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Abstract

whether hydrogen has an effect on HMGB1 in liver IRI.

ischemia-reperfusion inflammation.

ischemia reperfusion.

the solution.

Background: The nuclear protein high-mobility group box 1 (HMGB1) is a key trigger for the inflammatory reaction
during liver ischemia reperfusion injury (IRl). Hydrogen treatment was recently associated with down-regulation of
the expression of HMGB1 and pro-inflammatory cytokines during sepsis and myocardial IR, but it is not known

Methods: A rat model of 60 minutes 70% partial liver ischemia reperfusion injury was used. Hydrogen enriched
saline (2.5, 5 or 10 ml/kg) was injected intraperitoneally 10 minutes before hepatic reperfusion. Liver injury was
assessed by serum alanine aminotransferase (ALT) enzyme levels and histological changes. We also measured
malondialdehyde (MDA), hydroxynonenal (HNE) and 8-hydroxy-guanosine (8-OH-G) levels as markers of the
peroxidation injury induced by reactive oxygen species (ROS). In addition, pro-inflammatory cytokines including
TNF-a and IL-6, and high mobility group box B1 protein (HMGB1) were measured as markers of post

Results: Hydrogen enriched saline treatment significantly attenuated the severity of liver injury induced by
ischemia-reperfusion. The treatment group showed reduced serum ALT activity and markers of lipid peroxidation
and post ischemia reperfusion histological changes were reduced. Hydrogen enriched saline treatment inhibited
HMGB1 expression and release, reflecting a reduced local and systemic inflammatory response to hepatic

Conclusion: These results suggest that, in our model, hydrogen enriched saline treatment is protective against liver
ischemia-reperfusion injury. This effect may be mediated by both the anti-oxidative and anti-inflammatory effects of

Keywords: Hepatology, Ischemia/reperfusion injury, Inflammatory mediators, Oxidant stress

Background

The pathophysiology of hepatic ischemia reperfusion in-
jury (IRI) is multifactorial and involves direct cellular
damage, microcirculatory failure and an inflammatory re-
sponse to tissue damage that culminates in organ dysfunc-
tion and failure [1,2]. However, studies have shown that
the oxidative stress of IRI has a causal role. Cytotoxic free
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radicals attack lipids, proteins and nucleic acids within the
cell, resulting in impaired mitochondrial function and in-
creased lipid peroxidation. Substantial evidence exists to
suggest that the initial production of reactive oxygen spe-
cies (ROS) and endogenous Damage Associated Molecu-
lar Pattern Molecules (DAMPs) have also been implicated.
The subsequent activation of several molecular and signal-
ing cascades leads to cellular damage and an imbalance
between pro and anti-inflammatory responses [3,4].

High Mobility Group Box 1 (HMGBI) is an endogen-
ous damage associated molecule known to participate in
nucleosome stabilization and regulation of transduction
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[5]. Originally implicated as a later mediator of sepsis
(6], recent work [7,8] has shown that HMGBI1 is an early
mediator of injury and inflammation in liver IRI, and
demonstrates a rapid increase in plasma levels following
tissue reperfusion. Inhibition of HMGBI1 release or ap-
plication of anti-HMGB1 or HMGBI1-receptor antagon-
ist have been shown to reduce cytokine expression and
preserve hepatic function in animal models, indicating
that manipulation of HMGB1 may be a therapeutic tar-
get in hepatic IRI [7]. HMGBI1 release following liver is-
chemia is triggered by the production of reactive oxygen
species that activate a Toll-like receptor 4-dependent
pathway mediated by calcium signaling [8]. Thus, anti-
oxidant strategies for inhibiting HMGB1 release may be
of therapeutic value in the prevention and treatment of
hepatic IRL

Administration of hydrogen gas has been reported to at-
tenuate IRI in multiple organs [9-13], and to selectively re-
duce cytotoxic Oxygen radicals, sparing other free radicals
with vital physiological roles [14]. Recently, for convenient
and safe clinical hydrogen administration, hydrogen-
enriched saline has been developed and the protective ef-
fects of Hydrogen-rich Saline against neuronal, intestinal
and myocardial [15-18] ischemia-reperfusion injuries have
already been well documented. It remains unclear, how-
ever, if hydrogen has an effect on HMGBI in liver IRL
The present study was performed to investigate the pos-
sible therapeutic effects of hydrogen-enriched saline solu-
tion on liver IRI, and test the hypothesis that this solution
confers protection against IRI by reducing oxidative stress
and inhibiting the inflammatory response through modu-
lation of HMGB1 production.

Methods

Experimental groups

The study was performed in accordance with our insti-
tutional guidelines on the use of live animals for
research and the experimental protocol was approved
by the Animal Care and Use Committee of the Sec-
ond Military Medical University, Shanghai, China. Male
Sprague-Dawley rats weighing 250-300 g were housed
in groups of 3—4 per cage in a temperature controlled
environment of 22°C and an alternating 12-h light/
12-h dark cycle. Animals were allowed free access to food
and water until the night before anesthesia. 144 rats
were randomly divided into four groups, as illustrated
in Figure 1: Sham (n=8), laparotomy and dissection
of the portal vein but not clamping; Ischemia-reperfusion
(/R group, n=8); Normal saline + /R group (control
group, n=32) and hydrogen-enriched saline + I/R
group (therapeutic group, n=96, 32 per subgroup).
Saline (10 ml/kg) or hydrogen enriched saline (2.5, 5 or
10 ml/kg) was injected intraperitoneally 10 minutes before
hepatic reperfusion.
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Hydrogen enriched gas saline preparation
Supersaturated hydrogen gas saline solution was pre-
pared by a method and with apparatus that has been
described previously [19]. Briefly, hydrogen was dis-
solved in 0.9% saline for 2 h under high pressure
(0.4 MPa) to the supersaturated level using hydrogen-
rich water producing apparatus of our own design. The
saturated hydrogen saline was stored under atmos-
pheric pressure at 4°C in an aluminum bag without
dead space. Hydrogen-rich saline was freshly prepared
every week to ensure a constant Hydrogen concentra-
tion exceeding 0.6 mM.

The model of liver ischemia-reperfusion

A model of segmental (70%) hepatic ischemia was used in
the current study as previously described [20]. Briefly, a
midline laparotomy was performed under surgical
anesthesia using intra peritoneal pentobarbital (50 mg/kg)
and 10% chloral hydrate (3 ml/kg). The portal triad (hep-
atic artery, portal vein, and bile duct) to the left anterior
and median hepatic lobes were carefully occluded using
vascular clamps to produce partial (70%) hepatic ischae-
mia. After 60 minutes the clamps were removed to allow
organ reperfusion. The abdominal wound was then closed
with sutures. Rectal temperature was maintained between
36-37°C by a heating lamp throughout all procedures.

Sample collection
The animals were given a further dose of pentobarbitone
(50 mg) before being sacrificed by exsanguination. The
harvest time points were at 2 hrs post reperfusion in the
sham and I/R group and 2, 6, 12, or 24 hours post reper-
fusion in the control and each therapeutic group re-
spectively (n =8 at each time point). The vena cava was
opened and 3-5 ml blood collected in sterile syringes
without anticoagulant and centrifuged to separate the
serum. The serum samples were stored at -20°C for later
batch analysis of hepatic function and cytokine assay.
The liver was perfused with cold saline through the
portal vein. Ischemic left hepatic tissue samples were
collected and specimens were either: 1) fixed in 10% for-
malin and embedded in paraffin for histological studies;
or 2) immediately frozen in isopentane and liquid nitro-
gen, then stored at -80°C for later analysis.

Serum alanine aminotransferase (ALT) measurement

ALT levels in serum were determined using a com-
mercially available biochemical analyser (Model 7600,
Hitachi Co, Tokyo, Japan) and expressed in IU/L.

Hepatic malondialdehyde (MDA) measurement

Hepatic MDA levels were determined using an MDA-532
Assay kit (Jiancheng, Nan Jing, China). Briefly, frozen liver
tissue was homogenized and boiled in a solution
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Figure 1 Schematic illustration of the experimental protocol. Sham: laparotomy and dissection of the portal vein but not clamping; I/R group:
Ischemia was induced in the median and left lateral hepatic lobes for 1 hr, followed by 2 hour period of reperfusion; Normal saline + I/R group: Saline
10ml/kg injected intraperitoneally 10 minutes before hepatic reperfusion, followed by 2, 6, 12, 24 hour period of reperfusion; Hydrogen-enriched saline +
I/R group: 1% hydrogen enriched saline (2.5, 5 or 10ml/kg) injected intraperitoneally 10 minutes before hepatic reperfusion, followed by 2, 6, 12, 24 hour
period of reperfusion.

containing glacial acetic acid, thiobarbituric acid and NaCl
buffer. After cooling to room temperature, the mixture
was centrifuged at 1500 rpm/min for 15 min. MDA reacts
with thiobarbituric acid forming a solution pink in colour.
MDA was quantified in the supernatant by spectropho-
tometry (UV752, Shanghai, China) at a wavelength of
532 nm using a method described by Ohkawa et al. [21].

Real-time RT-PCR

Total RNA was extracted from the liver using the Trizol
reagent (Takara Bio Inc, Tokyo, Japan) as described in
the manufacturer's instructions. TNF-a and IL-6 mRNA
were quantified in duplicate by SYBR green two-step, real-
time RT-PCR, as described by Tsung et al. [7]. Briefly, fol-
lowing removal of potentially contaminant DNA using
DNase I (Invitrogen), 1 pg of RNA from each sample was
used for reverse transcription with oligo dT (Invitrogen)
and Superscript II (Invitrogen) to generate first-strand
c¢DNA. The PCR reaction mixture was prepared using
SYBR green PCR Master Mix (Applied Biosystems) using
primers as follows: TNF-a 5'-CCCGGAATGTCGATG
CCTGAGTG-3’, and 5'-CGCCCCGGCCTTCCAAATA
AAT-3"; IL-6 5'-TCTCGAGCCCACCAGGAACG A-3’
and 5'-AGGGAAGGCAGTGGCTGTCA-3". Thermal cyc-
ling conditions were 10 min at 95°C, followed by 40 cycles
of 95°C for 15 s and 60°C for 1 min on a sequence detec-
tion system (ABI PRISM 7000; Applied Biosystems). Each
expression gene was normalized with GAPDH mRNA
using a Delta-Delta CT method.

Western blotting

Frozen liver tissues were suspended in ice-cold cell lysis
buffer (Beyotime Chemical Co, China.) that contained
50 mM Tris (pH 7.4), 150 mM NaCl, 1% Triton X-100, 1%
sodium deoxycholate, 0.1% SDS, sodium orthovanadate,
sodium fluoride, EDTA and leupeptin. Tissue was lysed by
homogenization for 30 min followed by centrifugation at
14,000 rpm for 30 min. The supernatant was collected and
protein concentration quantified using Bicinchoninic Acid
Assay (BCA) (Pierce Chemical Co., Rockford, USA) prior
to Western Blotting. Protein samples (20 pg) were dena-
tured for 4 min at 95°C in sample buffer. Electrophoresis
was performed in 10% SDS-PAGE, followed by protein
transfer to nitrocellulose membrane (Whatman Co, UK).
The membrane was blocked in 5% non-fat dry milk in
TBST (10 mM Tris-HCL, pH 7.5, 150 mM NaCl, 0.05%
Tween-20) overnight at 4°C followed by incubation in pri-
mary rabbit-anti-rat HMGBI polyclonal antibody (dilution
1:1000, Abcam, NV, USA). Using anti-rabbit IgG-HRP sec-
ondary antibody (dilution 1:15000, Jingmei, Shanghai,
China) for 1 hour at room temperature, the probed protein
was detected with the ECL chemiluminescence system
(Bestbio, Shanghai, China). Blots were quantified using
Image- Pro-Plus® Software.

ELISA for TNFa and IL-6 levels in serum

TNFa and IL-6 levels in serum were determined using a
ELISA kit (R&D system Inc, MN, USA) and expressed in
pg/ml.
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Histopathology examination and Immunohistochemistry
Small portions (0.5 cm x 0.5 cm) of liver samples were
fixed immediately in 10% buffered paraformaldehyde
(pH 7.2) and embedded in paraffin. These portions
were cut into 4 pm thick sections and stained using
hematoxylin and eosin (H & E). For the severity of hep-
atic injury, several areas of hematoxylin and eosin-
stained tissue were examined under high-powered field
microscopy for signs of liver injury including condensa-
tion of nuclei (nuclear pyknosis), loss of hepatocellular
borders, areas of necrosis, and neutrophil infiltration.
Further samples were examined after removal of paraf-
fin, re-hydration and submersion in an antigen re-
trieval buffer (10 mM sodium citrate; pH 6.0) using a
microwave oven at 95-100°C for 5 min. This was
followed by incubation at room temperature with 3%
hydrogen peroxide to deactivate endogenous peroxi-
dases. Nonspecific reactivity was blocked using 2%
BSA at room temperature for 30 minutes. Incubation
with Anti-HMGBI1 primary rabbit-anti-rat Ab (dilution
1:100; Abcam, NV, USA), Anti-HNE Ab (dilution
1:100; R&D, MN, USA) or Anti 8-OH-G-G Ab (dilu-
tion 1:100; Abcam, NV, USA) occurred overnight at
4°C. After washing with PBS, a polymer enhancer and
a polymerized anti-rabbit or anti-mouse Secondary Ig
G (dilution 1:200, Jingmei, Shanghai, China) labelled
with horseradish peroxidase was applied. HMGB1, HNE
or 8-OH-G were visualized as buffy granules in the
cytoplasm using a DAB kit (Fujian Maixin Biological
Technology, Fujian, China).

Data analysis

Data analysis was performed using the Prism 4.0 statis-
tical software package (Graph-Pad Software, San Diego,
CA). Data are expressed as mean+ SEM. Analysis of
variance (ANOVA) with Bonferroni’s multiple compari-
sons test was used for statistical analysis to compare
values among all groups. Statistical differences were con-
sidered significant if the p value was less than 0.05.

Results

Intraperitoneal injection of Hydrogen-enriched saline
protects against liver I/R injury

The histology of liver section from the sham group
appeared normal (Figure 2A). Positive control animals
showed histological evidence of tissue necrosis 2 h after
reperfusion (Figure 2B). Severe sinusoidal congestion,
neutrophil infiltration and hepatocellular necrosis was
readily seen. Histological changes of similar magnitude
were found in the saline treated group (Figure 2C). In
contrast, histological evidence of tissue damage following
hydrogen-enriched saline treatment was greatly reduced
and cell necrosis was not easily detected (Figure 2D) at 2
hours post reperfusion.
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Changes in serum ALT reflected a similar pattern. 60
minute of ischemia followed by 2 hours of reperfusion
significantly increased serum ALT level to 600+ 62.9
IU/1 compared with 38.8+2.5 IU/l found in the sham
treated animals. A similar magnitude of ALT increase
was seen following normal saline with I/R treatment.
10 ml/kg hydrogen-enriched saline treatment significantly
reduced ALT to 284.1 + 34.0 IU/I after 2 hours of reperfu-
sion (p<0.05). However, 2.5 and 5 ml/kg hydrogen-
enriched saline did not significantly reduce ALT rise
(Figure 2E).

At each time point, 10 ml/kg Hydrogen-enriched saline
treatment significantly reduced ALT rise, as compared to
treatment with 10 ml/kg 0.9% saline (Figure 2F).

Hydrogen-enriched saline protects against I/R-induced
peroxidation injury

Using Immunohistochemistry, few HNE positive staining
cells were seen in the naive control (Figure 3A) while
HNE expression was readily observed in the I/R group
(Figure 3B). The immunoreaction was notably reduced
in the hydrogen enriched saline treatment group (Figure 3C),
with a similar effect seen for 8-OH-G immunoreactivity
(Figure 3D-F).

The number of terminal positive cells was counted in
six random highpowered (1 x400) microscopic fields
and the oxidative index was defined as the number of
positive cells with brown precipitation at cellular mem-
brane or nuclear in every 100 counted cells using Image-
Pro-Plus Software.

MDA levels increased significantly in liver tissue ob-
tained from normal saline treated animals. However,
hydrogen-enriched saline treatment maintained the MDA
content at a significantly lower level at all time points,
when compared to those in the I/R group (p<0.05)
(Figure 3H).

Hydrogen-enriched saline prevents I/R-induced over-expression
and release of HIGB1

Liver I/R increases HMGBI levels both locally and sys-
temically [7,8]. To determine if hydrogen-enriched saline
can modulate this process, immunohistochemistry and
western blotting for HMGBI1 was performed on both
liver sections and on serum obtained from animals in
each treatment group.

Immunohistochemistry showed that in sham control
treated rats, no significant HMGB1 was detected in hep-
atocyte nucleus or cytoplasm (Figure 4A). The I/R group
showed increased levels of HMGBLI located within both
hepatocyte nucleus and cytoplasm (Figure 4B). The
hydrogen-enriched saline treatment group showed re-
duced the I/R-induced HMGBI over-expression and shut-
tling (Figure 4C). These changes in HMGBI expression
were confirmed by western blot (Figure 4D). Additionally,
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Figure 2 Hydrogen-enriched saline treatment protects liver against I/R injury. Male Sprague Dawley rats were subject to partial warm liver
ischemia/reperfusion injury with intraperitoneal injection of either normal saline or hydrogen enriched saline at dose of 2.5, 5 or 10 ml/kg 10
minutes before reperfusion. Liver damage was assessed 2 hours after reperfusion with paraffin sections stained with H&E (original magnification x
200) and serum ALT level measurement. An example of microphotograph from (A) a sham-operated animal, (B) an animal undergoing 60
minutes of ischemia followed by 2 hours of reperfusion without any treatment, (C) with normal saline (10 ml/kg), or (D) hydrogen-enriched
saline (10 ml/kg). (E) The dose-response (2.5-10 mi/kg) of hydrogen-enriched saline treatment and 10 ml/kg saline treatment on serum ALT
release. Sham-operated animals underwent laparotomy only. Mean + SEM (n =8), *p < 0.05. (F) The time-course of liver damage assessed with
ALT measurement at 2, 6, 12 and 24 hours after reperfusion with normal saline or hydrogen enriched saline treatment (10 ml/kg).
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serum levels of HMGB1 were increased in the saline
treated group, but were significantly lower in the hydrogen-
enriched saline treated group (Figure 4E).

Hydrogen-enriched saline decreases liver I/R-induced
inflammatorycytokine production

Inflammatory cytokines play a critical role in the patho-
physiology of liver I/R injury. We used RT-PCR to meas-
ure the level of TNF-a and IL-6 gene transcription in
the liver with ELISA to measure gene translation prod-
ucts in the serum. TNF-a and IL-6 mRNA was expessed
significantly less in the in the livers of hydrogen-
enriched saline treated animals, as compared to those
treated with normal saline at 2, 6, 12 and 24 hours after
reperfusion (Figure 5A and B). Similarly, serum levels
of TNF-a and IL-6 were significantly lower in the
hydrogen-enriched saline treated animals as compared
to the normal saline group (Figure 5C, D).

Discussion
In this study we have shown that the administration of
hydrogen-enriched saline prior to the reperfusion stage in a
surgical model of partial ischemia-reperfusion injury atten-
uates hepatic damage and dysfunction. This is associated
with reduced HMGBL1 and pro-inflammatory cytokine pro-
duction. We hypothesise that this is secondary to reduced
ROS generation and oxidative stress in the hydrogen-
enriched saline treatment group.

Although reperfusion after sustained ischemia salvage
tissue, the reperfusion itself paradoxically induces injury

(“reperfusion injury”). It is now well recognized that a
protective stimulus can be applied at the onset of reper-
fusion, thereby attenuating reperfusion injury. This is
known as postconditioning. It has been investigated
most extensively in the heart but has also been described
in the liver [22]. The aetiology is complex and multifac-
torial involving tissue damage secondary to ATP deple-
tion during hypoxia, followed by further cell injury
occurring after the resolution of hypoxia and return of
perfusion [23]. Although controversial, both stages are
considered to independently mediate tissue damage via
the production of directly injurious reactive oxygen spe-
cies (ROS) [24], as well as substances that modulate a
local and systemic inflammatory response.

Oxidative stress can be defined as a disturbance in the
balance between the production of ROS (with strong cel-
lular oxidizing potential) and antioxidant defences [25].
It plays an important role in the pathogenesis of various
hepatic disorders [26], including I/R injury. ROS gener-
ated intracellularly include the superoxide anion radical
(027), hydrogen peroxide (H»O,), hypochlorous acid
(HCIO), hydroxyl radical (OH’), and singlet oxygen
(*O,). These agents are produced as a consequence of
normal mitochondrial processes [27], and some behave
as endogenous intracellular signaling molecules at low
concentrations. However, the strongest of the oxidant
species, the hydroxyl radical (‘OH), is highly toxic and is
not formed by any enzymatic process, but rather from
H,O, in the presence of divalent metal ions via the Fen-
ton reaction. It reacts almost instantaneously with many
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cellular components, including the polyunsaturated fatty
acids of membrane lipids, nucleic acids, and proteins.
No known detoxification system exists and scavenging
(‘OH) is critical to prevent nuclear DNA and protein
disorganization as well as lipid peroxidation [28]. Lipid
peroxidation can disrupt cellular membrane integrity
leading to changes in its fluidity and permeability [29].
In addition, lipid peroxides degrade to reactive aldehyde
products, including malondialdehyde (MDA) and 4-
hydroxyl-2-nonenal (HNE) [30,31].

The hydrogen molecule has antioxidant properties. It
has been demonstrated previously that liver IRI can
trigger a cascade of innate-dominated pro-inflammatory
immune responses that activate an adaptive immune
response, culminating in systemic inflammation [3,32].
TLR4 activation by endogenous and exogenous ligands
has been confirmed to stimulate the production of
pro-inflammatory cytokines including TNF-a and IL-6.
These mediate cell death and can further enhance the
pro-inflammatory response [33,34]. Indeed, recent studies
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have shown that endogenous TLR4 ligands, including
HMGBI generated during liver IRI, can trigger a local
inflammatory reaction that culminates in hepatocellu-
lar damage. Similarly, blocking HMGB1 production
and release can effectively minimize liver damage from
ischemia [7].

However, recent studies using hydrogen treatment in
liver IRI have mainly focused on its anti-oxidative rather
than anti-inflammatory action, with little published work
having explored HMGBL1's role in this process [10]. We
have shown in the current study that hepatic IR injury
triggers the release of HMGBI in liver tissue and its sub-
sequent release into serum, and that intraperitoneal
hydrogen-rich saline can modulate this.

There is increasing evidence that extracellular HMGB1
acts as an inflammatory mediator in ischemia, hemorrhagic
shock, noninfectious hepatitis, and peripheral tissue
trauma [35,36]. HMGBI is actively secreted by activated
macrophages [37] and passively released through the por-
ous membrane of cells undergoing necrosis. It has been
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Figure 3 Hydrogen-enrich saline inhibited hepatic peroxidation induced by ischemia/reperfusion. Male Sprague Dawley rats were
subjected a partial warm liver ischemia/reperfusion injury with intraperitoneal injection of either normal saline or hydrogen enriched saline at
dose of 10 ml/kg 10 minutes before reperfusion. Liver damage was assessed 2 hours after reperfusion using immunohistochemistry staining of
paraffin sections for HNE or 8-OH-G (original magnification x 400), and hepatic tissue MDA measurement. An example of microphotograph
stained for HNE (brown precipitation at cellular membrane) and nucleus (blue) from (A) a sham-control, (B) 2 after reperfusion with normal saline,
or (C) hydrogen enriched saline treatment. An example of microphotograph stained for 8-OH-G (brown precipitation at nucleus) and nucleus
(blue) from (D) a sham-control, (E) 2 hours after reperfusion with normal saline, or (F) hydrogen enriched saline treatment. (G). Percentage of
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peroxidative cells was significantly lower in 10 ml/kg hydrogen enriched saline treatment in comparsion of 10 ml/kg saline treatment. (*P < 0.05)
(H) MDA contents obtained from liver sections subjected to reperfusion for 2, 6, 12, and 24 hours after 60 minutes ischemia with normal saline or
hydrogen enriched saline treatment. Sham-operated animals underwent laparotomy only. Mean + SEM (n = 8), *p < 0.05.
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Figure 4 Hydrogen-enriched saline prevents liver ischemia/reperfusion-induced HMGB1 over-expression and release. Male Sprague
Dawley rats were subject to partial warm liver ischemia/reperfusion injury with either intraperitoneal injection of normal saline or hydrogen
enriched saline at a dose of 10 ml/kg, 10 minutes before reperfusion. HMGB1 over expression in the liver were assessed by immunostaining and
western blot. Serum levels were assayed by western blot. Examples of microphotographs stained for HMGB1 (seen as a brown precipitation both
within the cytoplasm and nucleus, original magnification x 400): (A) sham-control, (B) 2 hours after reperfusion with normal saline, or (C) 2 after
reperfusion with hydrogen enriched saline. (D) Western blot analysis for HMIGB1 was performed on both liver sections and (E) serum samples
collected from rats 2, 6, 12 and 24 hours after reperfusion. Sham-operated animals underwent laparotomy only. Mean + SEM (n =6); *p < 0.05.
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Figure 5 Hydrogen-enriched saline attenuates TNFa and IL-6 mRNA expression in the liver and reduces serum TNFa and IL-6 levels in
serum following liver ischemia reperfusion injury. Male Sprague Dawley rats were subject to partial warm liver ischemia/reperfusion injury
with intraperitoneal injection of either normal saline or hydrogen enriched saline at dose of 10 mi/kg 10 minutes before reperfusion. (A) TNF-a
and (B) IL-6 mRNA expression in the liver were measured by quantitative RT-PCR analysis at 2, 6, 12 and 24 hours after reperfusion and
compared to the baseline levels prior to IRI. (C) Serum TNF-a and (D) IL-6 proteins levels were assessed by enzyme-linked immunosorbent assay.
Mean + SEM (n =6 -8); *p < 0.05.
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shown to mediate lethality in sepsis models [38,39]. Recent
studies show that HMGBI is mobilized and released in re-
sponse to hypoxia, suggesting that the actions in IR occur
before cell death [8]. HMGBI release from cultured hepa-
tocytes is an active process regulated by ROS including
H,0O,, Furthermore, HMGBI release from hepatic cells can
occur without causing measurable cell death, and HMGB1
release is mediated by NADPH oxidase or TLR4 signal
transduction in a ROS-dependent manner [8]. However,
the exact mechanism of ROS regulating HMGBI release
remains unknown. In our study, the results of immuno-
histochemistry showed that HMGB1 was not detected
in the sham group, while it is found both in nucleus
and cytoplasm of hepatocytes induced by ischemia re-
perfusion. Meanwhile, much less HMGB1 was detected
in hydrogen-enriched saline treated animals compared
with saline group. The results indicated that the "OH
attacked the DNA and lead to exposure antigen recog-
nition site of HMGBI1. The freed HMGB1 moved from
nucleus to cytoplasm through increased permeability
nuclear membrane induced by peroxidation. Finally,
they were released to extracellular and acted as an initi-
ator of inflammation. Therefore, our results suggest
that, during hepatic I/R, systemic HMGBI1 levels are as-
sociated with the degree of hepatocellular peroxidation,
indicating that HMGBL1 is a marker of cell damage that
reflects the integrity of cellular structure.

Hydrogen has a powerful ability to penetrate biomem-
branes and diffuse into the cytosol, mitochondria and
nucleus thereby effectively reducing the hydroxyl radical,
the most cytotoxic of reactive oxygen species. Its ability
to protect nuclear DNA and cell membrane suggests
that it can reduce oxidative stress induced cellular injury
and the subsequent inflammatory response [14]. Hydro-
gen gas cannot be produced by the human body since
mammalian cells lack the hydrogenase activity. However,
it is continuously produced by colonic bacteria in
the body and normally circulates in the blood, so it is
physiologically safe for humans to inhale hydrogen at a
relatively low concentration. Medical use of hydrogen in
the past was limited to test the effects of antibiotic ther-
apy. Previously, other therapeutic strategies for scaven-
ging reactive oxygen species seemed promising in
animal models but most of them failed in human clinical
trials [18]. This study demonstrates that hydrogen-rich
saline protects the liver against cellular injury and organ
dysfunction through a mechanism that reduces the impact
of oxidative stress and associated inflammation. Its ease of
preparation and administration, and its favourable safety
profile make hydrogen-enriched saline an attractive and
potentially clinically useful tool.

Certain limitations to our study should be considered.
The intraperitoneal administration of our treatment agent
is not a clinically used modality, although intravenous
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administration has been safely employed by other re-
searchers in animal models of organ I-R (9). In addition,
blood and tissue levels of hydrogen were not determined
so we do not know the bioavailability of this route of
administration.

Conclusions

In summary, this study documents the ability of
hydrogen-enriched saline to protect against hepatic I/R
in an animal model. This protection was associated with
a reduction in both oxidative stress and inflammatory
injury and is in contrast to the lack of protective effect
seen after saline treatment. We have shown reduced per-
oxidation injury secondary to oxidative stress, and at-
tenuation of the release of inflammatory mediators. We
believe that this is an important association which merits
further investigation of the possible underlying mecha-
nisms since hydrogen-enriched saline may have potential
as a novel antioxidant and anti-inflammatory agent in
the clinical setting.
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