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Abstract
Background  Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Hepatitis B virus (HBV) 
is one of the major causes of liver cirrhosis (LC) and HCC. Therefore, the discovery of common markers for hepatitis B 
or LC and HCC is crucial for the prevention of HCC.

Methods  Expressed genes for to chronic active hepaititis B (CAH-B), LC and HCC were obtained from the GEO and 
TCGA databases, and co-expressed genes were screened using Protein-protein interaction (PPI) networks, least 
absolute shrinkage and selection operator (LASSO), random forest (RF) and support vector machine - recursive feature 
elimination (SVM-RFE). The prognostic value of genes was assessed using Kaplan-Meier (KM) survival curves. Columnar 
line plots, calibration curves and receiver operating characteristic (ROC) curves of individual genes were used for 
evaluation. Validation was performed using GEO datasets. The association of these key genes with HCC clinical 
features was explored using the UALCAN database (https://ualcan.path.uab.edu/index.html).

Results  Based on WGCNA analysis and TCGA database, the co-expressed genes (565) were screened. Moreover, the 
five algorithms of MCODE (ClusteringCoefficient, MCC, Degree, MNC, and DMNC) was used to select one of the most 
important and most closely linked clusters (the top 50 genes ranked). Using, LASSO regression model, RF model and 
SVM-RFE model, four key genes (UBE2T, KIF4A, CDCA3, and CDCA5) were identified for subsequent research analysis. 
These 4 genes were highly expressed and associated with poor prognosis and clinical features in HCC patients.

Conclusion  These four key genes (UBE2T, KIF4A, CDCA3, and CDCA5) may be common biomarkers for CAH-B and 
HCC or LC and HCC, promising to advance our understanding of the molecular basis of CAH-B/LC/HCC progression.
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Background
Hepatocellular carcinoma (HCC) is the fourth leading 
cause of cancer mortality worldwide [1], and the sur-
vival rate of HCC is very low, with 5-year survival rates of 
32.6%, 10.8% and 2.4% for local, regional, and distant dis-
eases, respectively [2]. Nowadays, HCC is the sixth most 
common cancer in the world, and the global incidence is 
expected to increase significantly over the next 10 years 
[3, 4]. Although surgical resection, liver transplanta-
tion, hepatic artery chemoembolization (HACE), radio-
frequency ablation, microwave ablation, interventional 
therapy, targeted therapy, and immunotherapy have been 
used to treat HCC in recent years, the 5-year survival 
rate after surgery has reached 50–70% [5–7]. Fortunately, 
technological development shows great potential to accu-
rately find targets that lead to HCC. Studies on the mech-
anisms of HCC mainly focused on the pathogenesis of 
chronic hepatitis and liver cirrhosis (LC) [8, 9]. Previous 
researches has pointed out that HCC is generally refer-
able to inflammation and other causative factors, which 
lead to persistent liver damage, thereby resulting in the 
activation of hepatic stellate cells and excessive deposi-
tion of extracellular matrix [10]. Chronic hepatitis may 
progress to liver fibrosis, LC, and even HCC that is a life-
threatening disease posing a great threat to public health 
[10]. According to statistics, about 70% of HCC patients 
have hepatitis [11], 80–90% of HCC may be attributable 
to LC [12]. And among all types of hepatitis, hepatitis B 
virus (HBV) is one of the main causes of LC and HCC 
[13]. Therefore, in our study, we tried to find common 
biomarkers of chronic active hepaititis B (CAH-B), LC 
and HCC, and the early detection of the expression levels 
of them might serve to cure hepatitis and cirrhosis, thus 
reducing the incidence of HCC and improving the sur-
vival of HCC patients.

Methods
Data source
The gene expression matrix and clinical informa-
tion about HCC, including 50 normal samples and 373 
tumor samples, were obtained from the TCGA database 
(https://tcga-data.nci.nih.gov/tcga/), and data about 
CAH-B and LC were obtained from the GSE114783 
dataset in the GEO database (https://www.ncbi.nlm.nih.
gov/geo/), including 3 normal (NL) samples, 10 CAH-B 
samples, 10 LC samples and 10 HCC samples. The 
GSE89733 and GSE114564 datasets were used to validate 
gene expression profiles. Prognostic validation of HCC 
was performed by obtaining 240 corresponding clinical 
profiles from the ICGC database (https://dcc.icgc.org/
releases/current/Projects).

Weighted gene co-expression network analysis (WGCNA)
WGCNA is a powerful tool that identifies highly col-
laborative gene sets and helps to discover candidate 
biomarkers and therapeutic targets for cancer. Besides, 
it helps to discover biologically significant co-expressed 
gene modules by analyzing the interconnectivity of gene 
sets and their association with phenotypes, and to study 
the relationship between gene networks and disease [14]. 
In this investigation, CAH-B-, LC- and HCC-related 
gene modules were analyzed using WGCNA. The first 
step was to construct a sample-clustering tree based on 
the sample information. Next, a suitable soft threshold 
(β) was chosen based on the criteria of the scale-free 
network. Subsequently, a hierarchical clustering map 
was created to categorize genes with similar expression 
patterns into distinct modules. The correlation between 
modular signature genes and clinical features was then 
evaluated to identify relevant gene modules. Finally, scat-
ter plots illustrating the correlations between key gene 
modules and clinical features were generated using the 
gg-plot package in R software.

Screening and identification of hub genes
The Venn diagram of the key gene modules screened 
by TCGA and WGCNA was obtained using R software 
with the help of the gg-venn package. The GO and KEGG 
functional enrichment analyses of the intersecting gene 
set were carried out. After that, the Protein-protein inter-
action (PPI) network of the intersecting genes was ana-
lyzed using Metascape. The most important and tightest 
PPI expression cluster was screened using the MCODE 
plugin, and all genes in this key cluster were used for sub-
sequent study. Next, these genes in the key cluster were 
further screened using the least absolute shrinkage and 
selection operator (LASSO), Random Forest (RF) and 
Support vector machines - Recursive Feature Elimina-
tion (SVM-RFE) models, and the 3 machine-learned 
intersection genes were taken as hub genes. The prognos-
tic value of hub genes was assessed using Kaplan-Meier 
(KM) survival analysis. Finally, the differential expression 
of hub genes in NL, CAH-B, LC, and HCC was verified 
using the barplot package in R. The diagnostic value of 
hub genes was evaluated using R software to plot nomo-
gram, calibration curve, and receiver operating charac-
teristic (ROC) curve. The association of these four genes 
with HCC clinical features was explored using the UAL-
CAN database (https://ualcan.path.uab.edu/index.html). 
CIBERSORT was used to quantify the proportion of 
immune cell infiltration and their correlation with candi-
date biomarkers.

https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://dcc.icgc.org/releases/current/Projects
https://dcc.icgc.org/releases/current/Projects
https://ualcan.path.uab.edu/index.html
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Results
Screening of differentially expressed genes (DEGs)
In our present study, DEGs in HCC tissue were obtained 
from the TCGA database. As shown in the volcano plot, 
the genes with adjusted (adj.) p < 0.05 and |logFC| > 1 
were regarded as significant DEGs, and a total of 2834 
DEGs (1275 up-regulated genes and 1559 down-regu-
lated genes) were identified (Fig.  1A). We also obtained 
data related to CAH-B and LC from the GSE114783 
dataset, and genes differentially expressed in NL ver-
sus CAH-B, NL versus LC, and CAH-B versus LC were 
demonstrated in volcano maps. More precisely, there 
were 2932 differential genes between NL and CAH-B 

with 1397 up-regulated and 1535 down-regulated, 1293 
differential genes between NL and LC with 565 up-reg-
ulated and 728 down-regulated, and 3542 differential 
genes between CAH-B and LC with 1736 up-regulated 
and 1806 down-regulated (Fig. 1B, C, D). Genes met the 
screening conditions of p < 0.05 and |logFC| > 1 were 
regarded significantly differential.

Weighted co-expression network construction and key 
module identification
The data of gene expression about a total of 33 sam-
ples were obtained from the gene expression matrix 
GSE114783 by performing data preprocessing, and 

Fig. 1  Volcano map of differential expression genes. Differential genes between normal and HCC (A). Differential genes between normal and CAH-B (B). 
Differential genes between normal and LC (C). Differential genes between CAH-B and LC (D)
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genes from these datasets with variance greater than 
all quartiles of variance were selected for further analy-
sis. In addition, after excluding patients with incomplete 
clinical information, 10 HCC samples were excluded, 
and finally 23 clinical data (including 3 NL samples, 10 
CAH-B samples, and 10 LC samples) were extracted for 
analysis. After removing outliers, the sample clustering 
tree was plotted based on the differentially expressed 
genes screened out above (Fig. 2A). As demonstrated in 
Fig.  2B, C, a scale-free network was constructed with a 
soft threshold of 19 (R2 = 0.82). Next, 17 modules were 
identified based on average hierarchical clustering and 
dynamic tree clipping (Fig.  2D). Among them, three 
modules, magenta, red and turquoise, were highly cor-
related with pathologic stages, and were selected for fur-
ther analysis (Fig. 2E).

Functional enrichment analysis of genes
Based on WGCNA analysis, three modules, magenta 
(564), red (863) and turquoise (2307), were highly cor-
related with pathologic stages of CAH-B and LC. A 
total of 2834 DEGs in HCC tissue were obtained from 
the TCGA database (Fig. 1A). To identify the key genes 
co-expressed in hepatitis, cirrhosis and hepatocellular 
carcinoma, the intersecting gene of the three modules 
obtained from WGCNA and TCGA differential genes 
was performed. We obtained 565 intersecting genes of 
TCGA with the three important modules mentioned 
above using a Wayne diagram (Fig.  3A). The GO and 
KEGG enrichment analyses were then carried out on 
the 565 intersecting genes (Fig. 3B), revealing that these 
genes were mainly associated with sister chromatid seg-
regation, mitotic cell cycle phase transition, nuclear divi-
sion (GO: Biological process); low-density lipoprotein 
particle binding, immune receptor activity, extracellular 
matrix structural constituent (GO: Molecular function); 

Fig. 2  Determination of soft-threshold power in the WGCNA. Clustering dendrogram of 23 samples (A). Analysis of the scale-free index and mean con-
nectivity for various soft-threshold powers (β) (B). Module hierarchical clustering diagram (C). Heatmap of the correlation between the module eigen-
genes and clinical traits of NL, CHB and LC (D)
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collagen-containing extracellular matrix, chromosomal 
region, chromosome centromeric region (GO: Cellular 
component); Cell cycle, p53 signaling pathway, and DNA 
replication (KEGG).

Screening and identification of key genes
Based on the differentially expressed genes in CAH-B, 
LC and HCC acquired above, the co-expressed genes 
(565) of these three diseases were screened using PPI 
network, and PPI network was constructed (Fig. 4A, B). 
Moreover, the five algorithms of MCODE (ClusteringCo-
efficient, MCC, Degree, MNC, and DMNC) was used to 
select one of the most important and most closely linked 
clusters (the top 50 genes ranked). Finally, 50 genes were 
selected as out-of-hub genes. Next, LASSO regression 
model, RF model and SVM-RFE model were used to 
screen the critical genes simultaneously, and the inter-
section genes of the three algorithms were then obtained 
for subsequent analysis. First, the top 22 genes with the 
largest differential expression were screened based on 
the 50 screened hub genes for training optimization 
based on LASSO regression model, and 10-fold cross-
validation was performed (Fig.  4C). Then, we obtained 
the importance measures of input variable using the RF 
algorithm and the top 20 genes with high importance 
measures (Fig.  4D). The SVM-RFE method was used to 

perform a round of elimination of the last few trait genes 
in the weight ranking of the training set, with five genes 
leaving (Fig.  4E). Finally, the intersection of the genes 
obtained from the three machine learning filters was 
again obtained using the Venn diagram, and finally four 
key genes (UBE2T, KIF4A, CDCA3, and CDCA5) were 
identified for subsequent research analysis (Fig. 4F). Fol-
lowed by, the prognostic value of 4 genes was analyzed 
using KM survival curves, and it was found that these 4 
genes had significant prognostic differences, and all were 
highly expressed with poor prognosis (Fig.  5A). Finally, 
we constructed Nomogram and performed calibration 
curve and ROC curve discriminations, and all three vali-
dation results were acceptable (AUC = 0.98, Fig.  5B and 
C). Consequently, these 4 genes were identified as the key 
genes for this study.

Database validation
The GSE89377 and GSE114564 datasets as validation 
dataset were introduced to verify the expression levels 
of these 4 genes (UBE2T, KIF4A, CDCA3, and CDCA5) 
in NL, CAH-B, LC, and HCC, and we found that the 
expression of the 4 hub genes was significantly differ-
ent in CAH-B and HCC, LC and HCC (Fig. 6A and B). 
The diagnostic efficacy of UBE2T, KIF4A, CDCA3, and 
CDCA5 on the validation dataset were evaluated, and the 

Fig. 3  Gene function enrichment analysis. Intersection genes of TCGA and WGCNA magenta, red and turquoise modules (A). GO and KEGG enrichment 
analysis of intersection genes (B)
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AUCs were more than 0.78 (Fig.  6C and D), suggesting 
that the model exhibits high sensitivity and specificity in 
distinguishing among NL, CAH-B, LC, and HCC group.

Moreover, the association of these four genes with 
HCC clinical features was explored using the UALCAN 
database (https://ualcan.path.uab.edu/index.html). Our 
findings revealed that the expression levels of the hub 
genes—UBE2T, KIF4A, CDCA3, and CDCA5—were 
correlated with various clinical aspects of HCC, includ-
ing cancer stages (Fig.  7A), nodal metastasis status 
(Fig. 7B), tumor grade (Fig. 7C), and histological subtypes 
(Fig. 7D).

CAH-B, LC, and HCC represent a spectrum of inflam-
matory progression in liver disease. Therefore, we 

investigated the relationship between these four key 
genes and immune cell infiltration. The proportion of 22 
types of immune cell infiltration in HCC was calculated 
(Fig. 8A and B). The association between four hub genes 
(UBE2T, KIF4A, CDCA3, and CDCA5) and 22 types of 
immune cell infiltration in HCC was presented in Fig. 8C.

Discussion
Hepatitis and LC are the major causes of HCC [15, 16]. 
Chronic hepatitis may gradually develop into LC after 
being in a state of inflammation for a long time. LC can 
lead to a gradual decrease in liver function and cause 
HCC [17, 18]. Moreover, CAH-B is the most com-
mon form of hepatitis [13]. Therefore, the prevention of 

Fig. 4  Screening and identification of Hub genes. Venn diagram shows the five algorithms of MCODE for the most closely linked gene clusters (A). PPI 
network of Hub genes (B). Coefficient profiles of candidate genes in LASSO model (C). Coefficient profiles of candidate genes in RF algorithm (D). Ac-
curacy of candidate gene selection in SVM-RFE algorithm (E). Venn diagram shows the overlap of characteristic genes of the three algorithms (F)
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Fig. 5  The prognostic and diagnostic value of Hub genes (UBE2T, KIF4A, CDCA3, and CDCA5) was analyzed. KM survival curves were used for prognostic 
analysis (A). Nomogram (B) and ROC (C) curve for diagnostic efficacy
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CAH-B and LC is an important measure for the timely 
treatment and prevention of HCC, and it is vital to find 
biomarkers common to CAH-B, LC and HCC.

In our study, the differentially expressed genes of CAH-
B, LC and HCC were obtained from GEO and TCGA 
database. WGCNA (Weighted Gene Co-expression Net-
work Analysis) is a systems biology method utilized for 
constructing and analyzing weighted co-expression net-
works to uncover the functional relationships among 
genes and identify gene modules that are highly intercon-
nected and share similar expression patterns across con-
ditions [19]. Based on WGCNA analysis, three modules, 

magenta (564), red (863) and turquoise (2307), were 
highly correlated with pathologic stages of CAH-B and 
LC. Combined with TCGA differential genes, 565 inter-
secting genes were obtained and used for GO and KEGG 
enrichment analyses. LASSO is a regression analysis 
method that performs both variable selection and regu-
larization in order to enhance the prediction accuracy of 
statistical models by penalizing the absolute size of the 
coefficients [20]. Random Forest is an ensemble learning 
technique that constructs multiple decision trees during 
training and outputs the mode of the classes (classifica-
tion) or mean prediction (regression) from these trees 

Fig. 6  The expression and diagnostic efficacy of Hub genes in validation dataset. (A) Expression of Hub genes in GSE89377 dataset (A) and GSE114564 
dataset (B). ROC curve of Hub genes in GSE89377 dataset (C) and GSE114564 dataset (D)
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to provide a more accurate and robust prediction [21]. 
SVM-RFE is a powerful supervised learning algorithm 
used for both classification and regression tasks, which 
aims to find the optimal hyperplane that best separates 
different classes in the feature space or fits the regression 
function with minimal error [22]. Cross-validation with 
RF, LASSO and SVM-RFE algorithms was performed to 
mitigate the risk of overfitting. These three algorithms 
facilitated the selection of four overlapping hub genes 
(UBE2T, KIF4A, CDCA3, and CDCA5).

Ubiquitin coupling enzyme E2T (UBE2T) belongs to 
the ubiquitin coupling enzyme (E2) family and plays a 
crucial role in the ubiquitin proteasome pathway [23]. 
UBE2T has been reported to play a crucial role in pro-
tein ubiquitination, and it is essential for regulating many 
biological processes, including inflammation, immune 
response, cell division, and cell proliferation [24]. UBE2T 
overexpression facilitates the growth, proliferation, 
and invasion of colorectal cancer cells and suppresses 

apoptosis [25]. UBE2T gene, located in 1q32.1, has been 
reported to be up-regulated in HCC to promote HCC 
progression [26]. In HCC, UBE2T was identified as a 
novel target for SENP1 and a potential role of SENP1 in 
promoting UBE2T expression and deSUMOylation was 
identified [27]. However, no study reported the role of 
UBE2T in chronic active hepatitis B and liver cirrhosis. In 
our study, UBE2T was abnormally expressed in CAH-B 
versus LC, CAH-B versus HCC, and LC versus HCC.

Human cell division cycle-associated 5 (CDCA5) is 
required for sister chromatid condensation in S and G2 
phases, promotes complex-dependent ubiquitination 
degradation in late G1 phase, phosphorylates and disso-
ciates from chromatids in proprometaphase [28]. In addi-
tion, CDCA5 was found to be significantly upregulated 
in human tumor tissues, including HCC [29]. CDCA5, 
transcribed by E2F1, might promotes oncogenesis by 
enhancing cell proliferation and inhibiting apoptosis via 
the AKT Pathway in HCC [30]. A twenty gene-based 

Fig. 7  The expression levels of the hub genes—UBE2T, KIF4A, CDCA3, and CDCA5—were correlated with various clinical index of HCC. The expression 
levels of the hub genes with cancer stages (A), nodal metastasis status (B), tumor grade (C), and histological subtypes (D)
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gene (including CDCA5) set variation score reflected the 
pathological progression from cirrhosis to hepatocellu-
lar carcinoma [31]. However, no study reported the role 
of CDCA5 in chronic active hepatitis B and liver cirrho-
sis. In our study, CDCA5 was abnormally expressed in 
CAH-B versus LC, CAH-B versus HCC, and LC versus 
HCC.

Cell division cycle-associated protein-3 (CDCA3) con-
trols translation to influence the cell cycle in the G1 phase 
as cells cannot transfer from the G2 to M phase without 
CDCA3 expression [32]. CDCA3 is frequently upregu-
lated in the tumor tissues and is associated with onco-
genic properties in several cancers, including HCC. The 
expression of CDCA3 was upregulated by E2F4 to pro-
mote the proliferation of HCC [33]. The CDCA3 mRNA 
was found to be the intracellular target of miR-145, inhib-
iting proliferation and migration of liver cancer cell lines 

[34]. However, no study reported the role of CDCA3 in 
chronic active hepatitis B and liver cirrhosis. In our study, 
CDCA3 was abnormally expressed in CAH-B versus LC, 
CAH-B versus HCC, and LC versus HCC.

The gene expressing kinesin family member 4  A 
(KIF4A) is located at Xq13.1 in the human genome, and 
the 140-kDa protein is mainly located in the nucleus [35]. 
KIF4A was observed significantly higher mRNA and pro-
tein expression in HCC tissues, and the mRNA expres-
sion of KIF4A correlated markedly with individual cancer 
stages and tumor grades [36]. Upregulation of KIF4A 
enhanced cell proliferation via activation of Akt signaling 
and predicted a poor prognosis in HCC [37]. Hepatitis B 
virus might upregulate the expression of KIF4A, and the 
activation of the gene expression of KIF4A increased in 
a pHBV1.3 concentration‑dependent manner [38]. In our 
study, KIF4A was abnormally expressed in CAH-B versus 

Fig. 8  Landscape of immune cell infiltration in HCC. Histogram (A) and heatmap (B) plots of correlations among 22 immune cells. Correlation between 
four diagnostic markers and immune cell infiltration in HCC (C)
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LC, CAH-B versus HCC, and LC versus HCC. The role of 
these genes (UBE2T, CDCA3, and CDCA5) in the pro-
gression of hepatitis, cirrhosis and hepatocellular carci-
noma remains to be further investigated. Our findings, 
combined with previous studies, suggested that most of 
the key genes we have screened were strongly associated 
with the development of CAH-B, LC and HCC. In addi-
tion, the expression of key genes differed significantly 
between CAH-B and HCC, as well as LC and HCC, and 
the expression levels showed a progressive increase. 
These genes may have pro-inflammatory effects and 
indirectly promote the conversion of CAH-B and LC to 
HCC. Hence, changing their expression levels or activity 
may play a role in suppressing inflammation and cirrho-
sis, thereby reducing the incidence of HCC. The expres-
sion of UBE2T, KIF4A, CDCA3, and CDCA5 was related 
to the infiltration of immune cells and gene markers of 
immune infiltrating cells. These results provide evidence 
that UBE2T, KIF4A, CDCA3, and CDCA5 is involved in 
immune escape and immunosuppression in the tumor 
microenvironment.

Although this study provided a new insight into finding 
the common biomarkers for CAH-B, LC and HCC and 
the early prevention of tumorigenesis, it still has some 
limitations. We are predicting based on bioinformat-
ics that genes may be strongly associated with hepatitis, 
LC and HCC, but the sample size of these data is lim-
ited, only CAH-B samples from hepatitis were screened. 
Besides, the expression of these candidate genes in clini-
cal samples are needed to further confirm our findings. 
In addition, their correlation with information (HBV 
infection status such as HBe, HBV-DNA, HBV genotype, 
fibrosis or chronic liver injury state, and HCC staging, 
pathological information) was not explored. In the fol-
low-up study, we will collect samples of CAH-B, LC, and 
HCC patients and their clinical information to examine 
the expression of these genes and their association.

Conclusion
These four key genes (UBE2T, KIF4A, CDCA3, and 
CDCA5) may be common biomarkers for CAH-B and 
HCC or LC and HCC, promising to advance our under-
standing of the molecular basis of CAH-B/LC/HCC 
progression.
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