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Abstract

proteins and increase epithelial permeability.

Background: This study aimed to investigate the mechanism of the probiotic VSL#3 in acute alcoholic intestinal
injury, and evaluate the effect of VSL#3, glutamine VSL#3+glutamine and heat-killed VSL#3 therapy in a rat model.

Methods: Six- to eight-week-old male wild-type rats were divided into seven groups. To establish the acute alcohol
liver disease model, rats received three doses of corn starch dissolved in PBS/40% alcohol administered intra-
gastrically every 12 hours. Treatment groups received an intra-gastric dose of VSL#3, Glutamine, heat-killed VSL#3, or
VSL#3+Glutamine 30 minutes prior to alcohol administration. The placebo group was treated with PBS prior to
alcohol administration. TNFa and endotoxin in plasma was measured by ELISA and Tachypleus Ameboctye Lysate
assays, and electron microscopy, Western blotting, and reverse transcription polymerase chain reaction were used
to identify the mechanisms of VSL#3 in the regulation of epithelial permeability.

Results: First, compared with control group, endotoxin and TNFa in alcohol group was obviously high. At the same
time, in VSL#3 group,the expression of endotoxin and TNFa obviously lower than the alcohol group. And the
trends of the expression of tight junction proteins in these groups were reversed with the change of endotoxin
and TNFa. Second, compared the groups of VSL#3 with glutamine,VSL#3+glutamine and heat-killed VSL#3,we found
that both VSL#3 and heat-killed VSL#3, glutamine were as effective as VSL#3+glutamine in the treatment of acute
alcohol liver disease, the expression of endotoxin and TNFa were lower than the alcohol group, and tight junction
proteins were higher than the alcohol group whereas the expression of tight junction proteins were higher in
VSL#3 + glutamine group than either agent alone, but have no significant difference.

Conclusion: We conclude that VSL#3 treatment can regulate the ecological balance of the gut microflora,
preventing passage of endotoxin and other bacterial products from the gut lumen into the portal circulation and
down-regulating the expression of TNFa, which could otherwise down-regulate the expression of tight junction
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Background

Alcohol consumption is associated with the development
of various medical disorders including alcoholic liver dis-
ease (ALD) and pancreatitis. Several studies have shown
that the phenomenon of short-term excessive drinking is
more common than addiction to alcohol, and that there is
not always a dose-effect relationship between liver injury
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and alcohol, environmental, and genetic factors [1,2]. There
are currently no effective treatments for these diseases re-
lated with alcohol and, other than abstention, no preventive
measures. The study presented here describes a potential
new target for preventing alcoholic intestinal injury.

There is increasing evidence that the intestinal barrier
plays a central role in the initiation of alcohol-induced
tissue damage, and this role is most convincing for liver
injury. Disruption of the intestinal barrier allows endo-
toxin and other bacterial products in the gut lumen to
pass into the portal circulation and cause hepatic
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inflammation and the development of alcoholic stea-
tohepatitis (ASH). This in turn can lead to alcoholic cir-
rhosis and liver failure, which is a causal factor in the
development of alcoholic endotoxemia and hepatitis.
Keshavarizian [3] found that intestinal barrier dysfunc-
tion was observed in alcoholics who also had liver dis-
ease. The intestinal barrier is formed by the epithelial
cells and the tight junctions (TJs) between them [4], and
provides barrier functions between luminal triggers and
the host. Intestinal barrier dysfunction may lead to in-
creased uptake of luminal antigens that promote muco-
sal inflammation.

The human gut harbors a large and dynamic bacterial
community which plays a major role in human health.
There are more than 1,000 species of microorganisms in
the human intestine. The majority of these are anaerobic
bacteria, such as clostridium, lactobacillus, Escherichia
coli and bifidobacterium, and the total number has been
estimated as more than 10'*—ten times higher than the
number of human cells [5,6]. Under normal circum-
stances, these maintain a balanced state and interact
with the host, with profound effects on the host’s ability
to fight against infections. Previous studies have demon-
strated that following damage to the liver there is re-
duced blood flow through the gut-liver axis, altered bile
secretion, and increased epithelial permeability, leading
to disruption of both the mucosal barrier and the eco-
logical balance of the gut microflora [7-10]. Previous
studies have also found that lactobacillus is significantly
reduced, and enterobacter significantly increased [11].

Probiotics are non-pathogenic beneficial flora that act to
regulate and maintain a stable intestinal environment and
promote micro-ecological balance [12]. VSL#3 is a pro-
biotic mixture which has been frequently referred to in the
literature, and contains live lyophilized Bifidobacterium
breve, Bifidobacterium longum, Bifidobacterium infantis,
Lactobacillus acidophilus, Lactobacillus plantarum, Lacto-
bacillus paracasei, Lactobacillus bulgaricus and Streptococ-
cus thermophilus.

In this study, we investigated the protective effect of
VSL#3 in alcoholic intestinal injury using an animal
model. We found that VSL#3 treatment can reduce co-
lonic paracellular permeability and increase the expres-
sion of tight junction proteins (ZO-1 and occludin).
Furthermore, the intestinal barrier prevents endotoxin
and other bacterial products passing from the gut lumen
into the portal circulation, and thereby protects against
hepatic inflammation.

Methods

Rats and treatments

Six- to eight-week-old male WT rats (either littermates or
age-matched, 200 + 10 g at the start of the experiment) were
obtained from the Experimental Animal Center, China
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Medical University. All rats in the study were used strictly in
accordance with the National Institutions of Health Guide
for the Care and Use of Laboratory Animals. This research
was approved by the China Medical University Animals
Committee (Approval Number: 2011-1538). They were
divided into seven groups, and eight rats in each group.

Rats were deprived of food for 12 hours before induc-
tion of acute alcoholic liver injury. For the experiments,
rats were divided into seven groups.

In the control group, eight rats were treated twice
daily with corn starch which was dissolved in 200 pl of
PBS and administered via a gastric tube.

In the alcohol group, eight rats were given 40% alcohol
(5 g/kg body weight) through stomach feeding every
12 hours a total of three times.

In the VSL#3, glutamine, heat-killed VSL#3 and
VSL#3 + glutamine groups, rats were respectively given
VSL#3 (0.6 g/kg body weight), glutamine (0.3 g/kg body
weight), heat-killed VSL#3 (0.6 g/kg body weight) or a
combination of VSL#3 and glutamine (VSL#3 0.6 g/kg
body weight, glutamine 0.3 g/kg body weight) through
stomach feeding 30 minutes prior to administration of
alcohol as described above.

In the placebo group, rats were treated with PBS
through stomach feeding before induction of alcohol
liver injury.

The entire small intestine was collected, formalin
fixed, and paraffin-embedded.

Assessment of small intestinal tight junction proteins by
electron microscopy

A standard fixation procedure was used for conventional
thin section electron microscopy. The procedure involved
incubation with OsO4 alone (1 or 2% in phosphate buffer)
at 0°C for 30 min. After fixation, the small intestine was
washed extensively in Veronal acetate buffer (90 mm,
pH 6.0), stained by incubation at 0°C for 60 min in
uranylmagnesium acetate (0.5%) in the same bulffer,
washed again, dehydrated, and embedded. Thin sections
were cut at 60 nm with a diamond knife and stained
with uranyl acetate and lead citrate for viewing on a
200 CX transmission electron microscopeat 80 kV. High-
magnification pictures (x10,000) were taken to evaluate
the ultrastructure of small intestinal tight junctions.

Measurement of TNF-a, endotoxin in plasma
TNE-a levels in the media were assessed using a rat
TNF-a ELISA according to the manufacturer’s instruc-
tions. TNF-a concentrations were determined using a
standard and values were normalized to total DNA
present in the well using a DNA quantification kit.
Endotoxin was measured using the Tachypleus Ame-
bocyte Lysate assay. Add 100 pl of endotoxin test solu-
tion, endotoxin standard solution and samples into each
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hole of the micro plate and placed it tachypleus amebo-
cyte lysate, 37°C for 10 minutes. And then add 100 pl
tachypleus amebocyte lysate into each of them, read the
board at the wavelength of 340 mm once every
30 seconds.

Western blot analysis

Using snap-frozen small intestine specimens with histolog-
ically intact epithelium, we stripped the mucosa from the
underlying submucosal tissue, homogenized and sonicated
it, and transferred it into ice-cold lysis buffer with a prote-
ase inhibitor cocktail for 60 min. Lysates were centrifuged
and the protein content of the supernatant was determined
using the BCA protein assay kit. Depending on the anti-
body used, equivalent protein concentrations of 10-75 pg
were loaded in each lane of an SDS—polyacrylamide gel.
Electrophoretically separated samples were transferred to
an immobilon transfer membrane. Membranes were incu-
bated with the respective primary antibodies and a corre-
sponding peroxidase-conjugated secondary antibody. Blots
were visualized by chemiluminescence using immobilon
Western Chemiluminescent HRP substrate. After detection
of specific tight junctions, all membranes were stripped
with Restore Western Blot Stripping Buffer, and an immu-
noblot for B-actin was performed to ensure equal protein
loading in each lane. Densitometry was performed for each
protein detected in each group.

RNA isolation and reverse transcription-polymerase chain
reaction

All of the plasmids were cloned using PCR. RNA extrac-
tion, reverse transcription polymerase chain reaction
(RT-PCR), microarray. Primer sequences used in the RT-
PCR analyses are presented in supporting information.
The following primer pairs were used for amplification:

occludin (sense, 5-GCTATGAAACCGACTACACGAC
A-3'; antisense, 5'-ACTCTCCAGCAACCAGCATCT-3).
Z0-1 (sense, 5'-AGGCTATTTCCAGCGTTTTGA-3'
antisense, 5-AATCCTGGTGGTGGTACTTGC-3").

Statistical analysis

All data are expressed as mean + SD and were analyzed
using one-way analysis of variance. P <0.05 was consid-
ered statistically significant.

Results and discussion

Results

Evaluation of tight junctions using electron microscopy

We studied tight junctions in the small intestine using
electron microscopy to establish an index of loss of intes-
tinal barrier integrity. Acute alcohol administration signifi-
cantly disrupted the architecture of tight junctions of the
small intestine. Supplementation with VSL#3, glutamine
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or heat-killed VSL#3 significantly protected the cyto-
architecture of the intestinal barrier, and VSL#3 + Glutam-
ine showed a more significant protective effect on tight
junctions than the other treatment groups (Figure 1).

Endotoxin and TNFa in plasma

We assessed the expression of TNFa in plasma in the
seven experimental groups using ELISA. Compared with
the control group (174.69 +20.68), the expression of
TNFa was higher in the alcohol group (383.08 +20.21).
In the glutamine (211.01 +25.87), VSL#3 (201.54 +
26.56), and heat-killed VSL#3 (197.85+ 17.97) groups
the expression of TNFa was significantly lower than in
the alcohol group, and there was no significant differ-
ence between these groups. The expression of TNFa in
the VSL#3 + glutamine group (195.82 + 17.19) was lower
than in the other three treatment groups, but this differ-
ence was not significant (Figure 2).

We assessed the level of plasma endotoxin in the seven
experimental groups using the Tachypleus Amebocyte
Lysate assay. Plasma endotoxin was higher in the alcohol
group (1.57+£0.11) compared with the control group
(0.19 £ 0.10). In the glutamine (0.33 £ 0.11), VSL#3 (0.34 +
0.10), and heat-killed VSL#3 (0.36 £ 0.13) groups, plasma
endotoxin was significantly lower than in the alcohol
group, and there was no significant difference between
these groups. The level of plasma endotoxin in the
VSL#3 + glutamine group (0.31 +0.13) was lower than
the other three treatment groups, but this was not sig-
nificant (Figure 3).

Tight junction mRNA and protein expression
Tight junction mRNA and protein expression was ana-
lyzed in the small intestine of the seven groups by RT-
PCR and western blotting respectively. The trend of tight
junction protein expression was the opposite of the change
in endotoxin and TNFa. Specifically, in the alcohol group
(occludin mRNA: 0.19 +£0.04, occludin protein: 0.34 +
0.06; ZO-1 mRNA 0.19 + 0.05, ZO-1 protein: 0.19 + 0.03),
expression of mRNA and protein for both occludin and
ZO-1 was dramatically lower than the control group
(occludin mRNA: 0.56 +0.11, occludin protein: 0.79 +
0.08; ZO-1 mRNA 0.95 + 0.10, ZO-1 protein: 0.48 + 0.04).
In the glutamine (occludin mRNA: 0.41 + 0.03, occludin
protein: 0.60 + 0.08; ZO-1 mRNA 0.66 + 0.08, ZO-1 pro-
tein: 0.34 +0.05), VSL#3 (occludin mRNA: 0.42 + 0.04,
occludin: 0.61+0.08; ZO-1 mRNA: 0.65+0.09, ZO-1:
0.34+0.05), and heat-killed VSL#3 (occludin mRNA:
0.42 + 0.04, occludin protein: 0.59 +0.08; ZO-1 mRNA:
0.64 £ 0.08, ZO-1: 0.33+0.04) groups the expression of
tight junction proteins was significantly higher than in
alcohol group, and there was no significant difference be-
tween these groups. The expression of tight junction pro-
teins in the VSL#3 + glutamine group (occludin mRNA:
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Figure 1 The expression of tight junctions and microvilli of
small intestine cell under electron microscopy. (A) The
expression of tight junctions and microvili in control group; (B) The
expression of tight junctions and microvili in alcohol group; (C) The
expression of tight junctions and microvili in glutamine group; (D)
The expression of tight junctions and microvili in VSL#3 group; (E)
The expression of tight junctions and microvili in VSL#3+glutamine
group; (F) The expression of tight junctions and microvili in
placebo group.

0.45 £ 0.05, occludin protein: 0.62 +0.08; ZO-1 mRNA:
0.67 +0.07, ZO-1 protein: 0.35 £ 0.05) was higher than the
other three treatment groups, but this was not significant
(Figures 4, 5, 6 and 7).

Discussion
Recently, the role of the gut microbiota in maintaining hu-
man health has attracted increasing attention. However,
the relationship between gut microbiota and liver disease
has not been extensively investigated. The growing under-
standing of the functional role of human gut microbiota is
showing that this enormous microbial population is in-
strumental in the control of host energy [13-17]. The hu-
man gut microbiota is a complex bacterial community
that is relatively stable over time [18-20]. Disruption of
the microbiota can increase the risk of several health
complications, including loss of colonization resistance
against bacterial pathogens [21] and predisposition to
autoimmune and allergic diseases [22]. Because the gut is
a reservoir for microorganisms and contains more than
1,000 bacterial species, bacterial translocation from the
gut due to dysbiosis of the gut microbiota and gut barrier
failure may contribute to these infections [23,24]. Mem-
bers of the Enterobacteriaceae family, Enterococcus spp.
and the Bacteroides-Prevotella group are potentially patho-
genic bacteria, while Lactobacillus, Bifidobacterium and
F. prausnitzii are considered beneficial bacterial species for
human well-being. Dysbiosis of the gut microbial ecosystem
might be associated with the development of endotoxemia
and eventually contribute to infections of liver, and TNFa
is one of the most important mediators of inflammation.
Our previous study has shown that low grade intestinal
inflammation induced by administering wild-type (WT)
rats with alcohol results in liver injury. Impairment of the
intestinal barrier function is associated with loss of tight
junction proteins, including occludin and ZO-1. Tight
junctions are the major determinants of paracellular per-
meability. Disruption of the intestinal barrier would allow
endotoxin and other bacterial products in the gut lumen to
pass into the portal circulation and thus potentially cause
hepatic inflammation and the development of alcoholic
steatohepatitis (ASH). This in turn would lead to alcoholic
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Figure 2 The expression of TNFa in each group measured by ELISA. *P < 0.05 versus alcohol group.

cirrhosis and liver failure, which is a causal factor in the de-
velopment of alcoholic endotoxemia and hepatitis.
Considering all of these possibilities, in the present
study we used a rat model to investigate the effects of
VSL#3 administration, to explore its mechanism in the
pathogenesis of acute alcohol liver disease, and to com-
pare the effects of VSL#3 with those of glutamine, a com-
bination of VSL#3 + glutamine, and heat-killed VSL#3.

The therapeutic mechanism of VSL#3 in acute alcohol
intestinal disease

The present study was designed to investigate whether
VSL#3 could prevent liver injury by decreasing epithe-
lial permeability. To achieve this we employed a model

in which WT rats were fed with VSL#3 before adminis-
tration of alcohol. Our results demonstrate that expres-
sion of the tight junction proteins ZO-1 and occludin
was decreased in acute alcohol liver disease, and VSL#3
treatment suppressed this effect by regulating the eco-
logical balance of the gut microflora, preventing endotoxin
and other bacterial products in the gut lumen from pass-
ing into the portal circulation and down-regulating the ex-
pression of TNF«, which could otherwise down-regulate
the expression of tight junction proteins and increase epi-
thelial permeability, then endotoxin and other bacterial
products pass from the gut lumen into the portal circula-
tion, and lead to hepatic inflammation. Our results there-
fore suggest that probiotic-induced protection of epithelial
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Figure 3 Levels of endotoxin in each group measured using the Tachypleus Amebocye Lysate assay. *P < 0.05 versus alcohol group.
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Figure 4 Western blots of tight junction proteins (occludin and
Z0-1). 1. control group; 2. alcohol group; 3. Glutamine group; 4.
VSL#3 group; 5. VSL#3 + Glutamine group; 6. heat-killed VSL#3 group;
7. placebo group.
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Figure 6 RT-PCR to measure expression of mRNAs encoding
tight junction proteins (occludin and ZO-1). 1. control group; 2.
alcohol group; 3. Glutamine group; 4. VSL#3 group; 5. VSL#3 +
Glutaminegroup; 6. heat-killed VSL#3 group ; 7. placebo group.
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Figure 5 Western blot densitometry of tight junction protein (occludin and ZO-1) levels in each group. (A) Western blot densitometry of
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Figure 7 PCR densitometry of mRNA encoding tight junction proteins (occludin and ZO-1) in each group. (A) RT-PCR densitometry of
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barrier function is through prevention of changes in tight
junction protein expression.

Assessing the effect of VSL#3, glutamine, VSL#3 + glutamine
and heat-killed VSL#3

Glutamine is a conditionally essential amino acid with im-
munomodulatory properties. It has a protective role in in-
testinal injury models, and may regulate proliferation of
intestinal epithelial cells by modulating responsiveness to
growth factors [25,26]. Small intestinal mucosa becomes
atrophic when the gut is deprived of glutamine, for example
during total parenteral nutrition [27]. Glutamine depletion
can increase permeability of the gut which promotes trans-
location of luminal bacteria and toxins [28]. Glutamine has
been shown to protect intestinal epithelial cells during
physiological stress because it is required for stress-induced
heat shock protein expression [29,30] such as in experi-
mental enterocolitis [31,32]. Glutamine most likely protects
the gut via mucosal healing and a decrease in bacterial
translocation [33]. Moreover, some studies have reported
that glutamine down-regulated the intestinal inflammatory
response in experimental models [31,34-36] by modulating
the nuclear factor-kB (NF-«B) pathway [37-40].

The aim of the study was therefore to assess the ef-
fects of glutamine and VSL#3, either alone or in com-
bination, on acute alcohol liver disease, and to compare
the effects of VSL#3 and heat-killed VSL#3. We found
that both VSL#3 and heat-killed VSL#3 were as effective
as glutamine in the treatment of acute alcohol liver dis-
ease, whereas the combination of VSL#3 and glutamine
therapy efficacy was more effective than either agent
alone (although it showed no significant difference
compared with the other groups).

Conclusions

The probiotic mixture VSL#3 and heat-killed VSL#3
were as effective as the traditional agent glutamine
in rats with experimental acute alcohol liver disease,
whereas the combination of VSL#3 and glutamine was
more effective than either alone. All of these treatments
can prevent endotoxin and other bacterial products in
the gut lumen from passing into the portal circulation,
decrease the production of TNF« and increase the ex-
pression of tight junction proteins, thus reducing para-
cellular intestinal permeability.
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