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Abstract 

Objectives  Most signatures are constructed on the basis of RNA or protein expression levels. The value of vascular 
invasion-related signatures based on lncRNA pairs, regardless of their specific expression level in hepatocellular carci-
noma (HCC), is not yet clear.

Methods  Vascular invasion-related differentially expressed lncRNA (DElncRNA) pairs were identified with a two-
lncRNA combination strategy by using a novel modeling algorithm. Based on the optimal cutoff value of the ROC 
curve, patients with HCC were classified into high- and low-risk subgroups. We used KM survival analysis to evaluate 
the overall survival rate of patients in the high- and low-risk subgroups. The independent indicators of survival were 
identified using univariate and multivariate Cox analyses.

Results  Five pairs of vascular invasion-related DElncRNAs were selected to develop a predictive model for HCC. High-
risk subgroups were closely associated with aggressive clinicopathological characteristics and genes, chemotherapeu-
tic sensitivity, and highly expressed immune checkpoint inhibitors.

Conclusions  We identified a signature composed of 5 pairs of vascular invasion-related lncRNAs that does 
not require absolute expression levels of lncRNAs and shows promising clinical predictive value for HCC prognosis. 
This predictive model provides deep insight into the value of vascular invasion-related lncRNAs in prognosis.
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Introduction
Hepatocellular carcinoma (HCC) is the fourth most fatal 
malignancy. HCC is a complex and multistep disease 
involving genetic and epigenetic alterations. The etiol-
ogy and molecular mechanism of HCC remain largely 

unknown. Although progress has been made in its treat-
ment, the prognosis of HCC is still unsatisfactory because 
of its extreme heterogeneity. Vascular invasion is associ-
ated with worse outcomes in hepatocellular carcinoma 
(HCC) [1]. Both microscopic and macroscopic vascular 
invasion are associated with tumor recurrence and short 
survival times [2]. The increased rate of HCC recurrence 
is partially caused by microvascular invasion (MVI) [3].

Growing evidence has suggested that long noncoding 
RNAs (lncRNAs) play a critical role in the development 
and progression of HCC. It has been demonstrated that 
numerous lncRNAs associated with HCC are abnormally 
expressed and contribute to malignant characteristics [4]. 
LncRNAs, whose transcripts contain more than 200 nt, 
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can regulate gene expression. According to the progress 
in transcriptome sequencing over the past ten years, we 
know that more than 70% of the genome is transcribed, 
and the vast majority of the genome encodes lncRNAs 
[5]. LncRNAs play a significant role in numerous bio-
logical regulatory systems. As a result, LncRNAs are sig-
nificantly linked to the tumorigenesis, progression, and 
spread of malignancies [6]. In addition, numerous studies 
have identified that lncRNAs can alter the intrinsic prop-
erties of tumor cells to remodel the tumor microenviron-
ment [7].

Increasing evidence has revealed that signatures related 
to vascular invasion show promising predictive value 
for the diagnosis, prognosis and treatment response 
evaluation of malignant tumors. Moreover, lncRNAs 
greatly contribute to the development of these signa-
tures. Regrettably, the majority of signatures seem to be 
constructed based on the absolute expression values for 
individual RNAs or proteins. However, the accuracy and 
sensitivity of cancer diagnosis models can be improved 
by utilizing gene pairs [8].

In the current work, we adopted a two-lncRNA com-
bination strategy that does not require the absolute 
expression levels of lncRNAs to construct a lncRNA 
pair signature that correlates with vascular invasion. A 
signature based on 5 pairs of vascular invasion-related 
lncRNAs was constructed by using a novel modeling 
algorithm. Moreover, the risk score generated based on 
the signature was assessed for its correlation with diverse 
features, such as survival status, clinicopathological char-
acteristics and chemotherapeutic efficacy.

Materials and methods
Data collection (TCGA‑LIHC cohort) and differentially 
expressed analysis
The data including the clinical and RNA sequencing 
of 365 cases with HCC prior to 13 October, 2021, were 
obtained from the TCGA website (https://​portal.​gdc.​
cancer.​gov/​repos​itory). The TCGA databases provide 
publicly accessible data. As a result, the current research 
was free from requiring a consent of a local ethics com-
mission. The present study complies to TCGA publish-
ing and data access rules. Ensembl (http://​asia.​ensem​bl.​
org) GTF files were obtained for annotation in order to 
discriminate between mRNAs and lncRNAs for further 
study. A genes set associated with vascular invasion was 
obtained from the GSEA dataset (M41805) and utilized 
to select lncRNAs associated with vascular invasion with 
a co-expression methodology. We used correlation analy-
sis to explore the lncRNAs related to vascular invasion. 
LncRNAs were confirmed to be correlated with vascular 
invasion when the correlation coefficients larger than 0.4 
and P values less than 0.001. We utilized the R package 

limma to do differential expression analysis within vascu-
lar invasion-related lncRNAs to determine the differen-
tially expressed lncRNAs (DElncRNA). The cutoffs were 
defined at false discovery rate (FDR) 0.05 and log fold 
change (FC) > 2.

Construction of DElncRNA pairs
We established a 0-or-1 matrix by cyclically individu-
ally pairing DElncRNAs as followings: If lncRNA B has 
a lower level of expression than lncRNA A, then X is 
regarded as 1, else it is 0. Afterward, the 0-or-1 matrix 
was subjected to secondary screening. It was regarded a 
satisfactory match unless the expression quantities of 0 
or 1 of lncRNA pairs accounted for greater than 20% of 
all matches.

Constructing a predictive model
Vascular invasion-related DElncRNAs having prognos-
tic significance were identified using a univariate Cox 
analysis of overall survival (OS). This study adopted the 
least absolute shrinkage and selection operator (LASSO)-
penalized Cox regression analysis to confirm a predic-
tive model and reduce the possibility of overfitting. The 
"glmnet" R package was utilized for variable selection and 
shrinkage using the LASSO strategy.

The normalized expression levels of all gense and their 
matching regression coefficients were used to generate 
the risk scores for the patients. The following formula was 
developed: score = esum (each pairs’ expression×corresponding coeffi-

cient). Based on the optimal ROC cut-off value, the patients 
were classified to high-and low-risk subsubgroups.

Validation of the predictive model
We used the "survminer" R package and survival analysis 
to compare the overall survival (OS) of patients in high- 
and low-risk subsubgroups. Time-dependent receiver 
operating characteristic (ROC) curve studies were per-
formed using the "survival ROC" R package to evaluate 
the gene signature’s predictive ability. We conducted 
univariate and multivariate Cox regression analyses to 
identify if it is a favorable modle as an independent factor 
to predict prognosis. The R packages including survival, 
pHeatmap, and ggupbr were adopted in the process.

Evaluation of the significance of the model 
in the antitumour drugs
IC50 of commonly administered chemotherapeutic 
medicines in LIHC dataset from TCGA were assessed 
to evaluate the model’s clinical applicability for treating 
patients with HCC. According to AJCC recommenda-
tions, sorafenib and other antitumor medications can be 
used to treat liver malignacy. We used Wilcoxon signed-
rank test to assess the difference of IC50 between the 
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high- and low-risk subsubgroups. The outcomes are pre-
sented as box plots through R’s pRRophetic and ggplot2 
packages.

Immune components of C1‑C6
Immune components of C1-C6 were identified according 
to “dataset: phenotype—Immune subtype” from UCSC 
Xena (hub: https://​panca​natlas.​xenah​ubs.​net).

Statistical analysis
To evaluate the proportions, chi-squared analysis was 
employed. KM analysis was used to examine the varia-
tions in OS between the subgroups,. The independent 
variables for OS were screened adopting univariate and 
multivariate Cox analysis. Spearman or Pearson corre-
lation analysis were performed to determine if the pre-
dictive risk score or prognostic gene expression level 
associated with the drug sensitivity. We made plots 
adopting R software (Version 4.0.5) with the programs 
Venn, igraph, ggplot2, pheatmap, ggpubr, corrplot, and 
survminer. For all findings, a two-tailed P value of less 
than 0.05 was determined to be statistically significant.

Results
Identification of differentially expressed lncRNA 
(DElncRNA) pairs
The process flow is shown in Fig. 1A. The liver hepatocel-
lular carcinoma (LIHC) program of The Cancer Genome 
Atlas (TCGA) database provided RNA sequencing 
data of 50 normal and 365 tumour specimens and cor-
responding patient clinical data (Suppl Table  1). Gene 
transfer format (GTF) files from Ensembl were applied to 
annotate the data. Then, a coexpression analysis between 
vascular invasion-related genes (M8773 from GSEA) and 
lncRNAs was performed (Suppl Table  2). We identified 
a total of 97 vascular invasion-related lncRNAs (Suppl 
Table 3), and 14 DElncRNAs were identified as associated 
with prognosis (Fig.  1B, Suppl Table  4). All 14 DElncR-
NAs were upregulated (Fig. 1C).

Next, we constructed 64 valid DElncRNA pairs through 
an iterative loop and 0-or-1 matrix filtering. Twelve DEl-
ncRNA pairs were identified to be vascular invasion-
related lncRNA pairs with prognostic significance by 
univariate Cox analysis (Suppl Table  5). A predictive 
model was established utilizing LASSO regression analy-
sis, and a signature composed of 5-DElncRNA pairs was 
identified. This signature was preserved as a prognostic 
indicator (Fig. 1D).

Construction of a predictive model for HCC
Based on the optimal value of λ, a signature of 5 
DElncRNA pairs was identified (Suppl Fig S1). 
The risk score was determined based on the 

following formula: (0.3776)*expression level of 
AC099850.4|MIR4435-2HG + (-0.3176)*expression level 
of AC048341.2|LENG8-AS1 + (-0.3402)*expression level 
of AC048341.2|GIHCG + (-0.3572)*expression level of 
AC048341.2|LINC01436 + (0.4547)*expression level of 
MIR4435-2HG|AC110285.2 (Suppl Table 6).

To validate the best DElncRNA pair for obtaining the 
maximum AUC value, the area under the curve (AUC) 
values for each receiver operating characteristic (ROC) 
curve were assessed, and the curve was drawn, with the 
maximum value pointing to 1.395 (Fig.  2A). Depending 
on the optimal cut-off value, patients were separated into 
two subgroups: high-risk (n = 187) and low-risk (n = 178) 
(Fig.  2B). The scatter graph shows that patients in the 
low-risk subgroup had a lower risk of death at early time 
points than those in the high-risk subgroup (Fig.  2C). 
Individuals in the low-risk subgroup had consider-
ably better overall survival (OS) than those in the high-
risk subgroup according to the K–M survival analysis 
(Fig. 2D, P < 0.001). To validate that the model performed 
better than other indicators, we compared the ROC 
curves of the risk score and the clinical characteristics. 
The results revealed that the risk score had the greatest 
AUC, suggesting superior prognostic value (Fig. 2E).

Independent predictive value of the predictive model 
based on 5 DElncRNA pairs
Univariate and multivariate Cox analyses were conducted 
to confirm whether the risk score could act as an inde-
pendent predictive factor. Univariate Cox analysis of the 
TCGA cohorts revealed a substantial correlation between 
OS and the risk score (HR = 1.600, 95% CI = 1.285–1.994, 
P < 0.001) (Fig. 3A). According to multivariate Cox analy-
sis, the risk score was still an independent prognostic fac-
tor for patients even when considering other covariates 
(HR = 1.459, 95% CI = 1.162–1.831, P = 0.001) (Fig. 3B).

We then evaluated the relationship between the risk 
score and the clinical features of HCC patients (Fig. 3C). 
The outcomes demonstrated that patient sex, tumour 
grade and tumour stage were apparently associated with 
the risk score. There was no significant correlation with 
age (Fig.  3D). As shown in Fig.  3E, males had a much 
higher risk score than females (P < 0.05). The risk score 
was substantially lower in the grade 1 group than in the 
grades 2–4 group, as shown in Fig.  3F. (P < 0.05). The 
risk score was substantially lower in stage I than in stage 
II-IV, as shown in Fig. 3G (P < 0.05).

Association between the levels of immune checkpoint 
inhibitors,immune components and the risk score 
of the predictive model
HCC often arises from chronic hepatitis B virus 
(HBV) infection and does not respond well to immune 

https://pancanatlas.xenahubs.net
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Fig. 1  Pairs of Differentially Expressed lncRNAs (DElncRNAs) were identified. A Flow chart of the study. The heatmap (B) and volcanoplot (C) 
showed that TCGA datasets and Ensembl annotation were used to determine differentially expressed vascular invasion associated lncRNAs. D The 
forest map displayed 5 DElncRNA pairs identified using univariate Cox regression analysis
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checkpoint blockade. We investigated the correlations 
of immune checkpoint inhibitors and risk scores. The 
results revealed that a low risk score was correlated with 
decreased expression of PD1 (P < 0.05, Fig.  4 A and B), 
PDL1 (P < 0.01, Fig.  4 C and D), TIGIT (P < 0.01, Fig.  4 
E and F), TIM3 (P < 0.05, Fig. 4 G and H) and ENTPD1 
(P < 0.01, Fig. 4 I and J).

We analysed the effect of the risk score on immune 
components to detect the relationships between the risk 
score and immune infiltration type. In human tumours, 
six kinds of immune infiltrates with phenotypes rang-
ing from tumour-promoting to tumour-suppressive 

have been recognized [9]; these cell types included C1 
(wound healing), C2 (INF-γ dominant), C3 (inflamma-
tory), C4 (lymphocyte depleted), C5 (immunologically 
quiet) and C6 (TGF-β dominant). None of the speci-
mens in the research contained cells corresponding 
to the C5 immune subtype or C6 immunological sub-
type, so the C5 and C6 immune subtypes were excluded 
from analysis. We investigated the relationship between 
immune infiltration and the risk score. A low risk score 
was shown to be closely correlated with C3 and C4 
cell subtype, whereas a high risk score was found to be 
strongly related to the C2 cell subtype (Fig. 4K).

Fig. 2  Establishment a and validation of a risk model using DEirlncRNA Pairs. A For each receiver operating characteristic (ROC) curve, the areas 
under curve (AUCs) were evaluated and the curved line were drawn; the cut-off point is the highest inflection point. B The distribution and median 
value of the risk scores in the patients from TCGA; (C) The distribution of OS status in the TCGA cohort; (D) Kaplan–Meier curves for the individuals 
from TCGA in the high- and low-risk subsubgroup (E) The superiority of the risk score was demonstrated by a comparison of ROC curves with other 
clinical features
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Fig. 3  Independent prognostic value of the 5 DElncRNA pairs predictive model. Univariate Cox analyses (A) and multivariate Cox analyses (B) were 
used to evaluate survival related characteristics. A strip chart (C) and the scatter diagram displaysed (D) patients’ age, (E) patients’ gender, (F) grade 
and (G) stage



Page 7 of 12Zhao et al. BMC Gastroenterology           (2024) 24:33 	

Relationship of the predictive model and genes
ZEB1 and ZEB2 are key regulators of epithelial-mesen-
chymal transition (EMT). The relationship between the 
risk score and ZEB1 and ZEB2 was analysed. The levels 
of ZEB1 and ZEB2 expression were obviously higher in 
the high-risk subgroup than in the low-risk subgroup 
(Fig.  5A and C). A significant association between the 
risk score and levels of ZEB1 and ZEB2 expression was 
recognized (Fig. 5 B and D).

The relationships of risk score with BHLHE40, NDRG1 
and VEGFA expression were also studied. The levels 
of BHLHE40, NDRG1, and VEGFA expression in the 
low-risk subgroup were substantially lower than those 
in the high-risk subgroup (Fig. 5E, G and I). BHLHE40, 
NDRG1, and VEGFA expression levels were all signifi-
cantly associated with the risk score (Fig. 5 F, H and J).

In numerous solid tumours, CD44 is an impor-
tant marker for self-renewing cancer stem cells. The 
relationship between CD44 and the risk score was 

explored. The level of CD44 expression in the high-risk 
subgroup was substantially greater than that in the low-
risk subgroup (Fig.  5K). CD44 expression levels were 
apparently related to the risk score (Fig. 5L).

Relationship of the predictive model and pathway
We carried out KEGG pathway [10–12] enrichment 
analysis comparing the high- and low-risk subgroups 
using GSEA. The high-risk subgroup was shown to 
have considerably enriched MAPK signalling, NOTCH 
signalling, TGF-BETA signalling, WNT signalling, 
and P53 signalling pathways (Fig. 6 A), while the ALZ-
HEIMERS_DISEASE,CARDIAC_MUSCLE_CON-
TRACTION, OXIDATIVE_PHOSPHORYLATION, 
PARKINSONS_DISEASE and RIBOSOME signalling 
pathways were substantially enriched in the low-risk 
subgroup (Fig. 6B).

Fig. 4  Relationship of immune checkpoint inhibitors, immunological components, and the prediction model. PD1 (A), PD-L1 (C), TIGIT (E), TIM3 (G), 
and ENTPD1 (I) expression levels was associated with risk score. The relationship of the level of PD1 (B), PD-L1 (D), TIGIT (F), TIM3 (H) and ENTPD1 (J) 
expression and the risk score. Comparison of the risk score in various immune infiltration categories (K)
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Fig. 5  Relationship of the predictive model and genes. The level of of ZEB1 (A), ZEB2 (C), BHLHE40 (E), NDRG1 (G), VEGFA (I) and CD44 (K) 
expression in both risk subgroups. The relationship of the level of ZEB1 (B), ZEB2 (D), BHLHE40 (F), NDRG1 (H), VEGFA (J) and CD44 (L) expression 
and the risk score

Fig. 6  Relationship of the predictive model and pathway. KEGG pathway enrichment investigations between the high-(A) and low-risk 
subsubgroups were carried out using the GSEA (B)
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Relationship of the predictive model 
and chemotherapeutics
Common chemotherapeutics are also important for 
HCC; therefore, the relationship between the risk 
score and chemotherapy drug sensitivity was also 
investigated. The results indicated that a high risk 
score was correlated with a higher half-maximal 
inhibitory centration (IC50) for chemotherapy drugs 
such as sorafenib (P < 0.05), nilotinib (P < 0.01), rapa-
mycin (P < 0.05), cisplatin (P < 0.01), and mitomy-
cin C (P < 0.01), PD.0325901 (P < 0.001) and erlotinib 
(P < 0.01), which indicated that the model might be 
applied to predict chemosensitivity (Fig. 7).

Discussion
In recent years, an increasing number of studies have 
aimed to construct signatures to predict the prognosis of 
patients with malignancies. The absolute expression lev-
els of transcripts need to be detected for most of these 
signatures. In the present study, a decent perspective 
model was developed using two-lncRNA combinations, 
so absolute gene expression values were not needed for 
the signature. With this two-lncRNA combination model, 
only the relative expression level of the lncRNA pairs 
within the data needs to be considered, and there is no 
need for batch correction of differences between different 
kinds of data.

Fig. 7  Relationship of predictive model and chemotherapeutics (IC50). (A) Sorafenib. B Nilotinib. C Rapamycin. D Cisplatin. E Mitomycin.C. F 
PD.0325901. G Erlotinib
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Although the relationship between vascular invasion 
and human cancer has been studied by some research-
ers, there are few reports on its correlation with immune 
components. The association between the risk score and 
immunological components was also investigated to bet-
ter understand the role of the risk score in immune infil-
tration. The results showed that a high risk score was 
highly correlated with enrichment of the C2 cluster, but 
a low risk score was closely related to enrichment of the 
C3 and C4 clusters, suggesting that C2 induces tumo-
rigenesis and progression, while C3 and C4 are favorable 
protective elements. This conclusion was consistent with 
earlier research since increased cytotoxicity can limit 
tumor incidence and progression (the immune pheno-
types are numbered from 1 to 6 from lowest to highest 
relative abundance of cytotoxic cells) [9].

Recent studies have improved our understanding of 
immune checkpoint expression in HCC and have indi-
cated that immune checkpoint blockade could be a 
rational therapeutic approach even for HCC therapy [13, 
14]. High risk scores were shown to be correlated with 
high levels of PD1, PDL1, TIM3, ENTPD1, and TIGIT. 
PD-L1 is frequently highly expressed in cancer cells as a 
defense strategy, as this phenotype facilitates escape from 
immune surveillance. New treatments targeting immu-
nological checkpoints, such as anti-PD-L1 antibodies, 
have demonstrated therapeutic effectiveness in a vari-
ety of tumors [14]. T-cell exhaustion, characterized by 
decreased capacity of T cells to release cytokines along 
with upregulation of immunological checkpoint recep-
tors (for example, PD-1 and CTLA4), has been reported 
in several tumors, including HCC [15]. The expression 
levels of the immune checkpoint inhibitory molecules 
PD-1 and TIM3 in tumor-associated antigen-specific 
T cells from HCC specimens are higher than those in T 
cells from tumor-free liver tissues or blood. Strategies to 
block PD-L1 and TIM3 should be explored for the treat-
ment of HCC.

Epithelial–mesenchymal transition (EMT) is a criti-
cal step in tumor progression and metastasis. ZEB1 and 
ZEB2 are structurally related E-box binding homeobox 
transcription factors that can promote EMT [16]. To 
investigate the role of the risk score in EMT, the cor-
relation between ZEB1, ZEB2 and the risk score was 
examined. The levels of ZEB1 and ZEB2 expression were 
considerably lower in the low-risk subgroup than in the 
high-risk subgroup according to the results. The levels 
of ZEB1 and ZEB2 expression were considerably lower 
in the low-risk subgroup than in the high-risk subgroup, 
suggesting that the risk score is a good marker for indicat-
ing EMT. In our previous study, we found that VEGFA, 
NDRG1 and BHLHE40 may suggest the presence of 
satellite nodules in HCC [17]. To better understand 

the correlations between the risk score and the satel-
lite nodules, the association between the risk score and 
VEGFA, NDRG1, and BHLHE40 was also investigated. 
The findings also suggested that the risk score is an effec-
tive indicator. HCC cells possess stem cell-like features, 
such as immortality, resistance to treatment, and trans-
plantability [18]. CD44 has already been validated as an 
informative marker of stem cells in primary tumors. To 
gain more insight into the role of the risk score in tumor 
stemness, the relationship between the risk score and 
CD44 was analyzed. The relationships of the risk score 
and CD44 were investigated to acquire a better under-
standing of the role of the risk score in tumor stemness. 
The results showed that CD44 expression was consider-
ably higher in the high-risk subgroup than in the low-risk 
subgroup. The risk score was positively related to CD44 
expression, suggesting that it is a good marker to detect 
tumor stemness.

Based on pathway analysis, tumor-related signaling 
pathways, such as the MAPK, NOTCH, TGF-BETA, 
WNT, and P53 signaling pathways, were considerably 
enriched in the high-risk subgroup. The involvement of 
these pathways has been associated with HCC, suggest-
ing novel therapeutic targets [19–21]. The correlation 
analysis between the predictive model and chemothera-
peutics indicated that the risk score was correlated with 
sensitivity to chemotherapeutics such sorafenib, nilo-
tinib, rapamycin, cisplatin, PD.0325901, and mitomycin 
C and erlotinib. Sorafenib was the only systemic therapy 
option for patients with advanced HCC for almost a dec-
ade. Nilotinib inhibits MYC and NOTCH1 expression in 
HCC cell lines, inhibits the growth of xenograft tumors 
in mice, and inhibits the formation of liver tumors in 
animals harboring MET and catenin β1 transposons, 
lowering MYC and NOTCH1 levels in tumors [22]. Rapa-
mycin, an mTOR inhibitor, can reduce the protumo-
rigenic impact of VEPH1 knockdown and is an effective 
therapeutic option for patients with HCC [23]. Cisplatin 
is a conventional chemotherapeutic agent. Mitomycin C 
promotes bystander killing in homogeneous and hetero-
geneous hepatoma cellular models [24]. Erlotinib inhibits 
cell cycle progression and causes apoptosis of HCC cells 
while increasing chemosensitivity to cytostatics [25].

Conclusion
In summary, this study revealed a novel predictive sig-
nature comprised of 5 vascular invasion-related lncRNA 
pairs. The signature was independently related to OS 
in patients with HCC and was verified to be effective in 
functional analysis. The risk score based on this signature 
was found to be related to the levels of important genes 
and immune checkpoint inhibitors and chemotherapeu-
tic sensitivity, providing information for predicting HCC 



Page 11 of 12Zhao et al. BMC Gastroenterology           (2024) 24:33 	

prognosis. External validation by other clinical datasets 
would be helpful, so we will collect new clinical speci-
mens to increase the sample size for further validation in 
the future. Overall, this study provides promising insight 
into vascular invasion-related lncRNAs. The signature 
composed of 5 vascular invasion-related lncRNA pairs 
does not require the absolute expression values of lncR-
NAs and could be utilized for HCC diagnosis and prog-
nosis evaluation, which suggests that it is valuable for the 
development of personalized cancer therapies.
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