) 0 (0-0) ns 2 (1-4) 0.5 (0-4)* <0.05
13 0 (0-0) 0 (0-0) ns 2 (0-4) 0 (0-4)* <0.05
14 0 (0-0) 0 (0-0) ns 2 (1-4) 1(0-2)* <0.05

Normal stools: normal texture, consistency, and dryness.

Diarrhea scores: + = wet stools; ++ = pasty stools; +++ = semiliquid stools; ++++ = watery diarrhea.

Data are reported as median score. The score total range is shown in parenthesis. Data were analyzed by Kruskal-Wallis and Dunns post-test.

Groups: UN = undernourished controls; UN + Zn = undernourished rats treated with oral zinc acetate (500 mg/L); UN + Lac = undernourished rats challenged by
saturated lactose (30 g/Kg); UN + Lac + Zn = Zinc-treated undernourished rats challenged by saturated lactose (30 g/Kg).
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(See figure on previous page.)

(UN + Zn + Lac).

Figure 3 Jejunal cytokine assays for (A) tumor necrosis factor-alpha (TNF-a), (B) interleukin-1 beta (IL-1 B), and (C) interleukin-10 (IL-10)
from experimental Wistar rats challenged by the regional basic northeast diet (RBD) and following lactose administration. The RBD was
given ad libitum for 14 days and lactose (30 g/Kg, by gavage) was administered after the 8th day of the experiment. Cytokines were measured
from jejunum homogenates by ELISA. Values represent mean + SEM and were analyzed by one-way ANOVA. At least four animals were used per
group. At least N = 8 for all groups. Groups: nourished control, undernourished control (UN), undernourished control supplemented with zinc
(UN + Zn), undernourished control challenged by lactose (UN + Lac), and lactose-challenged undernourished rats supplemented with zinc

rats (p < 0.05), however, with a decrease in both the thick-
ness and intensity of villin immunostaining, similarly to
the nourished group.

Zinc supplementation did not change jejunal villin ex-
pression in lactose-challenged rats, but clearly increased
brush border thickness and immunostaining (Figure 5).

Villus goblet cell count

Goblet cell count was reduced in the undernourished
control group compared to the nourished controls (p <
0.0001). Zinc supplementation significantly increased vil-
lus goblet cell numbers (p<0.01), to the level of the
nourished group.

Lactose administration increased goblet cell count com-
pared to either zinc treated or untreated controls (p <
0.001), although being lower than the nourished group (p <
0.05) (Figure 6).

Discussion
In our model, a multideficient rodent diet (regional basic
diet, RBD) promotes malnutrition and zinc deficiency

similarly to what is seen in undernourished children
afflicted with heavy burden of diarrhea in northeastern
Brazil. In a study conducted in rural South Africa, chil-
dren who were fed with a high-carbohydrate diet (70%
of total energy) and deprived in most micronutrients (in-
cluding zinc), showed delayed linear growth [26].

Although the RBD, enriched in carbohydrate and with
low protein, has been used in several studies to induce
malnutrition [27,28], our study is the first to evaluate a
dual hit of RBD-induced malnutrition and osmotic diar-
rhea, along with the role of zinc as a gut-trophic nutrient
to improve intestinal inflammation, intestinal bacterial
translocation, and intestinal morphology.

We have shown that the RBD caused an intestinal
inflammatory state, characterized by increased pro-
inflammatory intestinal cytokine levels (IL-1 and TNE-
a), that is ameliorated by zinc supplementation. A recent
study by de Oliveira Assis and colleagues reports that ad-
ministration of the RBD during gestation and lactation to
dams was associated with a reduced systemic inflamma-
tory response in the offspring [29], suggesting that the
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Figure 4 Bacterial translocation experiments from Wistar rats challenged by the regional basic northeast diet (RBD) and following
lactose administration. The RBD was given ad libitum for 14 days and lactose (30 g/Kg, by gavage) was administered after the 8th day of the
experiment. Values are expressed in aerobic colony-forming units (CFU) per milligram of the spleen tissue. Statistical analyses were done using
Mann-Whitney or Kruskal-Wallis followed by Dunns’ correction. Groups: nourished control, undernourished control (UN), undernourished control
supplemented with zinc (UN + Zn), undernourished control challenged by lactose (UN + Lac), and lactose-challenged undernourished rats
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(See figure on previous page.)

Figure 5 Villin jejunal expression. A. Representative villin immunoblots from snap-frozen jejunal tissue and B. villin:3-actin ratio band densitometry
from experimental Wistar rats on the regional basic northeast diet (RBD) and following lactose administration. C. Representative jejunal villin
immuhistochemistry from experimental Wistar rats. Note increase in microvilli thickness in the undernourished group (arrows). Arrow head:
goblet cells. X400. The RBD was given ad libitum for 14 days and lactose (30 g/Kg, by gavage) was administered after the 8th day of the

experiment. Values were analyzed by one-way ANOVA and T Student.

timing and degree of intestinal maturation, change in
diets, and intestinal milieu play a role in modulating intes-
tinal inflammatory responses.

Our findings also provide evidence of the importance
of zinc supplementation during early post-natal growth.

In agreement with our findings, a study with weanling
pigs found that supplementation with zinc oxide pro-
moted a greater daily weight gain (p <0.001), compared
with the untreated group [30]. In humans, a recent meta-
analysis on preventive zinc supplementation in children
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Figure 6 Jejunal histology of Wistar rats challenged by the regional basic northeast diet (RBD) and following the lactose
administration. A. Goblet cell villus index and B. Representative jejunal histological sections from the experimental groups. Arrows indicate
goblet cells. Methyl-green, x400. The RBD was given ad libitum for 14 days and lactose (30 g/Kg, by gavage) was administered after the 8th day

of the experiment.
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highlighted significant improvements in weight gain and
linear growth over time [31].

In this study, lactose-induced diarrhea in undernour-
ished rats amplified the RBD-negative effects on weight
gain, probably due to increased fluid loss hindered by os-
motic diarrhea. In earlier studies, oral lactose (30 g/kg)
produced weight loss and osmotic diarrhea to rats, with
intestinal barrier leakage, observed by increased jejunal
permeability to horseradish peroxidase (HRP) [22].

We treated rats with zinc concomitantly with RBD-
induced malnutrition; hence, this might explain a lack of
zinc effect in improving weight gain. However, our study
reinforces the importance of zinc supplementation on
weight gain in the presence of diarrhea, suggesting the
role of zinc in intestinal fluid and electrolyte balance
and intestinal barrier integrity as mechanism to prevent
weight loss. In a meta-analysis in pooled 33 randomized
trials (27 in developing countries) conducted between
1976 and 2000, zinc supplementation results in a positive
response in linear growth and weight gain in children.
This benefit was more significant in undernourished chil-
dren, emphasizing that the positive growth response is
more readily apparent in previously stunted children [31].

The possible mechanisms by which zinc supplementa-
tion improves diarrhea include increased absorption of
water and electrolytes by the gut [32], intestinal epithelial
regeneration or restoration of function [33,34], increased
levels of enterocyte brush border enzymes [35,36] and
the enhancement of the mucosal immune response, in-
cluding cellular immunity and higher levels of secretory
antibodies [37].

One unexpected result was increased serum zinc levels
in lactose-challenged undernourished rats, since serum
zinc was higher in undernourished groups with lactose
when compared with controls (UN + Lac > UN, p <0.05
and UN + Lac + Zn > UN + Zn, p <0.05). Lactose effects
in mineral absorption were examined by Greger and col-
leagues [38], using weaned male rats, fed with different
diets containing lactose. Groups that received high lac-
tose diets showed greater bone zinc absorption, as mea-
sured by atomic absorption spectroscopy of the tibia.
The authors suggest that lactose increased zinc intestinal
absorption; however serum zinc levels were not signifi-
cantly altered [38]. In a study assessing zinc transport
through the brush border membrane vesicles of intestinal
biopsies from neonatal piglets, lactose (50 mM, 18 g/L)
significantly stimulates zinc transport with a 150% in-
crease in zinc uptake by the group that received lactose
compared with control group (p < 0.05) [39].

Lactose intestinal absorption first requires the action
of lactase (that breaks the bond between glucose and
galactose) presented in the brush border of the small in-
testine [40]. However, after weaning, when lactose is no
longer an essential component in the diet of mammals,
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there is a genetically programmed and irreversible re-
duction in lactase activity [41]. Thus, saturated oral lac-
tose administration can cause a hyperosmolar luminal
gradient, changing the jejunal epithelial permeability and
resulting in osmotic diarrhea.

In a study enrolled with eighty children aged one to
five years with moderate and severe malnutrition showed
increased TNF-a and IL-10 serum levels [42]. In con-
trast, in another study, the ability to produce the anti-
inflammatory cytokine IL-10 was found decreased in
undernourished children [43]. In Monk and Woodward
(2009), post-weaning mice that received a low-protein
diet (0.6%) showed high IL-10 serum levels compared to
controls. Despite the inadequate supply of energy, the
production of systemic IL-10 was maintained in the
undernourished groups, and, in fact, appeared higher in
the group with marasmus (p = 0.05) during the progres-
sion of weight loss [44]. In contrast, male mice with two
months of life, challenged with low-protein diet (4%, com-
pared with 20% of the standard diet) and LPS showed re-
duced synthesis of TNF-a and IL-1fB [45]. In our study,
the high percentage of carbohydrates in RBD may have
contributed to the high level of TNF-a. According to
Ferreira et al. [46], Swiss mice, with 7—8 weeks that re-
ceived high calorie diet (64% carbohydrates and 19%
protein) showed hyperglycemia, with lower glucose tol-
erance and increased level of TNF- «, both in plasma
and in the liver [46].

Zinc plays a role in acute-phase response and immune
response [47]. It is also known to accelerate IL-1f secre-
tion, which inhibits the development of BT in mice sub-
jected to shock [48]. IL-1P is associated with activation
of guanylate cyclase and uroguanylin that activate the cys-
tic fibrosis transmembrane conductance regulator (CFTR),
an important chloride secretagogue present in intestinal
glands, and therefore regulate water crossing to the intes-
tinal lumen. The anti-inflammatory and anti-IL-1f effects
of zinc in our model could have reduced CFTR activation
on the intestinal mucosa and therefore ameliorate the
lactose-induced osmotic diarrhea.

Alternatively, the change in intestinal permeability may
have been the result of a process mediated by the intes-
tinal microbiome. The bacterial population in the intes-
tinal lumen may have been changed with excess of free
carbohydrates and lactose as the carbohydrates are pre-
sented in greater quantity in RBD. These carbohydrates
may have been used as substrates for bacterial overgrowth
and generation of its products, as discussed by Bui and
colleagues [48].

Zinc supplementation may have had a beneficial effect
on the intestinal morphology by increasing the expression
of IGF-1 in the mucosa of the small intestine, resulting in
increased mucosal growth, brush border enzymatic activ-
ity, and nutrient uptake [30,49]. A recent study has shown
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the benefit of oral zinc supplementation in improving
IGF-1 plasma levels and growth in children [50]. Another
possible explanation is the role of zinc in the synthesis of
RNA and DNA. This increase can be explained by in-
creased cell proliferation and protein synthesis promoted
by zinc supplementation [51].

Villin is a structural component of microvilli forming
the brush border of the small intestine. The villin plays a
key role in maintaining the brush border organization by
binding to F-actin in a network of filaments. Studies
with knock-out animals for villin showed that although
this protein is not needed to form bundles with F-actin,
it is a major factor in the reorganization of the actin
cytoskeleton in stress conditions [52]. Our findings have
shown higher expression of villin with consequent reduc-
tions of villus height, likely to compensate for absorption
loss. Zinc supplementation increased villus height and vil-
lin expression. Zinc has previously been shown to enhance
intestinal absorptive surface in two ways: by improving vil-
lus height (shown by the increase of the villus/crypt ratio)
and by improving brush border villin expression. It has
been shown that zinc supplementation increases the num-
ber of intestinal brush border enzymes [53].

In our early studies with compound effects of undernu-
trition and C. parvum infection in neonatal mice, under-
nourished mice showed villus blunting, crypt atrophy, and
goblet cell reductions. On the other hand, undernourished
and C. parvum infected mice showed crypt depth hyper-
plasia and intestinal inflammation, and also goblet cell re-
ductions [54]. The increase in goblet cells seen with zinc
supplementation may be indicative of improved innate
responses to luminal bacterial translocation. Zinc is a
powerful regulator of this gene expression in the small
intestine [51,55]. Furthermore, there is a continuous, dy-
namic interaction between the intestinal bacterial popula-
tion and the mucosa layer. Luminal bacteria can stimulate
the expression of genes regulating mucin secretion, caus-
ing an increase in goblet cell proliferation [55].

Although our findings suggest the benefit of zinc supple-
mentation to lactose-induced osmotic diarrhea in rats, we
acknowledge that this model may not necessarily induce
the same level, mechanisms, and characteristics of the
inflammatory condition seen with different pathogenic-
driven-diarrhea in children. On the other hand, transient
lactase deficiency secondary to brush border damage from
gastrointestinal infections is a well-recognized clinical en-
tity that prolongs diarrheal symptoms in the aftermath of
acute infections [56]. Hence, amelioration of osmotic diar-
rhea may account, in part, for zinc's benefits in the setting
of secretory and inflammatory diarrhea that damage intes-
tinal villi. It is noteworthy that antimicrobial multi-resistant
E. coli was documented with zinc supplementation [57].

The clinical-based diarrheal scoring method used in
our study may have not account for the microbiome
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effects on stool characteristics. Further studies are war-
ranted to better evaluate the effects of zinc on the intes-
tinal microbiome in rats challenged by diarrhea and
undernutrition.

In addition, our data were obtained from male rats and
therefore we could not appreciate sex-specific benefits of
zinc supplementation. A recent study from our group has
shown that zinc supplementation combined with glu-
tamine and vitamin A benefit shantytown girls at risk
for enteric infections in the verbal learning testing [58].
Another study elsewhere has shown that girls suffering
from diarrhea recovered faster than boys after zinc sup-
plementation [59].

Conclusion

In summary, our data support the importance of diet in
regulating the intestinal milieu in response to inflammatory
conditions in weanling rats subjected to undernutriton and
osmotic diarrhea. This reinforces the anti-inflammatory
role of zinc in promoting homeostasis of the intestinal mu-
cosa. That has potential implications for ameliorating
environmental-driven enteropathy. Therefore, altogether
our findings support the use of zinc supplementation to
break the vicious cycle of undernutrition and diarrhea in
children and its deleterious lasting effects.
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