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Introduction
GI cancer accounts for 26% of global cancer incidence 
and 35% of all cancer-related deaths [1]. So far, GI cancer 
still contributes to a large global cancer burden, with the 
highest in East Asia [2]. Worryingly, the incidence of GI 
cancer has shown a gradual upward trend in recent years 
[3]. Genetic variation, viral infection, obesity, environ-
mental factors, and other interactions may be the basis of 
disease occurrence [4]. Revealing the complexity behind 
it may provide new insights into the pathogenesis of GI 
cancer.

Adaptive immunity, also known as specific immu-
nity, kills tumor cells by mediating specific T cells. 
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Abstract
Background Innate/adaptive immunity is the key to anti-tumor therapy. However, its causal relationship to 
Gastrointestinal (GI) cancer remains unclear.

Methods Immunity genes were extracted from the MSigDB database. The Genome-wide association studies (GWAS) 
summary data of GI cancer were integrated with expression quantitative trait loci (eQTL) and DNA methylation 
quantitative trait loci (mQTL) associated with genes. Summary-data-based Mendelian randomization (SMR) and 
co-localization analysis were used to reveal causal relationships between genes and GI cancer. Two-sample MR 
analysis was used for sensitivity analysis. Single cell analysis clarified the enrichment of genes.

Results Three-step SMR analysis showed that a putative mechanism, cg17294865 CpG site regulating HLA-DRA 
expression was negatively associated with gastric cancer risk. HLA-DRA was significantly differentially expressed in 
monocyte/macrophage and myeloid cells in gastric cancer.

Conclusion This study provides evidence that upregulating the expression level of HLA-DRA can reduce the risk of 
gastric cancer.
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Innate immunity is the first line of defense against can-
cer and plays a key role in coordinating the anti-tumor 
immune response [5]. In the development of GI cancer, 
the changes of various components of the tumor micro-
environment are the key factors affecting prognosis. 
Therapeutic strategies based on adaptive immunity, 
such as Immune-checkpoint blockade (ICB) therapy [6], 
chimaeric antigen receptors (CARs) T therapy [7], and 
the Bispecific T cell engager (BiTE) therapy [8], have 
achieved significant success, although only in a small 
segment of the audience. Similarly, tumor therapy using 
innate immunity offers potential treatment options [9]. 
Studies have shown that knocking down the STING 
pathway can promote polarization of tumor-associated 
macrophages in innate immunity and induce apoptosis of 
gastric cancer cells [10]. Therefore, studying the underly-
ing disease mechanisms of innate or adaptive immunity 
genes may help identify potential pathogenic factors and 
therapeutic targets for GI cancer. Although a growing 
number of studies have shown the presence of innate 
immunity and adaptive immunity genes in gastrointesti-
nal tumors [11–13], no studies have comprehensively and 
systematically determined their potential causal relation-
ship with the disease.

Mendelian randomization (MR) is an epidemiological 
investigation method that uses genetic variants as instru-
mental variables to measure possible causal relationships 
between exposure factors and outcome factors [14]. In 
MR, random assignment of alleles avoids bias from unob-
served confounding factors, including environmental 
factors and lifestyle habits. Genome-wide association 
studies (GWAS) reveal genetic associations between 
traits through Single nucleotide polymorphisms (SNPs) 
and can be combined with gene expression and methyla-
tion analysis [15].

Summary-data-based Mendelian randomization (SMR) 
expands and enriches MR [16]. It combines GWAS sum-
mary statistics with QTL data for aggregate integration 
analysis, prioritizing possible causal relationships. Previ-
ous studies have shown that SMR analysis can accurately 
identify and validate the pathogenic genes of Crohn’s dis-
ease [17]. SMR analysis has also demonstrated powerful 
analytical capabilities in the identification of biomarkers 
and drug targets in colorectal cancer [18].

In this study, SMR analysis was used to explore the 
causal relationship between innate/adaptive immune 
genes and gastrointestinal cancer from a genetic and 
single-cell perspective. Considering the lack of reli-
ability of SMR alone for identifying cancer pathogenic 
proteins, colocalization, MR, and heterogeneity of 
dependent instruments (HEIDI) tests were subsequently 
performed for sensitivity and heterogeneity analysis. In 
addition, we used single-cell expression analysis to detect 
cell type enrichment of the above target genes, thereby 

demonstrating the reliability of our results from different 
perspectives.

Methods
Study design
Our research workflow is shown in Fig.  1. In brief, we 
extracted eQTL and mQTL summary data for innate 
immunity and adaptive immunity genes, integrated them 
with GWAS summary data for 5 GI cancer, and analyzed 
the causal relationships between potential genes and 
traits using three-step SMR, and HEIDI tests. 5 two-sam-
ple MR analyses, Bayesian colocalization analysis, statis-
tical power calculations, and phenotypic scanning were 
used to validate the robustness of causal relationships. In 
addition, single cell type expression analysis detected cell 
type-specific expression of target genes on target tumors.

Data source
To determine potential causal relationships between 
innate and adaptive immune responses and gastrointes-
tinal tumors, we extracted a list of innate immunity genes 
and adaptive immunity genes from the MSigDB database 
(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). 
The eQTL summary data obtained by using the eQTL-
Gen consortium contain summary statistical genetic data 
on blood gene expression from 31,684 individuals [19]. 
The mQTL summary data were extracted from pooled 
data from two cohorts (n = 1980) [20]. Current studies 
focused only on cis-eQTL and cis-mQTL. 5 GI cancer 
(gastric cancer, colon cancer, liver cancer, esophagus can-
cer, and pancreatic cancer) GWAS summary data were 
obtained from publicly available databases and included 
in this study [21–23]. The basic information of QTL and 
GWAS summary data in this study is shown in Table S1.

Statistical analysis
The primary analysis consisted of three stages: three-step 
SMR, sensitivity analysis, and co-localization analysis.

To detect pleiotropic associations between gene 
expression levels and complex traits, we used the SMR 
software tool based on the SMR & HEIDI methods [20]. 
We performed three time SMR analyses in sequence, 
using DNA methylation sites, gene expression, and GI 
cancer phenotype as exposure factors or outcomes, and 
SNPs as genetic tool variables. Step 3 included only the 
significant signals from steps 1 and 2. In addition, we had 
strict screening criteria for significant signals, the crite-
ria were as follows: (1). FDR < 0.05 in all three-step SMR; 
(2). The P value of genome-wide significance < 5 × 10− 5 
in all eQTL, mQTL, and GWAS; (3). The P value of 
HEIDI test > 0.05 in all three-step SMR. Simultaneously, 
the R2 and F-statistic were used to estimate the strength 
of genetic instruments [24]. When the F-statistic was 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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greater than 10, the genetic variant used was considered 
a strong instrumental variable.

To clarify the stability of the three-step SMR results, we 
used 5 two-sample MR analysis methods for sensitivity 

analysis, including MR-Egger, inverse variance weight-
ing (IVW), simple mode and weighted mode, weighted 
median [25]. In MR-Egger and IVW methods, heteroge-
neity of individual causal effects was tested by calculating 

Fig. 1 The overall design of this study
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Cochran’s Q statistic, where the P-value of Cochran’s 
Q test < 0.05 indicated the existence of heterogeneity 
[26]. The intercept of MR-Egger can be used to indicate 
whether directional horizontal multidirectivity drove the 
results of the MR analysis. If the intercept was close to 
0, there was no directional multidirectivity, where the 
P value > 0.05. Wald ratio method was applicable to any 
proteins with only one instrument.

To refine the results of HEIDI, we performed another 
Bayesian test on the preliminary results above using the 
“coloc” R package (https://chr1swallace.github) to esti-
mate the posterior probabilities of shared variables [27]. 
For the top SNP in the investigated cancer GWAS data-
base, we extracted all SNPs within 100 kb upstream and 
downstream of the top SNP of the probe in co-localiza-
tion analysis. P1 (the prior probability of SNP associa-
tion with GWAS) and P2 (the prior probability of SNP 
association with QTL) were determined to be 1e-04, 
P12 = 5e-05 (the prior probability of SNP association 
with GWAS and QTL). The rest used default parameters 
to perform co-localization analysis. And, the posterior 
probability PPH4 > 0.80 was taken as strong evidence.

Phenotypic scan
PhenoScanner database (http://www.phenoscanner.
medschl.cam.ac.uk/) was used to identify relationships 
between identified genetic variants and other traits [28].

Single cell type expression analysis
To further assess the cell-type specific expression of tar-
get genes on GI cancer. A single cell dataset (GSE183904) 
was searched in the GEO database (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE183904) [29], 
and the scrna sequencing data of 12 groups of gastric can-
cer tissues (GSM5573467, GSM5573470, GSM5573472, 
GSM5573475, GSM5573477, GSM5573478, 
GSM5573480, GSM5573487, GSM5573489, 
GSM5573491, GSM5573497, GSM5573501) were inte-
grated and processed by the “Seurat” R package [30]. All 
cells were removed that had over 3000 expressed genes, 
or over 15% of UMIs derived from the mitochondrial 
genome. NormalizeData, ScaleData, and RunHarmony 
functions were used to Standardization, normalization, 
and remove batch effects. Then, the cells were clustered 
using the FindNeighbors and FindClusters functions 
(Resolution = 0.9) to obtain 22 cell subgroups, and the 
cells were annotated according to known marker genes. 
Finally, Clusters were visualized using T-distributed sto-
chastic neighbor embedding (T-SNE) as implemented in 
Seurat. The FindAllMarkers function was used to com-
pare gene expression levels in cell populations by per-
forming difference analysis on each cell population by 
the Wilcox rank sum test. We defined an average Log2 
fold change (Log2FC) more than 0.5 and a false discovery 

rate (FDR) adjusted P value less than 0.05 as the enriched 
gene in each cell type.

Results
Integration of GWAS and Immune response-related mQTL/
eQTL data from the blood
To determine the role of immune response-related genes 
in GI cancer (gastric cancer, colon cancer, liver cancer, 
esophagus cancer, and pancreatic cancer) and explore 
possible epigenetic mechanisms of gene regulation. We 
collected 1124 genes associated with innate immunity 
and 829 genes associated with adaptive immunity, for 
a total of 1660 genes included as candidates. SNP and 
DNAm sites of genes associated with innate/adaptive 
immunity were extracted from blood m/eQTL data using 
the SMR test. A total of 5654 CpG sites were obtained 
from innate/adaptive immunity genes and 390,899 SNPs 
were associated. The mQTL for innate/adaptive immu-
nity genes was then integrated with GWAS data for indi-
vidual GI cancer. In summary, mQTL and gastric cancer 
GWAS summary data identified 16 CpG sites, a total of 
10 genes (SMR FDR < 0.05 and HEIDI P > 0.05) (Table S2).

We also integrated 1791 eQTL probes, which were 
associated with 8,932,943 SNPs, with GWAS data for GI 
cancer. We found that 2 genes, HLA-DRA (Betasmr = 
-0.33) and HLA-DPB1 (Betasmr = -0.18), were negatively 
associated with gastric cancer (Table S3). Additionally, 
METTL7A (Betasmr = -0.20) exhibited a protective effect 
against colon cancer in particular (Table S3).

Blood methylation regulates gene expression to speculate 
on putative pathogenic proteins
We hypothesized that SNPs could alter DNAm levels 
to affect gene expression, thereby explaining plausible 
causal relationships for the disease. After screening with 
SMR FDR < 0.05 and HEIDI P > 0.05, we found that only 
HLA-DRA was regulated by a significantly associated 
methylation site cg17294865 in gastric cancer (Table 
S4). In colon cancer, although we identified one gene 
(METTL7A) in our integrated analysis of GWAS sum-
mary data and eQTL data, no methylation sites passed 
the SMR analysis. HLA-DRA, a well-known adaptive 
immune response gene whose expression is influenced 
by extracellular antigens and involved in the develop-
ment of immune responses, was prioritized according to 
the three-step SMR analysis. DNAm probe cg17294865 
was located in the CpG island shores region 640kbp 
downstream of HLA-DRA. Our study showed that meth-
ylation levels at this locus were causally negatively cor-
related with HLA-DRA (Betasmr= -0.04) expression. 
Higher methylation levels (Betasmr = -0.09) and elevated 
levels of HLA-DRA expression (Betasmr = -0.33) may 
reduce the risk of gastric cancer (Fig.  2A-B). Therefore, 
it was speculated that a putative mechanism may be that 

https://chr1swallace.github
http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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genetic variation up-regulates HLA-DRA expression lev-
els by affecting CpG island shore status, which in turn 
reduces the risk of gastric cancer. The sensitivity analy-
sis was performed using the two-sample MR method to 
verify the stability of the SMR analysis results (Fig. 3). As 
expected, the Two-sample MR results also support the 
SMR analysis results (Table S5-S7). Our calculated F-sta-
tistic results show that each SNP behaves as a powerful 
exposure tool (Table S1-S3). Bayesian co-localization 

analysis was used to eliminate confounding due to link-
age disequilibrium (LD). Our results show that methyla-
tion locus cg17294865 (PPH4 = 0.82) and gene HLA-DRA 
(PPH4 = 0.77) share a genetic figure with gastric cancer 
(Fig. 2C-D).

Phenome-wide scan of identified genetic variants
To further clarify the robustness of the results, the 
PhenoScanner database was used to rule out possible 

Fig. 2 Three-step SMR and co-localization prioritized Potential interactions between immune-related genes and GI cancer. (A). SMR between cg17294865 
and gastric cancer GWAS (SMR FDR < 0.05, HEIDI test P > 0.05). (B). SMR between ENSG0000204287 and gastric cancer GWAS (SMR FDR < 0.05, HEIDI test 
P > 0.05). (C) Locus comparison between cis-mQTL of HLA-DRA and gastric cancer GWAS by co-localization analysis. (D). Locus comparison between cis-
eQTL of HLA-DRA and gastric cancer GWAS by co-localization analysis. The r2 value indicates the linkage disequilibrium (LD) between the variants and 
the top SNPs.
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pleiotropy of the tumors. Our study showed that DNA 
methylation sites were not found to be associated with 
all available secondary traits. It was worth mentioning 
that the causal relationship between colon cancer and its 
DNA methylation sites was also strong (Table S8).

Cell type-specific expression in gastric cancer
To investigate whether there was a cell type-specific 
enrichment of HLA-DRA, an adaptive immune-related 
coding gene, we performed cellular expression analysis 
by analyzing single-cell RNA-seq data of gastric cancer 
from the GEO database. RNA-seq data from 12 cancer 

tissues were unsupervisedly clustered into 22 compo-
nents. According to the marker genes of each compart-
ment (Fig.  4A), we identified 8 major cell types: NK/T 
cells, B cells, Epithelial cells, myeloid cells, Fibroblasts, 
monocyte/macrophage, Mast cells, and Endothelial cells 
(Fig.  4B-C). We subsequently analyzed the cell-to-cell 
differences in these eight cell populations, and our study 
showed that HLA-DRA was enriched in monocyte/mac-
rophage and myeloid cells (Fig. 4D-F).

Fig. 3 Scatterplot of genetic association between DNA methylation and GWAS of gastric cancer
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Fig. 4 Single cell type expression of HLA-DRA in gastric cancer. (A). Bubble plot showing expression of cell surface markers in 22 clusters. (B). Heat map 
showing the expression profiles of cell surface markers of each cell type. (C). T-SNE plot showing the distribution of major cell types in gastric cancer 
tissues. Different colors represent different cell types. (D-E). T-SNE plot (D) and violin diagram (E) showing HLA-DRA gene expression in major cell types 
of gastric cancer tissue. (F). Histogram showing the enrichment of the HLA-DRA gene in gastric cancer tissues (average Log2FC > 0.5 and FDR < 0.05).
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Discussion
To the best of our knowledge, this study is the first to 
identify immune genes potentially causally associated 
with GI cancer using a multi-omics combined approach. 
SMR we use expands and enriches the MR. Based on 
SMR analysis, we hypothesized that SNPs can alter DNA 
methylation levels to influence gene expression and thus 
influence tumor pathogenesis. A more stringent screen-
ing criterion and the three-time SMR screening gave our 
results a strong stability. Subsequently, by integrating 
GWAS data for GI cancer with e/mQTL from peripheral 
blood, we identified several possibilities but prioritized 
an adaptive immune-related gene (HLA-DRA) and a 
methylation site (cg17294865) in gastric cancer. Previous 
studies have shown that HLA-DRA was associated with 
the risk of gastric cancer development [31]. However, the 
potential mechanism of HLA-DRA in gastric cancer had 
not been characterized. Our study showed that HLA-
DRA was specifically highly expressed in monocytes/
macrophages and myeloid cells and reduced the risk of 
gastric cancer. Our study provided strong evidence for 
the underlying mechanisms by which genetic variation, 
methylation, and gene expression of HLA-DRA were 
associated with the trait of gastric cancer. Similarly, the 
gene expression of HLA-DPB1 showed a sketchy causal 
relationship. It is worth mentioning that our study 
showed a causal relationship between gene expression 
of METTL7A and colon cancer, despite the absence of 
methylation sites according to the SMR analysis. Further-
more, we further clarified the differential expression of 
HLA-DRA in monocytes/macrophages and myeloid cells 
in gastric cancer through single-cell omics studies.

Innate immunity was the innate cornerstone of the 
anti-tumor immune response. In recent years, anti-tumor 
therapies based on innate immunity have demonstrated 
potent activity. There was still a need to explore more 
novel immune checkpoints to enrich the understand-
ing of innate immunity’s anti-tumor mechanisms and 
thereby stimulate the full potential of the human immune 
system [9]. METTL7A was an RNA N6-methyladenosine 
(m6A) methyltransferase involved in methylation and 
lipid metabolism [32], and an innate immunity gene. 
Studies have shown that METTL7A was significantly 
under-expressed in colon cancer tumor tissues, and its 
expression level was predictive of colon cancer with high 
accuracy [33]. This was consistent with our findings that 
METTL7A may represent a potential therapy target for 
colon cancer.

Adaptive immunity was essential for protective immu-
nity against tumors. It mediates cellular and humoral 
immunity to prevent and limit cancer through immu-
nological detection [34]. HLA-DPB1 (Major Histo-
compatibility Complex, Class II, DP Beta 1) was a 
Protein Coding gene. It plays a central role in the adaptive 

immune system by presenting peptides derived from 
extracellular proteins. Previous studies have shown that 
HLA-DPB1 is a susceptibility locus for colon cancer [35]. 
Moreover, In our study, we found a negative association 
between HLA-DPB1 and gastric cancer. The mechanism 
of HLA-DPB1 in gastric cancer remains to be further 
explored.

HLA-DRA was an HLA class II alpha chain paralogue, 
an adaptive immunity gene involved in antibody-medi-
ated immune response and macrophage activation, ulti-
mately affecting tumor cell growth [36–38]. Research 
showed that HLA-DRA can guide ICB in non-small cell 
lung cancer and ER-negative breast cancer [39, 40]. It was 
also differently expressed in different types of tumors. 
HLA-DRA exhibited upregulation in colon cancer and 
hepatocellular carcinoma [41, 42] while demonstrating 
downregulation in breast cancer [43]. Our study sug-
gested that elevated levels of HLA-DRA expression and 
higher methylation levels may reduce the risk of gastric 
cancer. These findings highlighted that HLA-DRA gene 
expression was causally associated with gastric cancer 
and may represent a potential immunity target for gastric 
cancer therapy.

The strength of this study is that we provide a com-
prehensive and systematic assessment of the causal 
relationship between innate/adaptive immunity and GI 
cancer. At the same time, the inclusion of a larger sample 
size of different GI cancer GWAS summary data in the 
study allows us to draw more robust conclusions. The 
final results are sifted by a three-step SMR and sensitiv-
ity analysis is performed by additional MR analysis and 
co-localization analysis. These also show the robustness 
of our results. The study included only individuals of 
European ancestry, thus reducing the bias from different 
genetic backgrounds. Finally, single cell type expression 
analysis provides updated insights into the underlying 
pathogenesis of HLA-DRA in gastric cancer.

There are some limitations to this study. Although we 
include large sample sizes of GWAS summary data, pro-
tein QTL (pQTL) summary dates for immune-related 
genes are lacking. In addition, among the eQTL and 
mQTL included in the study, there is no information on 
genetic variation on the X and Y chromosomes. Second, 
the posterior probability PPH4 of co-localization of the 
HLA-DRA gene with gastric cancer GWAS in our study 
was 0.77, but PPH4 ≥ 0.80 was considered strong evidence 
of Bayesian co-localization. Despite previous findings, 
many sites with PPH4 ≥ 0.5 appear qualitatively consis-
tent with the co-localization provided by PPH4 ≥ 0.8 [44]. 
Third, our study only includes eQTL and mQTL in the 
cis-region. Trans domains may also affect disease regu-
latory networks, but it is difficult to explain their causal 
relationship to disease [19]. Fourth, although our study 
included single-cell analysis, additional genomic data at 
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different molecular levels are needed to further explore 
the pathogenesis.

Conclusion
Through Mendelian randomization analysis and single-
cell analysis, our results suggest a potential pathogenic 
mechanism that the expression level of HLA-DRA, which 
is mainly expressed in monocytes/macrophages and 
myeloid cells, is inversely correlated with the risk of gas-
tric cancer.
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