
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation 
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

Chen et al. BMC Gastroenterology          (2024) 24:257 
https://doi.org/10.1186/s12876-024-03354-0

BMC Gastroenterology

†Jian Chen and Ganhong Wang contributted equally to this work.

*Correspondence:
Kaijian Xia
kjxia@suda.edu.cn
Xiaodan Xu
xxddocter@gmail.com
1Department of Gastroenterology, Changshu Hospital Affiliated to 
Soochow University, Suzhou 215500, China
2Department of Gastroenterology, Changshu Traditional Chinese 
Medicine Hospital (New District Hospital), Suzhou 215500, China
3Shanghai Haoxiong Education Technology Co., Ltd, Shanghai  
200434, China
4Department of Information Engineering, Changshu Hospital Affiliated to 
Soochow University, Suzhou 215500, China

Abstract
Background Construct deep learning models for colonoscopy quality control using different architectures and 
explore their decision-making mechanisms.

Methods A total of 4,189 colonoscopy images were collected from two medical centers, covering different levels of 
bowel cleanliness, the presence of polyps, and the cecum. Using these data, eight pre-trained models based on CNN 
and Transformer architectures underwent transfer learning and fine-tuning. The models’ performance was evaluated 
using metrics such as AUC, Precision, and F1 score. Perceptual hash functions were employed to detect image 
changes, enabling real-time monitoring of colonoscopy withdrawal speed. Model interpretability was analyzed using 
techniques such as Grad-CAM and SHAP. Finally, the best-performing model was converted to ONNX format and 
deployed on device terminals.

Results The EfficientNetB2 model outperformed other architectures on the validation set, achieving an accuracy of 
0.992. It surpassed models based on other CNN and Transformer architectures. The model’s precision, recall, and F1 
score were 0.991, 0.989, and 0.990, respectively. On the test set, the EfficientNetB2 model achieved an average AUC 
of 0.996, with a precision of 0.948 and a recall of 0.952. Interpretability analysis showed the specific image regions 
the model used for decision-making. The model was converted to ONNX format and deployed on device terminals, 
achieving an average inference speed of over 60 frames per second.

Conclusions The AI-assisted quality system, based on the EfficientNetB2 model, integrates four key quality control 
indicators for colonoscopy. This integration enables medical institutions to comprehensively manage and enhance 
these indicators using a single model, showcasing promising potential for clinical applications.
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Introduction
Colorectal cancer (CRC) is the second leading cause of 
cancer-related deaths worldwide [1]. This disease may 
begin with non-cancerous polyps in the colon, which, 
if not treated in time, can develop into cancer [2]. Typi-
cally, CRC progresses through the “adenoma-carcinoma” 
sequence, with polyps undergoing malignant transforma-
tion over several years, during which they can be detected 
and treated [3]. Therefore, early screening, detection, and 
timely removal of polyps are crucial in reducing the inci-
dence of colorectal cancer.

With the continuous advancement of gastrointestinal 
endoscopy technology, colonoscopy has become the pre-
ferred method for early CRC screening and the diagnosis 
of colonic lesions [4]. Identifying and promptly remov-
ing adenomatous polyps can significantly reduce the risk 
of colorectal cancer [5]. However, the cleanliness of the 
bowel is crucial for accurate examination results, as poor 
bowel preparation can lead to missed lesions [6, 7]. Com-
plete cecal intubation is also a key factor in the quality 
of colonoscopy [8, 9]. Slowing the withdrawal speed has 
been shown to significantly increase the adenoma detec-
tion rate (ADR)and reduce the risk of interval colorectal 
cancer [10, 11]. In recent years, the European Society of 
Gastrointestinal Endoscopy, the Digestive Endoscopy 
Society of the Chinese Medical Association, and the 
American Society for Gastrointestinal Endoscopy have 
issued quality control statements on colonoscopy screen-
ing [12–14], highlighting polyp detection rate, bowel 
preparation quality, withdrawal speed, and cecal intu-
bation rate as critical indicators for colonoscopy quality 
control.

Deep learning, with its exceptional feature extraction 
and data processing capabilities, offers intelligent solu-
tions for colonoscopy quality control, especially in the 
evaluation of polyps, bowel preparation, and the cecum 
[15, 16]. Convolutional Neural Networks (CNN) mainly 
handle data of fixed shapes, such as images, whereas 
Transformers based on self-attention have set new stan-
dards in natural language processing and have expanded 
into the computer vision domain [17]. This study employs 
these deep learning architectures with the aim to intel-
ligently evaluate key quality indicators of colonoscopy, 
providing doctors with real-time feedback and supplying 
data for further training, thereby enhancing the diagnos-
tic and therapeutic efficacy of colonoscopy.

Convolutional Neural Networks (CNNs) primarily 
handle fixed-shape data such as images, while Trans-
formers, based on self-attention mechanisms, have not 
only set new standards in natural language processing but 
have also expanded into the field of computer vision [17]. 
Both approaches, with their exceptional feature extrac-
tion and data processing capabilities, have found exten-
sive applications in gastrointestinal endoscopy, aiding 

endoscopists in enhancing the efficiency and accuracy of 
diagnoses. Karaman et al. [18] proposed a new method 
for optimizing activation functions and hyperparame-
ters of the YOLOv5 algorithm for real-time detection of 
colorectal polyps. They developed an AI-based real-time 
monitoring system to oversee withdrawal speed during 
colonoscopy. Gong et al. [19] found that the proportion 
of over-speed frames (POF) during colonoscope with-
drawal is negatively correlated with the adenoma detec-
tion rate (ADR), meaning that a lower POF is associated 
with a higher ADR. Additionally, deep learning technol-
ogy can automatically evaluate bowel cleanliness before 
colonoscopy, standardizing and enhancing the accuracy 
of such assessments and reducing variability in human 
evaluations, thereby improving diagnostic accuracy and 
efficiency [20].

In this study, we developed an artificial intelligence-
assisted system that integrates four key quality control 
indicators for colonoscopy to enable automated diag-
nosis. These indicators include real-time monitoring 
of withdrawal speed, improving polyp detection rates, 
automatic assessment of bowel preparation quality, and 
ensuring cecal intubation rate, all recommended as criti-
cal factors for colonoscopy quality by several interna-
tional guidelines. This system allows medical institutions 
to comprehensively manage and enhance these indicators 
through a single model.

Methods
Study design and datasets
This study was based on two datasets: Dataset 1 (Hyper-
Kvasir) was used for model training and validation, while 
Dataset 2 (Changshu Hospital Affiliated to Soochow 
University) served as an external test set for the model. 
The collected colonoscopy images covered intestines of 
varying cleanliness (using the Boston Bowel Preparation 
Score, BBPS), polyps, and the cecum. HyperKvasir (Data-
set 1) [21] is the largest gastrointestinal endoscopy data-
set (https://datasets.simula.no/hyper-kvasir/). It contains 
over 110,079 images and 374 videos. These data were col-
lected during real gastroscopy and colonoscopy examina-
tions at Bærum Hospital in Norway, with some marked 
by experienced gastroenterological endoscopists. This 
dataset represents anatomical landmarks as well as path-
ological and normal findings. From this, we selected 1009 
cecum images, 1028 polyp images, and 1794 images of 
intestines with different levels of cleanliness for analysis. 
In addition, we retrospectively collected 358 colonoscopy 
images from the Endoscopy Center of Changshu Hospi-
tal affiliated with Soochow University as an external test 
set (Dataset 2). Relevant image examples can be seen in 
Fig.  1. To enhance the model’s generalization, the col-
lected endoscopy images utilized various image-enhanc-
ing endoscopy techniques, such as Narrow Band Imaging 

https://datasets.simula.no/hyper-kvasir/
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(NBI), Blue Light Imaging (BLI), and Flexible Spectral 
Imaging Color Enhancement (FICE).

This study excluded patients with the following con-
ditions: inflammatory bowel disease, active colitis, 
coagulation disorders, familial polyposis, emergency 
colonoscopy, and those with incomplete diagnostic and 
treatment information. Figure  2A displays the image 
size distribution of the two datasets. Notably, the dataset 
includes images of various sizes, among which those with 
dimensions of 622 × 529 and 633 × 532 together account 
for more than 50% of the total. The distribution of images 
across different categories in the training set, validation 
set, and test set can be seen in Fig. 2B.

Construction of the AI system
Image preprocessing
In our study, to ensure enhanced model generalization, 
we implemented a series of preprocessing and augmen-
tation methods on the image data. The distribution 
of images across the training, validation, and test sets 
is detailed in Table  1. For the training set, we began by 
randomly resizing the images and cropping them to a 
224 × 224 dimension. To diversify the data, we introduced 
random horizontal flips. Following this, we transitioned 
images from either PIL Image or numpy.ndarray format 
to PyTorch Tensor, normalizing their range to [0, 1]. In 
the final stages, we standardized the RGB channels of 

Fig. 2 Distribution of images in the datasets; (A) Distribution of image sizes. Red indicates a higher concentration of images of that size, while blue indi-
cates fewer. (B) Distribution of image categories in the training set, validation set, and test set

 

Fig. 1 Representative images from the dataset; (A) Polyp images A1-A6; (B) Intestinal images for BBPS scores B1-B6. BBPS: Boston Bowel Preparation
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the images, employing means of [0.485, 0.456, 0.406] 
and standard deviations of [0.229, 0.224, 0.225]. For the 
test set, we adopted a varied approach, first adjusting the 
image’s shorter edge to 256 pixels, and subsequently per-
forming a centered 224 × 224 crop. The subsequent trans-
formations and normalizations mirrored those applied 
to the training set, utilizing the same RGB channel stan-
dardization parameters. Each of these steps was executed 
using PyTorch’s torchvision library.

Model training configuration
For image classification, we leveraged pre-trained mod-
els rooted in both Convolutional Neural Network (CNN) 
and Transformer deep learning architectures for trans-
fer learning. Within the CNN framework, we opted 
for models including DenseNet-121, EfficientNetB2, 
ResNet50, and VGG19 (Visual Geometry Group Net-
work). Meanwhile, within the Transformer structure, we 
employed the ViT (Vision Transformer), Swin (Shifted 
Window Transformer), DeiT(Data-efficient Image Trans-
formers), and CvT (Convolutional Vision Transformer) 
models. These CNN models encompass convolutional 
layers, average pooling layers, and fully connected lay-
ers with ReLU activations. To tailor to our dataset, two 
dense layers with ReLU activations were appended to 
each pre-trained model, along with an output layer with 
Softmax activation for classification. The number of fea-
tures in the output layer was set to four, aligning with our 
classification objectives. Models utilized cross-entropy 
as the loss function and underwent 30 epochs of train-
ing with the Adam optimizer. Concurrently, we enacted a 
learning rate schedule, halving the rate every five epochs. 
When processing input images, Transformer models ini-
tiated with random cropping, horizontal flips, and rota-
tions up to 15 degrees. The models then segmented the 
images into fixed-size patches, adding positional encod-
ings for each patch. These patches were addressed in 
the Transformer encoder to ascertain inter-patch rela-
tionships, and only the output from the first patch was 
used for the four-class classification. All procedures were 
conducted within the PyTorch framework. For a detailed 
view of the neural network architectures, refer to Fig. 3.
The core operation of a CNN is convolution, defined as: 
(f*g) (t) =

∫ ∞
−∞ f (τ ) g (t − τ ) dτ,where f is the input 

image, g  is the convolution kernel, and t represents the 
pixel coordinates.The self-attention mechanism is a key 
component of Transformers, represented by the formula:

 
Attention (Q,K,V) = softmax

(
QKT
√

dk

)
V

where Q K , and V  represent the query, key, and value 
matrices, respectively, and dk is the dimension of the key 
vector.

DenseNet-121 uses densely connected convolutional 
layers, where each layer receives inputs from all preced-
ing layers, enhancing gradient flow and reducing param-
eters. EfficientNetB2 optimizes network depth, width, 
and resolution through compound scaling, improving 
efficiency and accuracy. ResNet50 introduces residual 
connections to address the vanishing gradient problem, 
allowing for deeper networks. VGG19 is characterized 
by its simplicity, consisting of deep convolutional lay-
ers followed by fully connected layers with small filters.
The Vision Transformer (ViT) divides an image into 
small patches and learns their relationships using the 
Transformer mechanism. Swin Transformer employs a 
hierarchical architecture with sliding windows to effec-
tively capture both local and global features. Data-effi-
cient Image Transformers (DeiT) require less data for 
training while maintaining performance. Convolutional 
Vision Transformer (CvT) combines convolutional layers 
with Transformer encoders, enhancing spatial tokeniza-
tion and local feature extraction through convolution 
operations.

To monitor the withdrawal speed during colonoscopy, 
we used perceptual hash functions to detect changes 
between consecutive video frames. The video process-
ing workflow was implemented using OpenCV and 
PyTorch, and the perceptual hash (pHash) value for each 
frame was calculated using the imagehash library. The 
hash value calculation formula is given by: H = pHasH(I), 
where I represents the input image. By calculating the 
Hamming distance D between the hash values of adja-
cent frames, we quantify the visual changes as D = H1-
H2, where H1 and H2 are the hash values of consecutive 
frames. This value indicates the extent of content change 
between frames. To clearly display the withdrawal speed, 
we overlaid a scale indicator on each video frame, with 
the position corresponding to the hash difference value 
D. We employed color coding: blue for normal speed ( 
D ≤ 20), yellow for warning speed (21 ≤ D ≤ 30), and red 
for hazardous speed ( D>30 ).

Model interpretation
Despite the extensive application of advanced computer 
vision techniques in medical imaging, their widespread 
adoption in the medical community is still hampered 
by high computational costs, data constraints, and the 
black-box nature of deep learning. To enhance transpar-
ency, Explainable AI (XAI) has been introduced, aiming 

Table 1 Image distribution in training, validation, and test sets
class Train set Validation Set Test Set
bbps 0–1 415 104 56
bbps 2–3 899 225 102
cecum 636 159 109
polyps 1114 279 91
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to elucidate the inner workings and decision-making pro-
cesses of deep learning models. To combat this “black-
box effect”, we undertook an extensive explainability 
analysis of high-performance models based on CNN and 
Transformer architectures, employing techniques such 
as Gradient-weighted Class Activation Mapping (Grad-
CAM), Guided Grad-CAM, and SHAP [22–24]. Grad-
CAM generates class-discriminative localization maps 
by using the gradients of any target concept (such as a 
specific class) flowing into the final convolutional layer 
to produce a coarse localization map highlighting impor-
tant regions in the image. Mathematically, for a given 
class c , the gradient ∂ yf

∂ Ak  is computed with respect to fea-
ture map activations Ak of the last convolutional layer. 
These gradients are globally averaged to obtain weights 
α c

k , which are then used to compute the weighted 
sum of feature maps, followed by a ReLU operation: 
Lc

Grad−CAM = ReLU
(∑

kα
c
kA

k) .Guided Grad-CAM 
combines Grad-CAM and Guided Backpropagation, 
providing a more detailed visualization of how pixels 
influence decisions. SHAP values originate from coop-
erative game theory, providing a unified measure of fea-
ture importance. For image classification, SHAP assigns 

importance to each pixel, indicating its contribution to 
the prediction. SHAP values represent the difference 
in the expected model output when including versus 
excluding the feature, averaged over all possible feature 
combinations. This approach clarifies the role of each 
feature in the model’s decision-making process. These 
methods collectively enhance our understanding of how 
the model interprets various colonoscopy images.

Deployment of Model Across multiple devices
To systematically enhance the quality of colonoscopy 
examinations, we developed a deep learning model and 
deployed it across multiple device endpoints, including 
desktop computers, laptops, and browsers in the endos-
copy centers. This model aims to offer real-time quality 
control for colonoscopies, whether during or post-exam-
ination. Specifically, we initially acquired a PyTorch deep 
learning model tailored to our needs through transfer 
learning. Subsequently, to guarantee cross-platform 
deployment, we transitioned it into the ONNX format. 
Leveraging the ONNX Runtime, the model can effi-
ciently operate across various operating systems (such as 
Linux, Windows, MacOS) and is optimized for different 

Fig. 3 (A) Schematic diagram of the CNN-based architecture. (B) Schematic diagram of the Transformer-based architecture, using VIT as an example
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hardware (like CPU, GPU). As an open standard for 
deep learning models, ONNX not only provides model 
interoperability but also presents us with a broad array of 
deployment options, ensuring the accuracy and efficiency 
of the colonoscopy examinations [25]. The model devel-
opment and deployment process can be seen in Fig. 4.

Experimental platform and evaluation metrics
In this research, we employed a computing device 
equipped with an RTX 3060 graphics card (12GB 
VRAM), a CPU of 5×E5-2680 v4, and 350GB of disk 
space. With the aid of Python libraries such as Tensor-
Flow (2.7.0), Keras (2.7.0), and OpenCV (4.5.4.60), we 
successfully constructed, trained, and executed image 
processing tasks with our deep learning model. For data 
organization, analysis, and visualization, we utilized tools 
like Pandas (1.3.4), NumPy (1.21.4), Matplotlib (3.5.0), 
and Plotly (5.4.0). Moreover, model optimization was 
accomplished using PyTorch (1.10.0 + cu113), while sav-
ing and loading of the model were dependent on H5py 
(3.6.0).

This study employed a range of evaluation metrics to 
comprehensively assess the model’s performance. The 
evaluation metrics include Area Under the Receiver 
Operating Characteristic Curve (AUC), recall, specificity, 
precision, accuracy, and F1 score. The calculation formu-
las are shown as Eq. (1) to (6).

(1) Recall or True Positive Rate (TPR): 
Sensitivity =

TP

TP + FN

(2) Specificity or True Negative Rate (TNR): 
Specificity =

TN

TN + FP

(3)  Precision or Positive Predictive Value (PPV): 
Precision =

TP

TP + FP

(4)  
Accuracy =

TP + TN

TP + TN + FP + FN

(5)  F1 Score= 2× Precision× Sensitivity
Precision+Sensitivity

(6)  AUC: Area Under the Receiver Operating 
Characteristic Curve, measures the model’s 
performance across different thresholds.

TP(True Positives)signifies the number of samples accu-
rately identified as positive, TN (True Negatives) denotes 
the number of samples correctly identified as negative, 
FP (False Positives) refers to the number of samples erro-
neously predicted as positive, and FN (False Negatives) 
indicates the number of samples mistakenly predicted as 
negative.

Results
Performance comparison of various deep learning models 
on the validation set
This study conducted transfer learning fine-tuning based 
on pre-trained models from two major deep learning 
architectures: CNN and Transformer. In the CNN archi-
tecture, DenseNet-121, EfficientNetB2, ResNet50, and 
VGG19 were adopted, while in the Transformer archi-
tecture, ViT-Base-patch32-224, Swin-Small, DeiT-Small, 
and CvT-Small models were selected. The performance 
comparison of these models on the validation set is pre-
sented in Table 2.

In colonoscopy quality control tasks, EfficientNetB2 
performed exceptionally well, achieving an accuracy 
of 0.992 on the test set, surpassing VGG19 (0.848) and 
Densenet121 (0.808). Furthermore, EfficientNetB2 
excelled in precision, recall, and F1 score, registering 
0.991, 0.989, and 0.990 respectively. In the Transformer 
architecture, the DeiT-Small model achieved an accuracy 
of 0.986, making it the best model within this architec-
ture. Although its accuracy did not surpass that of Effi-
cientNetB2, its performance remains noteworthy.

Prediction performance of the best model on the test set
To ensure the generalization performance of the model, 
we selected 358 colonoscopy images from Changshu 
Hospital Affiliated to Soochow University as an indepen-
dent external test dataset for the best-performing model, 
EfficientNetB2. The advantage of using this independent 
test set lies in its ability to more accurately assess the 
model’s performance in practical applications and to ver-
ify whether there are any overfitting issues.

The EfficientNetB2 model showcased superior colo-
noscopy image classification. Specifically, the AUC val-
ues for the BBPS 0–1 and BBPS 2–3 categories were an 
impressive 0.997 and 0.999, respectively, highlighting the 
model’s superior discriminative capacity. The AUC for 
the cecum category stood at 0.996, while for the polyp 
category it was 0.993. On the whole, the model’s aver-
age AUC, Precision, and Recall were 0.996, 0.948, and 
0.952 respectively, all showcasing remarkable results, as 
depicted in Fig. 5A.
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Fig. 4 Model development and deployment workflow; ONNX ensures model interoperability and diverse deployment options
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Figure 5B’s PR curve highlights the model’s near-opti-
mal performance in Precision and Recall for the BBPS-
0-1 and BBPS-2-3 categories. The cecum category’s 
performance was also notably high, though slightly 
behind the first two categories. In contrast, for the Pol-
yps category, while the Precision remained impressively 
high at 0.976, the Recall dropped to 0.890, suggesting 

the model might occasionally miss certain true posi-
tives. Nonetheless, the average precision (AP) for each 
category surpassed 0.97, further attesting to the model’s 
robustness and consistency across various thresholds. 
Additionally, we conducted a confusion matrix analysis 
on the model’s classification results, further confirming 
its accuracy and robustness across the different catego-
ries, with detailed outcomes presented in Fig. 5C.

In our experiments, despite the model’s overall excel-
lence, there were instances of misjudgments. Figure  5D 
displays images genuinely labeled as “cecum” but pre-
dicted by the model as “polyps.” Similarly, in Fig.  5E, 
images truly labeled as “polyps” were misclassified as 
“cecum.” These errors may arise from certain features 
in the images resembling polyps, leading to model 
confusion.

Table 2 Performance comparison of different models on the 
validation set
Model Name Accuracy Precision Recall F1 score
DenseNet-121 0.991 0.989 0.988 0.989
EfficientNetB2 0.992 0.991 0.989 0.99
ResNet50 0.987 0.988 0.985 0.987
VGG19 0.991 0.991 0.989 0.99
Vit-Base-patch32-224 0.948 0.947 0.949 0.948
Swin-Small 0.908 0.906 0.913 0.907
CvT-Small 0.948 0.947 0.952 0.95
DeiT-Small 0.986 0.987 0.983 0.985

Fig. 5 Model performance on test set: (A) ROC curve; (B) PR curve; (C) Confusion matrix; (D) Image examples labeled as cesum but predicted as polyp by 
the model; (E) Image examples labeled as polyp but predicted as cecum by the model

 



Page 9 of 13Chen et al. BMC Gastroenterology          (2024) 24:257 

Model interpretation
To gain a profound understanding of the decision-mak-
ing mechanism of the colonoscopy quality control model, 
we employed the TorchCam library in conjunction with 
the Grad-CAM method for visual analysis. Figure 6A dis-
plays the original endoscopic image. Figure  6B presents 
the pixel activation heatmap derived from EfficientNetB2 
feature extraction. These activations markedly delin-
eate the image regions the model relies upon during its 
decision-making. Figure 6C superimposes the activation 
heatmap on the original image, where the yellow-green 
areas pinpoint the pivotal parts recognized by the model 
as polyps. To showcase the model’s focal points in finer 
detail, Fig. 6D utilizes the Guided Grad-CAM technique, 
amalgamating both Grad-CAM and Guided Backpropa-
gation, generating a heatmap that is both class-discrimi-
native and granular, highlighting the intricate features the 
model depends on during classification.

To delve into the model’s predictions, we utilized the 
SHAP (SHapley Additive exPlanations) method. As 
depicted in Fig.  7, Subfigure A and Subfigure B’s actual 
categories are polyps and BBPS 0–1 score, respectively. 
The depth of color for each pixel in the figure signifies its 
influence on the prediction: red highlights positive con-
tributions, while blue indicates negative ones. In Fig. 7A, 
the red region for the polyp category holds a distinct 
advantage over the cecum and the two BBPS categories, 
leading the model to accurately predict it as a polyp. 
Moreover, Fig.  7B is unequivocally identified as a BBPS 
0–1 score.

Model-based video prediction and multi-terminal 
deployment
The PyTorch model with the best performance was con-
verted to ONNX format and deployed on a local com-
puter and web frontend, enabling real-time quality 
control for colonoscopy anywhere, anytime. Using the 

Fig. 7 SHAP interpretative analysis. (A) SHAP plot for a label identified as polyp with correct prediction; (B) SHAP plot for a label with BBPS score of 0–1 
with correct prediction

 

Fig. 6 Interpretation of the colonoscopy quality control model. (A) Original endoscopic image; (B) Pixel activation heatmap based on Grad-CAM; (C) 
Original image overlaid with activation heatmap; (D) Fine-grained heatmap from Guided Grad-CAM.
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OpenCV library, we captured each frame from the video 
source in real-time and fed them into the ONNX model 
for inference.

Figure  8 displays the prediction results for a single 
frame image. On the left side is the original image, with 
red text in the top left corner indicating the model’s pre-
dictions for the first two categories along with their cor-
responding confidence levels. Correspondingly, the right 
side shows a bar chart representation of the confidence 
levels for each category. Figure  8A and B respectively 
show the model’s predictions and confidence levels for 
cecum images and polyp images. Figure 8C and D pres-
ent the model’s real-time prediction results on video in 
the form of QR codes; users can scan the QR code with 
their phones to watch the corresponding videos.

Figure 8C demonstrates the prediction results after the 
model’s deployment on a local computer. The scale at the 
bottom left of the video screen displays the current with-
drawal speed in real time. When the withdrawal speed 
is too fast, the scale falls into the red area and displays 
a “hazardous speed” warning; when the speed is within 
a reasonable range, it displays a blue “normal speed” 
indication; otherwise, it shows a yellow “warning speed” 
alert. Figure 8D presents the real-time prediction results 
using the local computer’s camera.

Discussion
This study developed eight deep learning models for per-
forming colonoscopy quality control tasks, including four 
CNN architectures and four Transformer architectures. 
From the largest gastrointestinal endoscopy dataset, 
HyperKvasir, we selected 3,831 images for model train-
ing and tested the performance on an independent test 
set. The EfficientNetB2 model performed the best among 
all models. By incorporating real-time withdrawal speed 
monitoring, this AI system integrated four key quality 
control indicators related to colonoscopy. This model has 
been successfully deployed across multiple platforms, 
enabling real-time video prediction. This study is the first 
to compare the performance of CNN and Transformer 
architectures in colonoscopy quality control and to iden-
tify the optimal model.

Colorectal cancer’s high incidence and mortality rates 
in China present significant challenges to public health 
and the economy [26]. Timely diagnosis through colonos-
copy is critical for improving patient outcomes. However, 
the substantial rate of missed diagnoses, particularly for 
early-stage tumors, necessitates enhanced quality control 
measures for colonoscopies. Concurrently, heightened 
health awareness has led to increased demands for colo-
noscopic exams, placing additional pressures on endo-
scopic services and escalating both costs and time. The 
expansion of Artificial Intelligence (AI) in healthcare, 
especially through deep learning, has provided new ave-
nues for efficient data and image processing, potentially 

Fig. 8 Model deployment for single-frame images and video predictions with confidence levels. (A) A single-frame image of the cecum. (B) A single-
frame image of a polyp. (C) Real-time prediction performance on a local computer setup. (D) Real-time prediction using a local computer camera
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elevating the quality control of digestive endoscopy. Pro-
fessional societies such as the European Society of Gas-
trointestinal Endoscopy, the Digestive Endoscopy Branch 
of the Chinese Medical Association, and the American 
Society for Gastrointestinal Endoscopy have under-
scored four critical quality indicators for colonoscopy: 
polyp detection, cecal intubation rate, withdrawal speed, 
and bowel preparation quality [12–14]. Given the cen-
tral importance of these four indicators in assessing the 
quality of colonoscopy, this study trained a deep learning 
classification model designed to comprehensively cover 
these crucial aspects.

In a recent study by Yao et al. [27], the team used con-
volutional neural networks to develop an endoscopic 
quality control system called Endo.Adm. This system 
significantly improved detection rates for adenomas and 
early-stage gastric cancers, demonstrating the potential 
of deep learning in enhancing colonoscopy quality con-
trol. However, Endo.Adm’s exclusion of the Transformer 
architecture and its opaque decision-making process 
warrant further scrutiny. Our study explored this by inte-
grating Vision Transformer (ViT), Swin Transformer, 
DeiT, and Convolutional Vision Transformer (CvT) mod-
els into the Transformer framework. The DeiT model, 
outperformed others, achieving an accuracy of 0.986, an 
impressive feat even though it did not eclipse Efficient-
NetB2’s results.

We conducted a thorough interpretability analysis on 
the highest-performing models using techniques such as 
Grad-CAM, Guided Grad-CAM, and SHAP. Through the 
torchcam library, Grad-CAM elucidated the decision-
making process by visualizing activation hotspots, pin-
pointing areas critical to the model’s assessments. The 
Guided Grad-CAM refined this visualization, produc-
ing high-resolution, class-discriminative heatmaps, and 
SHAP analysis quantified the predictive contribution of 
individual pixels. Collectively, these methods provided 
an insightful elucidation of the model’s decision-making 
processes.

In the colonoscopy quality control task, EfficientNetB2 
was rated as the best-performing model compared to 
the other seven models. It demonstrated excellent per-
formance across all categories, with F1 scores reaching 
or exceeding 93%. This reflects the model’s high preci-
sion and recall, indicative of a performance equilibrium.
Moreover, we transitioned EfficientNetB2 to ONNX 
format, facilitating deployment on diverse devices. In 
real-time processing of camera and video inputs, the 
model maintained exemplary classification accuracy 
with efficiency exceeding 60 frames per second, assuring 
prompt feedback for real-time applications. This high-
efficiency profile of EfficientNetB2 is attributable to its 
balanced scaling strategy across network depth, width, 

and resolution, which optimizes for rapid inference while 
preserving accuracy.

Currently favored international standards for bowel 
preparation assessment are the Boston Bowel Prepara-
tion Scale (BBPS) and the Ottawa Bowel Preparation 
Scale (OBPS), with our study employing the former. Con-
tinual reliance on these scales poses a challenge in clini-
cal settings, notably due to assessment inconsistencies 
and subjective biases inherent to endoscopic practitio-
ners. Disparities in bowel cleanliness evaluation among 
medical staff highlight the necessity for an objective and 
streamlined assessment method. The EfficientNetB2 
model demonstrated exceptional performance in identi-
fying bowel cleanliness on the validation set, particularly 
in the BBPS (0–1) and BBPS (2–3) categories, with AUC 
values of 0.997 and 0.999, respectively, indicating a high 
level of discrimination ability. On the test set, the model’s 
AUC values reached 0.986 and 0.997, further confirming 
its superior performance.

Previous studies have often focused on developing AI 
models with a single function, such as withdrawal speed 
monitoring [28], bowel cleanliness assessment [29], and 
polyp detection models [30]. However, colonoscopy qual-
ity control is a comprehensive evaluation system, and 
single-function models are clearly insufficient to meet 
the needs. Moreover, maintaining an appropriate with-
drawal speed helps improve polyp detection rates, indi-
cating that these quality indicators are not independent 
but rather complementary. Therefore, developing a mul-
tifunctional AI-assisted system holds promise for more 
proactively enhancing the quality of colonoscopy.

Despite providing new insights into the application of 
deep learning in colonoscopy quality control, this study 
faces several challenges. First, we plan to prospectively 
include images and video data from more medical cen-
ters to further test the model’s performance in real clini-
cal settings, thereby making our findings more broadly 
representative. Second, we intend to conduct human-
machine comparison experiments, comparing the model 
with endoscopists of varying levels of experience. This 
systematic evaluation will provide valuable data and 
insights for technological improvements and clinical 
applications.

Conclusions
This study covers the entire process from model training, 
validation, testing, interpretability analysis, to terminal 
deployment, resulting in the development of a compre-
hensive AI-assisted system. This system integrates four 
key quality control indicators for colonoscopy: real-time 
monitoring of withdrawal speed, enhanced polyp detec-
tion rate, automatic assessment of bowel preparation 
quality, and cecal intubation rate. Through this single 
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model, comprehensive management and improvement of 
colonoscopy quality are achieved.
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