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Abstract

Background: To evaluate the prevalence of more virulent H. pylori genotypes in relatives of gastric cancer patients
and in patients without family histories of gastric cancer.

Methods: We evaluated prospectively the prevalence of the infection by more virulent H. pylori strains in 60
relatives of gastric cancer patients comparing the results with those obtained from 49 patients without family
histories of gastric cancer. H. pylori status was determined by the urease test, histology and presence of H. pylori
ureA. The cytotoxin associated gene (cagA), the cagA-EPIYA and vacuolating cytotoxin gene (vacA) were typed by
PCR and the cagA EPIYA typing was confirmed by sequencing.

Results: The gastric cancer relatives were significant and independently more frequently colonized by H. pylori
strains with higher numbers of CagA-EPIYA-C segments (OR = 4.23, 95%CI = 1.53–11.69) and with the most virulent
s1m1 vacA genotype (OR = 2.80, 95%CI = 1.04–7.51). Higher numbers of EPIYA-C segments were associated with
increased gastric corpus inflammation, foveolar hyperplasia and atrophy. Infection by s1m1 vacA genotype was
associated with increased antral and corpus gastritis.

Conclusions: We demonstrated that relatives of gastric cancer patients are more frequently colonized by the most
virulent H. pylori cagA and vacA genotypes, which may contribute to increase the risk of gastric cancer.
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Background
Helicobacter pylori, a Gram-negative bacterium that
infects the stomach of approximately half the world’s
population, is associated with the development of gastro-
duodenal diseases including gastric and duodenal peptic
ulcer, distal gastric adenocarcinoma and mucosa-
associated lymphoid tissue lymphoma [1]. It is estimated
that individuals infected with H. pylori have more than
two-fold increased risk of developing gastric cancer
compared with non-infected ones [2] although Japanese
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studies might suggest that nearly all gastric cancer is
related to Helicobacter [3]. Why only 1 to 5% of H. pylori-
infected persons develop gastric cancer remains unknown
and it seems to depend on the relationship between envir-
onmental, host genetics and bacterial virulence factors.
Several studies have shown an increased risk of devel-

oping gastric cancer in relatives of patients with the dis-
ease [2,4]. Similarly, an increased prevalence of
precancerous gastric lesions has been observed in rela-
tives of gastric cancer patients [5]. However, molecular
mechanisms by which H. pylori triggers the process
leading to gastric carcinoma remain largely unknown.
The most investigated H. pylori virulence determinant,

the cag-PAI (cytotoxin associated gene pathogenicity
island), encodes a type IV secretion system (T4SS) that
is responsible for the entrance of an effector protein,
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CagA, into host gastric epithelial cells [6,7]. Once trans-
located, CagA localizes to the inner surface of the
plasma membrane where it is phosphorylated on the
tryrosine residues within phosphorylation motifs in
carboxy-terminal variable region of the protein by mul-
tiple members of the src-family tyrosine kinases. Once
phosphorylated, CagA forms a physical complex with
SHP-2 phosphatase and triggers abnormal cellular sig-
nals, which enhance the risk of damaged cells acquiring
precancerous genetic changes [8,9].
The phosphorylation motifs, defined as a sequence of

five amino acids (Glu-Pro-Ile-Tyr-Ala), are classified as
EPIYA-A, EPIYA-B, EPIYA-C and EPIYA-D, according
to amino acid sequences flanking the motifs. CagA pro-
teins nearly always possess EPIYA-A and -B segments,
that are followed by none, one, two or three C segments
in strains circulating in the Western countries, or a D
segment, in East Asia strains [10,11]. It has also been
shown that infection with CagA strains having high
number of EPIYA-C segments imparts a greater risk of
precancerous gastric lesions and cancer [12-15].
Another virulence factor of H. pylori is a protein

known as vacuolating cytotoxin A (VacA), which causes
cytoplasmatic vacuolization in gastric epithelial cells, in-
creasing the plasma cell and mitochondrial membrane
permeability leading to apoptosis. The production of the
cytotoxin is associated with the cag-PAI but depends on
the vacA genotype [16-18]. The vacA is a polymorphic
gene with two main signal region genotypes s1 and s2,
and two different alleles in the mid region of the gene
named m1 and m2. Infection with strains possessing the
s1m1 genotype has been associated with precancerous
gastric hypochlorhydria [17] and gastric carcinoma [19].
In a recent study conducted in Fortaleza, Northeastern,

Brazil, in an area of high prevalence of gastric cancer
and H. pylori infection, our group has shown a high
prevalence of either pangastritis or precancerous lesions
in relatives of gastric cancer patients infected with H.
pylori [20].
Furthermore, Argent et al., (2008) observed an associ-

ation between vacA s1m1 genotype of H. pylori strains
and low gastric acid secretion in first-degree relatives of
gastric cancer patients from Scotland [21]. Otherwise,
the authors did not find associations between CagA
positive status and or number of tyrosine phosphory-
lated motifs and gastric lesions in that population.
Since geographical differences have been observed

among studies that evaluated association between H.
pylori virulence factors and diseases, the aim of this cross-
sectional prospective study was to evaluate the CagA
EPIYA motifs of H. pylori strains in first-degree relatives
of gastric cancer patients comparing the results with those
obtained from a control group composed of subjects with
no family history of gastric cancer. Because the s1m1
genotype of the vacA H. pylori was seen to be more fre-
quently observed in the strains of gastric cancer patients,
we also evaluated the vacA mosaicism in the strains.

Methods
The study was approved by the Ethical Committee of
Research of the University of Ceará, and informed con-
sent was obtained from each subject.

Patients
Sixty H. pylori-positive first-degree relatives [42 female;
mean age 40.42 ± 11.80; (4 brothers and 13 sisters; mean
age 56.24 ± 11.80 years, 14 sons and 29 daughters; mean
age 34.51 ± 7.66)] of gastric cancer patients from out-
patient follow-up at Walter Cantídio Hospital were
invited to participate. The control group was composed
of 49 (32 female; mean age 43.20 ± 12.59) H. pylori-positive
patients who concurrently underwent upper gastrointes-
tinal endoscopy for investigation of dyspepsia at the
same Hospital. They did not have family history of gas-
tric cancer, and were social class matched with the study
group. Patients with history of gastric surgery, active
gastrointestinal bleeding, use of steroids, immunosup-
pressive drugs, NSAIDs, proton pump inhibitors or who
were treated for H. pylori eradication were excluded
from the study. Relatives and controls were not included
if they were under 18 or above 81 years old.

Biopsy fragment collection
Gastric fragments were obtained during endoscopy from
five different sites as recommended by the Updated Sydney
System for classification of gastritis [22]. Additionally,
two fragments were collected from the antral mucosa
for the rapid urease test and for DNA to investigate the
presence of H. pylori genes. H. pylori infection was con-
firmed by positive results in at least two tests including
a rapid urease test, histological analysis and presence of
ureA gene of H. pylori.

Histology
Endoscopic biopsy samples of the gastric mucosa were
fixed in 10% formalin and embedded in paraffin wax,
and 4-μm-sections were stained with hematoxylin-eosin
for routine histology. Gastritis was classified according
to the Updated Sydney system. The samples of the gas-
tric mucosa were also stained with Giemsa for detection
of H. pylori.

DNA extraction
The antral gastric DNA was extracted using the
QIAmp (QIAGEN, Hilden, Germany) kit according to
the manufacturer’s recommendations with minor modifi-
cations [23]. The DNA concentration was determined by
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spectrophotometry using NanoDrop 2000 (Thermo
Scientific, Wilmington, NC) and stored at −20°C until use.
The presence of H. pylori specific ureA gene was eval-

uated according to methodology reported by Clayton
et al., [24]. The standard Tx30a H. pylori strain was used
as a positive control, and an Escherichia coli strain and
distilled water were both used as negative controls.
The thermocycler GeneAmp PCR System 9700 (Applied

Biosystems, Foster City, CA) was used for all reactions.
The amplified products were electrophoresed in 2%
agarose gel, stained with ethidium bromide, and analyzed
in an ultraviolet light transilluminator.

vacA and cagA detection
PCR amplification of the vacA signal sequence and mid
region was performed by using the oligonucleotide pri-
mers described by Atherton et al., [15]. The strains were
initially classified as type s1 or s2 and type m1 or m2.
All H. pylori strains with s1 were further characterized
into s1a, s1b or s1c [25,26].
The cagA gene was amplified by means of two previ-

ously described set of primer pairs [27,28]. A H. pylori
strain from our collection (1010–95), known to be vacA
s1m1 and cagA-positive, was used as a positive control,
and the s2m2 vacA genotype, cagA-negative standard
Tx30a H. pylori strain and distilled water were both used
as negative controls. The H. pylori strains were consid-
ered to be cagA-positive when at least one of the two
reactions was positive.

Amplification of the 3’ variable region of cagA
For the PCR amplification of the 3’ variable region of the
cagA gene (that contains the EPIYA sequences), 20 to 100
ng of DNA were added to 1% Taq DNA polymerase buffer
solution (KCl 50 mM and Tris–HCl 10 mM, pH, 8.0), 1.5
mM MgCl2, 100 μM of each deoxynucleotide, 1.0 U Plat-
inum Taq DNA polymerase (Invitrogen, São Paulo, Brazil),
and 10 pmol of each primer, for a total solution volume of
20 μL. The primers used were previously described by
Yamaoka et al. [29]. The reaction conditions were: 95°C
for 5 minutes, followed by 35 cycles of 95°C for 1 minute,
50°C for 1 minute, and 72°C for 1 minute, ending with
72°C for 7 minutes. The reaction yielded products of 500
to 850 bp as follows: EPIYA-AB: 500 bp; EPIYA-ABC:
640 bp; EPIYA-ABCC: 740 bp and EPIYA-ABCCC: 850 bp
(Figure 1).
We also used the method described by Argent et al.

[30] for the PCR amplification of the 3’ variable region
of the cagA gene that contains the EPIYA sequences in
order to improve the accuracy of our results.

Sequencing of the 3’ variable region of cagA
A subset of samples was randomly selected for sequenc-
ing in order to confirm the PCR results. PCR products
were purified with the Wizard SV Gel and PCR Clean-
up System (Promega, Madison, MI) according to the
manufacturer’s recommendations. Purified products
were sequenced using a BigDye Terminator v3.1 Cycle
Sequencing kit in an ABI 3130 Genetic Analyzer
(Applied Biosystems, Foster City, CA). The sequences
obtained were aligned using the CAP3 Sequence Assem-
bly Program (available from: http://pbil.univ-lyon1.fr/cap3.
php). After alignment, nucleotide sequences were trans-
formed into amino acid sequences using the Blastx
program (available from: http://blast.ncbi.nlm.nih.gov/
Blast.cgi) and compared to sequences deposited into the
GenBank (http://www.ncbi.nlm.nih.gov/Genbank/).

Statistical analysis
Data were analyzed with SPSS (Inc. Chicago, IL), version
17.0. The risk of relatives of gastric carcinoma to be
infected by more virulent strains, with increased number
of EPIYA-C motifs and s1m1 vacA genotype, was initially
evaluated in univariate analysis. For that, cagA strains
were stratified in those possessing at least one EPIYA–C
segment and those with more than one EPIYA-C segment
and the most virulent vacA s1m1 genotype was compared
with s1m2 plus s2m2. Variables with a p-value less-than
or equal to 0.25 were included in the final model of logis-
tic regression, controlling for the influences of age and
sex. Odds Ratio (OR) and 95% confidence intervals (CI)
were calculated. The logistic model fitness was evaluated
with the Hosmer-Lemeshow test [31]. Association of the
number of EPIYA-C segments and the presence of vacA
virulent genotypes with the degree of gastric inflamma-
tion, atrophy and intestinal metaplasia was done by the
two-tailed Mann–Whitney Test. The level of significance
was set at a p value ≤0.05.

Results
The presence of H. pylori specific ureA gene was
detected in the gastric mucosa of all 109 studied
subjects.

cagA status of the patients
cagA positivity was observed in the gastric fragments from
51 (85.00%) of 60 gastric cancer relatives and in those from
43 (87.76%) of 49 controls, without difference between the
groups (p=0.68; OR=1.26, 95%CI=0.37 – 4.40).

The number of EPIYA-C segments
The EPIYA pattern of all cagA-positive strains from both
relatives of gastric cancer patients and controls were
successfully typed. The Yamaoka methodology allowed
the detection of mixed strain infection. The concordance
between the methods used was almost 100%. The results
were confirmed by sequencing of the 3’ variable region
of cagA in 30 randomly selected PCR products.

http://pbil.univ-lyon1.fr/cap3.php
http://pbil.univ-lyon1.fr/cap3.php
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/Genbank/


Figure 1 Electrophoresis of representative samples with different CagA EPIYA patterns seen in relatives of gastric cancer patients and
controls. Columns 2, 3 e 5: EPIYA-ABCC (740 bp); column 4: EPIYA-ABCCC (850 bp); column 6: EPIYA-ABC (640 bp) and Column 7: EPIYA-AB (500
bp). Upper: partial alignment of amino acid sequencing of the carboxy-terminal CagA strains and a reference strain (H. pylori 26695).
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Four patterns of EPIYA motifs were found: AB, ABC,
ABCC, and ABCCC. No Asian EPIYA-D motif was
observed. The distribution of the EPIYA genotypes is
shown in the Table 1.

vacA mosaicism distribution
The distribution of vacA genotypes is shown in the
Table 2. In 59 cases (54.13%) the vacA genotype was
Table 1 Distribution of EPIYA genotypes in the gastric
cancer relatives (n = 51) and controls (n = 43) colonized by
a cagA-positive strains

EPIYA Genotype Control
group n

(%)

Gastric cancer relatives

Siblings
n (%)

offspring
n (%)

EPIYA-AB 03 (7.0) 0 0

EPIYA-ABC 32 (74.4) 09 (60.0) 20 (55.5)

EPIYA-ABCC 07 (16.3) 04 (26.7) 12 (33.2)

EPIYA-ABCCC 01 (2.3) 01 (6.7) 02 (5.6)

EPIYA-ABC+ABCC 0 01 (6.7) 02 (5.6)

Total 43 (100.0) 15 (100.0) 36 (100.0)
s1m1, in 35 (32.11%) it was s1m2 and 6 (5.50%) s2m2.
In three (2.75%) cases two vacA genotypes were
observed and in six (5.50%) only the signal sequence (s1)
was detected. DNA was not enough to genotype m allele
in four among these cases and in two, m was not typ-
able. In all cases with s1 strains they were genotyped as
s1b, except in one case who was colonized by s1a and
s1b strains.
Table 2 Distribution of vacA alleles of H. pylori strains of
relatives of gastric cancer patients (n =55) and control
group (n= 48)

vacA
Genotypes1

Control
group n

(%)

Gastric cancer relatives

Siblings
n (%)

Offspring
n (%)

s1m1 23 (47.92) 10 (66.67) 26 (65.00)

s1m2 21 (43.75) 04 (26.67) 10 (25.00)

s2m2 03 (6.25) 01 (6.67) 02 (5.00)

Mixed2 01 (2.08) 0 02 (5.00)

Total 48 (100) 15 (100) 40 (100)
1Only vacA s1 genotype was identified in 6 cases (1 control, 2 siblings and 3
offsprings of gastric cancer relatives); 2Mixed infection by s1m1 and s2m2 or
s1m1 and s1m2 (two cases).
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Infection by the most toxigenic vacA genotype (s1m1)
was more frequently observed in the gastric cancer rela-
tives (65.45%) than in the controls (47.92%). When s and
m alleles were individually evaluated, no difference in
the frequency of s1 allele was observed between the
groups, but m1 allele was more frequently observed in
the gastric cancer relatives.

Association among the number of EPIYA-C motifs and the
vacA s1m1 genotype and family history of gastric cancer
The relatives of gastric cancer patients were significantly
and independently more frequently colonized by H. pylori
strains with increased number CagA-EPIYA-C segments
and with the most virulent s1m1 vacA genotype even after
adjustment for age and gender (Table 3).
No difference was observed between siblings and off-

spring in respect to infection by strains containing an
increased number of EPIYA-C motifs (p= 0.98; OR=
1.20, 95%CI = 0.30 – 4.86) and the vacA genotypes s1m1
vs. s1m2 and s2m2 (p= 0.84; OR= 0.92, 95%CI = 0.22 –
3.97) as shown in the Tables 1 and 2.

Associations among the number of EPIYA-C segments
and vacA genotypes and gastric histological alterations
The degrees of corpus gastritis (p=0.04), antrum activity
(p=0.01) and corpus activity were significantly higher in the
relative of gastric cancer patients than in the control group.
A higher number of EPIYA-C segments was associated

with gastric corpus inflammation (p=0.04), gastric corpus
foveolar hyperplasia (p= 0.05) and gastric corpus atrophy
(p=0.05) in the relatives of gastric cancer patients.
Infection by the most virulent vacA s1m1 genotype

was associated with more marked antral (p= 0.03) and
corpus (p= 0.05) gastritis, when both groups were evalu-
ated together.

Discussion
H. pylori infection is recognized as the most important
risk factor for distal gastric cancer. Furthermore, the
increased rates of the disease in relatives of gastric
Table 3 Covariables associated with gastric cancer in the
first-degree relatives of gastric cancer patients in
comparison with subjects without family history of
gastric cancer

Variables Univariate analysis Multivariate analysis

p OR 95% CI p

Gender 0.27 – – –

Age 0.30 – – –

> 1 EPIYA-C motif 0.01 4.23 1.53 – 11.69 0.006

s1m1 vacA allele 0.17 2.80 1.04 – 7.51 0.04

The Hosmer-Lemeshow test was fit (8 degrees of freedom, p > 0.20, with 10
steps).
cancer points to host genetics and/or share of the most
H. pylori virulence strains as risk factors.
In this study, we demonstrated that relatives of gastric

cancer patients are more frequently colonized by H. pylori
strains with the most virulent vacA genotype, s1m1, and
by CagA-positive strains possessing a higher number of
EPIYA-C segments than the H. pylori strains of the
patients without a family history of the disease.
Although no previous study has demonstrated that gas-

tric cancer relatives are more frequently colonized by more
virulent H. pylori strains, infection by vacA s1m1 was asso-
ciated with low gastric acid secretion, a precancerous con-
dition, in first-degree relatives of Scottish gastric cancer
patients [21]. Otherwise, no association between the gastric
acid secretion and the number of CagA EPIYA-C segments
was observed by the authors [21].
CagA is the first bacterial oncoprotein to be identified

[32]. The protein is delivered into the gastric epithelial
cell through a bacterial T4SS and localizes to the inside
of the cell membrane, where it is phosphorylated by host
cell kinases. Upon phosphorylation, the EPIYA-C seg-
ment interacts with SHP-2 phosphatase, a bona fide
oncoprotein that is associated with a series of human
cancers. The higher the number of EPIYA-C segments,
the higher the affinity for SHP-2 which is required for a
full activation of ERK/MAPK pathway.
Infection with CagA strains possessing higher number

of EPIYA-C segments has been associated with precan-
cerous gastric lesions and gastric cancer in Caucasian
[11-13,30] and Brazilian populations [15].
It is well established that H. pylori infection is pre-

dominantly acquired in childhood and that the infection
often persists for life unless treated. Epidemiological data
and genetic analysis of H. pylori strains have demon-
strated that the strains are usually acquired within the
family. In fact, infected mother and infected siblings are
the main risk factors for the acquisition of the infection
[33,34] and genetic fingerprint methods have demon-
strated genetic homogeneity in the H. pylori strains
within the families. Based on these findings and the
results of the present study, we may hypothesize that
first degree relatives of gastric cancer patients may share
more virulent H. pylori strains that may increase the risk
of gastric cancer.
As noted above, first-degree relatives of gastric cancer

patients also share the same or similar genetic back-
ground that may increase the risk of gastric cancer. Poly-
morphisms in genes coding pro-inflammatory cytokines,
such as interleukin 1 beta (IL-1β), interleukin-1 receptor
antagonist (IL1Ra) and tumor necrosis factor-alpha
(TNF-α) are accepted as risk factors of gastric cancer,
depending on the geographic region [35-39]. It has also
been demonstrated that having increasing number of
pro-inflammatory genotypes [36,37], as well as a
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concomitant infection by more virulent H. pylori strains
progressively increases the risk of gastric precancerous
lesions and cancer [39].

Conclusions
In conclusion, we demonstrated that relatives of gastric
cancer patients are more frequently colonized by the
most virulent H. pylori cagA and vacA genotypes, which
may, in addition to human genetic predispositions, fur-
ther increase their risk of gastric cancer, thus providing
additional reasons to better understand these infections
and perhaps their targeted eradicative treatment.
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