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Abstract
Background: Intra-organ and intra-vascular pressures can be used to estimate intra-abdominal pressure. The aim of 
this prospective, interventional study was to assess the effect of PEEP on the accuracy of pressure estimation at 
different measurement sites in a model of increased abdominal pressure.

Methods: Catheters for pressure measurement were inserted into the stomach, urinary bladder, peritoneal cavity, 
pulmonary artery and inferior vena cava of 12 pigs. The pressures were recorded simultaneously at baseline, during 10 
cm H20 PEEP, external abdominal pressure (7 kg weight) plus PEEP, external abdominal pressure without PEEP, and 
again under baseline conditions.

Results (mean ± SD): PEEP alone increased diastolic pulmonary artery and inferior vena cava pressure but had no 
effect on the other pressures. PEEP and external abdominal pressure increased intraperitoneal pressure from 6 ± 1 mm 
Hg to 9 ± 2 mm Hg, urinary bladder pressure from 6 ± 2 mm Hg to 11 ± 2 mm Hg (p = 0.012), intragastric pressure from 
6 ± 2 mm Hg to 11 ± 2 mm Hg (all p ≤ 0.001), and inferior vena cava pressure from 11 ± 4 mm Hg to 15 ± 4 mm Hg (p 
= 0.01). Removing PEEP and maintaining extraabdominal pressure was associated with a decrease in pulmonary artery 
diastolic but not in any of the other pressures. There was a significant correlation among all pressures. Bias (-1 mm Hg) 
and limits of agreement (3 to -5 mm Hg) were similar for the comparisons of absolute intraperitoneal pressure with 
intra-gastric and urinary bladder pressure, but larger for the comparison between intraperitoneal and inferior vena cava 
pressure (-5, 0 to -11 mm Hg). Bias (0 to -1 mm Hg) and limits of agreement (3 to -4 mm Hg) for pressure changes were 
similar for all comparisons

Conclusions: Our data suggest that pressure changes induced by external abdominal pressure were not modified by 
changing PEEP between 0 and 10 cm H20. 

Background
Intraabdominal hypertension (IAH), a sustained increase
in intraabdominal pressure (IAP) above 12 mmHg, and
abdominal compartment syndrome (ACS), a sustained
increase in IAP above 20 mmHg with new-onset organ
failure [1,2], are highly prevalent in critically ill patients,
especially in those with a high body mass index, massive
fluid resuscitation, and renal and coagulation impairment
[3]. In this context, significant cardiovascular [4], respira-
tory [5], renal [6], hepatosplanchnic [7-10] and neuro-

logic dysfunction [11] with increased mortality have been
described [12].

Despite increasing evidence regarding the relevance of
IAH and ACS, many intensive care units never measure
the intraabdominal pressure (IAP), and no consensus
exists on optimal timing of measurement or when
decompressive laparotomy should be performed [13,14].
The definitions and diagnosis of IAH and ACS depend
greatly on the accuracy, reliability and reproducibility of
the IAP measurement technique [15], yet clinical mea-
sures of elevated IAP such as measuring abdominal girth
and assessing the tenseness of the abdomen have low sen-
sitivity and accuracy [13,16], and the direct measurement
of IAP is rather invasive, and- with the exception of intra-
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operative measurements during laparoscopic interven-
tions- not feasible in the clinical setting in most cases
[17].

Since the abdomen and its contents can be considered
primarily fluid in character, and consequently noncom-
pressive, the IAP can be measured in nearly every part of
the abdomen [18]. Alternative indirect methods for esti-
mating IAP, such as measuring urinary bladder, inferior
vena cava, gastric, intrarectal, and intrauterine pressures,
have been used over the years. However, although the
intravesical route has evolved as the gold standard [13],
the ideal method for measuring intraabdominal pressure
has increasingly become a matter of debate [18]. Both
Foley manometers and IAP monitors are reliable and
reproducible methods of measuring IAP, with low coeffi-
cients of variation, especially with increasing IAP [19].

While ACS may decrease lung compliance, increasing
PEEP may limit the cranial expansion of the abdominal
cavity. Pressure changes on both sides of the diaphragm
may lead to alterations in the relationship between lower
and upper intraabdominal, and intrathoracic and intraab-
dominal intravascular pressures [20]. The aim of this
study was to assess the relationship between the pressure
changes in the urinary bladder, the inferior caval vein, the
stomach, and the pulmonary artery with directly mea-
sured intraperitoneal pressure changes during a small but
clinically significant increase in IAP with and without
moderate positive end-expiratory pressure (PEEP). We
hypothesized that increased IAP decreases during PEEP
release, and that this effect is more pronounced in the
upper abdomen and intra-vascularly.

Methods
This study was approved by the Institutional Animal Care
and Use Committee of the University of Kuopio, Finland.

Anesthesia and animal preparation
Twelve female pigs weighing 34 (27-43) kg (median,
range) were deprived of food but had free access to water
12 h before the experiment. After premedication with
atropine (0.05 mg/kg) and azaperone (8 mg/kg intramus-
cularly), an ear vein was cannulated and thiopental
sodium (5-15 mg/kg) was administered intravenously for
endotracheal intubation. Anesthesia was maintained with
thiopental (5 mg/kg/h) and fentanyl (30 mg/kg/h) until
the end of the surgical procedure, and afterwards with
thiopental (5 mg/kg/h) and fentanyl (5 mg/kg/h) until the
end of the experiment.

The animals were ventilated with a volume-controlled
ventilator (Servo 900C, Siemens AG, Solna, Sweden)
without positive end-expiratory pressure. Fractional
inspired O2 concentration was adjusted to reach a target
arterial PO2 of 100 mmHg. Tidal volume was kept at 10

ml/kg, and the minute ventilation was adjusted to main-
tain arterial PCO2 levels between 33 and 45 mmHg.

A pulmonary artery catheter (CO Catheter, Edwards
Lifesciences, Irvine, CA, USA) was inserted using pres-
sure readings via the right submandibular vein. A femoral
artery catheter and a gastric air tonometer with connec-
tions to pressure transducers were inserted (Tonomet-
rics, Worcester, MA). Another catheter was inserted into
the inferior vena cava via the right internal jugular vein,
and its correct position (tip at lower border of liver) was
confirmed by ultrasound. The abdominal wall was punc-
tured with an 18 G needle in the right lower abdominal
quadrant. Injuries to the gut and intraabdominal organs
were avoided by lifting the abdominal wall with two towel
clamps. A commercially available 16 G × 30 cm single-
lumen intravenous catheter (Arrow International, Read-
ing, PA, USA) was inserted into the peritoneal cavity
using a J-shaped guide wire and a dilator. A Foley catheter
was placed in the urinary bladder via the urethra. These
catheters were also connected to pressure transducers.

During surgery the animals received saline at 5 ml/kg/
h. Additional Ringer's lactate solution and hydroxyethyl
starch were administered in equal amounts during sur-
gery to keep the pulmonary artery occlusion pressure
between 6 and 12 mmHg. The body temperature of the
animals was kept at 38 ± 1°C using an operating table
heater and warmed fluids. The position of the catheters
was checked by palpation and by direct visualization after
the experiments had been completed.

Hemodynamic monitoring
All pressures were measured continuously with quartz
pressure transducers and displayed on a multimodular
monitor and recorder (AS3, Datex-Ohmeda, Helsinki,
Finland). At the same time, the signals were recorded
with a computer program (Windaq 1.60; Dataq Instru-
ments Inc., Akron, OH, USA) for later analysis. All pres-
sure transducers were simultaneously zeroed to a level
corresponding to the ventral border of the front leg (Fig-
ure 1). Heart rate was measured from the electrocardio-

Figure 1 Zero reference for pressure transducers. Black line: zero 
level.



Jakob et al. BMC Gastroenterology 2010, 10:70
http://www.biomedcentral.com/1471-230X/10/70

Page 3 of 12
gram, which was also continuously monitored. Cardiac
output was measured with the thermodilution technique
(mean value of three measurements). Central venous
blood temperature (°C) was recorded from the thermistor
of the pulmonary artery catheter.

Experimental protocol
After placement of the catheters and hemodynamic stabi-
lization for 30 minutes, the urinary bladder was emptied
and refilled with 50 ml of normal saline. Afterwards,
baseline values were taken. Next, abdominal and end-
expiratory pressures were changed in four non-random-
ized steps, each lasting approximately 10 minutes: 1)
increase in PEEP to 10 cm H2O; 2) increase in abdominal
pressure by applying an external abdominal weight of 7
kg; 3) decrease in PEEP to 0 cm H2O; 4) removal of the
abdominal weight. Each change in pressure was followed
by approximately five minutes of stabilization before the
measurements were taken. Artefact-free recordings of
two minutes were averaged. At the end of this experi-
ment, the animals were subsequently included in a sepa-
rate study on hepato-splanchnic blood flow regulation
[21].

Statistics
Statistical analysis was performed with the SPSS software
(version 12.01, SPSS Inc., Chicago, IL, USA). Parametric
tests were used. Pressures at baseline were compared
using one-way ANOVA. ANOVA for repeated measure-
ments was applied for the assessment of pressure changes
at the different locations. Effects of PEEP, and of external
abdominal pressure with and without PEEP, were com-

pared to baseline post-hoc using paired T tests. The same
test was used to assess differences between external
abdominal pressure with and without PEEP. The Bonfer-
roni approach was applied to compensate for multiple (n
= 4) comparisons: for T tests, a p value of 0.0125 was con-
sidered significant. To compare the magnitude of pres-
sure changes at the different locations, one-way ANOVA
and linear correlation was used. Data are presented by
means of Bland-Altman and correlation plots. Bland-Alt-
man statistics were calculated using Microsoft Office
Excel 2007 (Microsoft Corporation, Wallisellen, Switzer-
land).

Results
In one animal the intraperitoneal pressure did not
increase after applying external weight onto the abdo-
men; consequently this animal was excluded from statis-
tical analysis but an additional experiment was
performed. Due to technical reasons or evidence of
incorrect placement of the catheters after the experiment,
some pressures are missing (inferior vena cava: n = 2;
stomach: n = 2; pulmonary artery: n = 3; systemic artery:
n = 2).

Systemic hemodynamics
Systemic hemodynamics remained stable during the
experiment (Table 1).

Absolute pressures at baseline
At baseline, there were significant differences between
pressures at the different measurement sites (p < 0.001;
Table 2).

Table 1: Systemic hemodynamics and central temperature.

Baseline* PEEP PEEP+external 
abdominal pressure*

External 
abdominal pressure*

End of 
experiment

P* P#

Heart rate (beats/min) 80 ± 14 80 ± 19 81 ± 23 85 ± 28 83 ± 17 0.916

Cardiac output (ml/kg/min) 101 ± 24 96 ± 20 0.371

Systemic mean arterial 
pressure (mm Hg)

87 ± 16 84 ± 16 91 ± 18 79 ± 23 84 ± 16 0.164

Central venous pressure (mmHg) 8 ± 3 8 ± 3 0.808

Pulmonary capillary occlusion 
pressure (mmHg)

8 ± 3 7 ± 2 0.615

Central temperature (°C) 37.3 ± 1.2 37.5 ± 1.3 0.337

Values are mean ± SD.
*ANOVA for repeated measurements. #Paired T Test.
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Effects of PEEP and external abdominal pressure on intra-
abdominal pressures
PEEP had no effect on either intraperitoneal, intragastric
or urinary bladder pressure (Table 2). All of these pres-
sures increased with extraabdominal pressure, indepen-
dent of the presence or absence of PEEP (Table 2).

Effects of PEEP and external abdominal pressure on intra-
vascular pressures
PEEP was associated with an increase in both intravascu-
lar pressures (Table 2). Inferior vena cava but not pulmo-
nary artery pressure increased during external abdominal
pressure (Table 2).

Comparison between absolute pressures and pressure 
changes
Pressures and changes in pressures are compared in Fig-
ures 2, 3 and 4. Bias and limits of agreement were similar
for the comparisons of absolute intraperitoneal pressure
with intra-gastric (-1, 3 to -5 mm Hg) and urinary bladder
pressure (-1, 2 to -5 mm Hg), but larger for the compari-
son between intra-peritoneal and inferior vena cava pres-
sure (-5, 0 to -11 mm Hg). Bias (0 to -1 mm Hg) and limits
of agreement (3 to -4 mm Hg) for pressure changes were
similar for all three comparisons (Figures 2, 3, 4, lefthand
side).

Correlations between intraperitoneal and intragastric,
urinary bladder and inferior vena cava pressures (Figures
5, 6, 7), between urinary bladder and intragastric and
inferior vena cava pressures (Figures 8 and 9), between
intragastric and inferior vena cava pressures (Figure 10),
and between inferior vena cava and pulmonary artery
diastolic pressures (Figure 11) were all significant,
although at varying degrees. Intraperitoneal and urinary
bladder pressures correlated best (r = 0.730, p = 0.01).

Discussion
The main finding of this study is that changing PEEP
between 0 and 10 cm H20 did not modify the pressure
changes induced by external abdominal pressure intrap-
eritoneally, in urinary bladder and stomach, and in infe-
rior vena cava.

Normal IAP is 5-7 mm Hg in non-morbidly obese
patients [22]. During spontaneous respiration, inspiration
and expiration are controlled by opposing activity of the
diaphragm and abdominal muscles, which varies the
shape of the pressurized abdominal cavity [23]. Accord-
ingly, IAP does not increase. Situations in which IAP
increases and pressure measurement has been advocated
are non-operative management of blunt hepatic trauma
[24], abdominal surgery [25], and abdominoplasty [26].
IAH at ICU admission is associated with severe organ
dysfunction during the intensive care unit stay [27]. IAP,
and especially abdominal perfusion pressure (mean arte-
rial pressure - IAP), appears to be a clinically useful resus-
citation endpoint and predictor of patient survival during
treatment for IAH and ACS [2].

In the present study, median IAP values increased by
approximately 5 mm Hg and just reached the lower limit
for the diagnosis of IAH [1]. In agreement with others, we
found similar increases and decreases in intra-abdominal,
intra-vesical and intra-gastric pressures with changing
abdominal pressure [28-31].

In this model without lung injury, 10 cm H20 PEEP had
no significant effect on the relationship between the dif-
ferent pressures. In patients with acute lung injury, an
increase and decrease in PEEP from 8-13 H2O and back
did not change total hepato-splanchnic blood flow or the
gastric mucosal-arterial pCO2 gradient [32]. In contrast,
in patients without acute lung injury, perioperative appli-

Table 2: Intraperitoneal, intraorgan and intravascular pressures (mm Hg) during the experiment.

Baseline PEEP PEEP+external 
abdominal pressure

External abdominal 
pressure

End of 
experiment

P*

Intraperitoneal pressure 6 ± 1 6 ± 1 9 ± 2## 9 ± 2## 5 ± 1 <0.001

Urinary bladder pressure 6 ± 2 7 ± 2 11 ± 2## 10 ± 2## 6 ± 1 <0.001

Intragastric pressure 6 ± 2 8 ± 2 11 ± 2## 10 ± 2## 6 ± 2 <0.001

Inferior vena cava pressure 11 ± 4 12 ± 3# 15 ± 4# 14 ± 3# 11 ± 3 <0.001

Diastolic pulmonary artery pressure 14 ± 5 16 ± 4# 17 ± 5 16 ± 5& 14 ± 6 0.003

Values are mean ± SD.
*: ANOVA For Repeated Measurements. Paired T Test, vs. Baseline, #P ≤ 0.01, ##P ≤ 0.001; External Abdominal Pressure +PEEP vs. -PEEP, &p = 0.007.
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Figure 2 Bland-Altman graph for the comparison between intraperitoneal and intragastric pressure. Absolute values are displayed on the 
right side of the figure, and changes between baseline and external abdominal pressure with and without PEEP on the left side. Full lines represent 
bias (average of the differences), and dotted lines limits of agreement (+/- 1.96 SD).

Figure 3 Bland-Altman graph for the comparison between intraperitoneal and urinary bladder pressure. Absolute values are displayed on the 
right side of the figure, and changes between baseline and external abdominal pressure with and without PEEP on the left side. Full lines represent 
bias (average of the differences), and dotted lines limits of agreement (+/- 1.96 SD).
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Figure 4 Bland-Altman graph for the comparison between intraperitoneal and inferior vena cava pressure. Absolute values are displayed on 
the right side of the figure, and changes between baseline and external abdominal pressure with and without PEEP on the left side. Full lines represent 
bias (average of the differences), and dotted lines limits of agreement (+/- 1.96 SD).

Figure 5 Correlation between intraperitoneal and intragastric pressure. *Pearson correlation.
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Figure 6 Correlation between intraperitoneal and urinary bladder pressure. *Pearson correlation.

Figure 7 Correlation between intraperitoneal and inferior vena cava pressure. *Pearson correlation.
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cation of PEEP reduced splanchnic blood flow [33,34].
Application of PEEP has also been associated with
marked reduction of total hepatic and portal venous
blood flow in various experimental models, although the
results are controversial [35-38]. It is possible that higher
PEEP levels in our study would have increased IAP.

The present study was not designed to assess effects of
intra-thoracic and IAP changes on perfusion. In pigs and
dogs, the effect of low IAP (7-8 mm Hg) on splanchnic
perfusion is minimal, while at higher IAP values (14-16
mm Hg) portal blood flow decreases [39,40].

Increases in IAP are also associated with increased
respiratory pressures, and decreased lung compliance
and gas exchange [41,42]. In our study, the increase in
intra-thoracic pressure with increased abdominal pres-
sure, if any, did not translate into a significant increase in
pulmonary artery diastolic pressure. However, inferior
vena cava pressure was higher than intraabdominal and
intraorgan pressures. Some [40] but not all [29,43]
researchers found higher inferior vena cava pressures
than IAP. A somewhat increased intraabdominal intrave-
nous pressure seems physiological since a pressure gradi-
ent from inside to outside the vessel prevents vessel
collapse, and a driving pressure is needed to generate
flow to the heart. Interestingly, both the increase in IAP

and application of PEEP resulted in an increase in intra-
vascular pressure in the inferior vena cava. While the
increase in intravascular pressure is the result of
increased pressure around the vein in the former situa-
tion, it is a consequence of intravascular pressure trans-
mission in the latter. This is evident from the unchanged
IAP when only PEEP was applied. In humans with
increased IAP, intravascular pressure in the inferior vena
cava was not reflected by a similar increase in the supe-
rior caval vein pressure, due to a "waterfall" effect [44,45].
The increase in IAP evoked a transition of the abdominal
venous compartment from a zone 3 to a zone 2 condition,
presumably impairing venous return despite an increased
pressure gradient between the abdominal and thoracic
compartments [44]. This can be explained by decreased
femoral vein blood flow [29]. Accordingly, PEEP and
increased IAP seems to be the most crucial of the studied
circumstances for venous return [46].

It has been shown that bolus administration of opioids
and muscle relaxants can increase and decrease, respec-
tively, IAP [47,48]. Furthermore, body position also has
an effect on IAP [49]. Since we did not administer drugs
as boli and kept the animals in supine position through-
out the experiments, we can exclude such effects on our
measurements. Nevertheless, when results of different

Figure 8 Correlation between urinary bladder and intragastric pressure. *Pearson correlation.
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Figure 9 Correlation between urinary bladder and inferior vena cava pressure. *Pearson correlation.

Figure 10 Correlation between intragastric and inferior vena cava pressure. *Pearson correlation.
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studies are compared, these aspects need to be consid-
ered.

A limitation of the experimental set-up is the use of
external abdominal pressure, and the fact that it pro-
duced only moderate increases in the measured pres-
sures. In humans, external abdominal pressure has been
used to increase intraabdominal pressure [50]. There is
considerable variation in the literature regarding the
design for ACS in animals [51], and recommendations for
research regarding IAH and ACS have been published
only recently [52]. Consequently, our findings cannot
necessarily be extrapolated to clinical situations with
IAH. Nevertheless, it has been shown that increases in
intra-gastric pressure or IAP of only a few mm Hg, e.g.,
during prone positioning [53,54] or closure of laparotomy
[55], can worsen gastric-mucosal perfusion, diuresis and
arterial pO2.

Even if the changes in pressures were similar at the dif-
ferent locations, the absolute values differed. Such pres-
sure differences may be real or the result of technical
circumstances. As an example, instillation of 50 ml into
the pig's bladder may be too much, as in humans a maxi-
mal instillation volume of 20 ml has been recommended.
Gudmundsson et al. [29] demonstrated that the volume

of fluid needed to increase porcine intra-vesical pressure
by 2 mm Hg varies widely and is dependent on IAP. On
the other hand, Fusco et al. [56] showed that instillation
of 50 ml of fluid into the bladder improves the accuracy of
the intra-vesicular pressure in measuring elevated IAP.

A further limitation is that we measured neither esoph-
ageal pressure nor the impact of tidal ventilation on
changes in any of the measured pressures. Recent data
suggest that the compliance of the abdominal wall has an
impact on the magnitude of IAP changes during tidal
ventilation [57].

Conclusions
Our data suggest that pressure changes induced by exter-
nal abdominal pressure were not modified by changing
PEEP between 0 and 10 cm H20. Inferior vena cava pres-
sure overestimated intra-peritoneal pressure.
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