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Abstract
Introduction Pancreaticobiliary reflux (PBR) can induce gallstone formation; however, its pathogenic mechanism 
remains unclear. In this study, we explored the mechanism of PBR by the non-targeted metabolomic analysis of bile in 
patients with PBR.

Objective The aim of this study was to investigate the pathogenic mechanism in PBR by the non-targeted 
metabolomic analysis of bile collected during surgery.

Methods Sixty patients who underwent gallstone surgery at our center from December 2020 to May 2021 were 
enrolled in the study. According to the level of bile amylase, 30 patients with increased bile amylase ( > 110 U/L) were 
classified into the PBR group, and the remaining 30 patients were classified into the control group (≤ 110 U/L). The 
metabolomic analysis of bile was performed.

Results The orthogonal projections to latent structure-discriminant analysis of liquid chromatography mass 
spectrometry showed significant differences in bile components between the PBR and control groups, and 40 
metabolites were screened by variable importance for the projection value (VIP > 1). The levels of phosphatidylcholine 
(PC) and PC (20:3(8Z,11Z,14Z)/14:0) decreased significantly, whereas the levels of lysoPC (16:1(9z)/0:0), lysoPC (15:0), 
lysoPC (16:0), palmitic acid, arachidonic acid, leucine, methionine, L-tyrosine, and phenylalanine increased.

Conclusions Significant differences in bile metabolites were observed between the PBR and control groups. 
Changes in amino acids and lipid metabolites may be related to stone formation and mucosal inflammation.
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Introduction
Most of the knowledge about epithelial injury, hyper-
plasia, metaplasia, and gallbladder and bile duct cancer 
related to pancreaticobiliary reflux (PBR) is based on the 
study of pancreaticobiliary maljunction (PBM). Recently, 
some scholars have discussed a phenomenon of PBR, 
occult PBR, which occurs in a normal pancreaticobiliary 
junction, and it may play a role in gallstone formation by 
damaging the gallbladder mucosa [1–3].

Many clinical studies have focused on PBR pathogen-
esis. Current research shows that continuous PBR causes 
chronic inflammation and injury to the biliary tract 
mucosa and the gallbladder mucosa. When bile and pan-
creatic enzyme accumulation reaches a high level, acute 
and chronic cholecystitis, common bile duct stones, and 
gallbladder polyps can develop [2]. The reflux of pan-
creatic juice damages the contraction function of the 
gallbladder, which leads to changes in bile components, 
promotes the secretion of mucus proteins, and finally 
forms bile mud and gallstones [4–6]. The currently rec-
ognized carcinogenic mechanism of PBR-related biliary 
tumors is via phospholipase A2 (PLA2), which hydro-
lyzes lecithin into lysophosphatidylcholine (lysoPC), 
damaging the biliary epithelium [7], thereby leading to 
chronic gallbladder inflammation and stone formation. 
The combined effect of this inflammation and stone for-
mation promotes the occurrence of gallbladder cancer 
[8, 9]. The microsatellite instability and mRNA index of 
tumor suppressor gene mutations increased significantly 
in the biliary epithelium of patients with PBR, indicat-
ing that pancreatic juice reflux induced the production 
of mutagenic metabolites and promoted epithelial cell 
carcinogenesis [5, 7]. However, the mechanism by which 
PBR causes gallstone formation remains unclear.

Metabolomics is a newly developed discipline after 
genomics and proteomics, which simultaneously per-
forms the qualitative and quantitative analysis of all low-
molecular-weight metabolites in an organism during a 
specific physiological period [8]. This new technology is 
one of the effective means to understand the pathophysi-
ology of various diseases, disease diagnosis, and bio-
markers, which can help find new biomarkers, discover 
new metabolic pathways or better understand currently 
known metabolic pathways [8, 10, 11]. Bile metabolism 
plays a key role in gallstone disease pathogenesis. How-
ever, no study on bile metabolomics in patients with PBR 
is available.

Here, liquid chromatography–mass spectrometry (LC–
MS) metabolomics was used for the first time to exten-
sively analyze changes in bile sample components in 
patients with and without PBR. We identified potential 
differential bile metabolites, which might provide a theo-
retical basis for elucidating the lithogenic mechanism of 
PBR.

Patients and methods
Patients
This prospective study continuously included patients 
who underwent surgery for gallstones due to biliary colic 
between December 2020 and May 2021 at our hospital.

Here are the exclusion criteria based on preoperative 
assessment: (1) acute cholecystitis, (2) cholangitis, (3) 
acute or chronic pancreatic disease, (4) abnormal serum 
amylase and lipase values, (5) common bile duct stones, 
(6) had undergone preoperative endoscopic cholangiog-
raphy or sphincterotomy, and (7) inability to obtain writ-
ten informed consent. Here are the exclusion criteria 
based on intraoperative assessment: (1) the gallbladder 
filled with thick sticky bile, (2) the small shrunken and 
atrophic gallbladder, (3) the gallbladder with no bile con-
tent at all, and (4) the cystic duct was occluded, and the 
gallbladder was hydropic.

Processing and analysis of bile samples
During the operation, bile (5 mL) was obtained from the 
gallbladder using a syringe, 1 mL was stored in a sterile 
tube at 4 °C, whereas the rest of it was immediately pre-
served at − 80 °C for sample preparation and analysis and 
was sent to the laboratory on the next day. All samples 
were processed and measured by laboratory technicians 
using Roche Cobas c702 (Roche Diagnostics, Basel, Swit-
zerland), and the technicians were not informed of the 
study and source of the samples. The normal value of 
serum amylase is 30–110 U/L.

The origin of amylase in bile is generally attributed to 
serum amylase, which passes through the liver, as well 
as reflux from the pancreatic duct [12]. However, there 
is currently no universally accepted standard for what 
constitutes a ‘normal’ level of amylase in bile. In their 
seminal work, Donaldson et al. [12] carried out intraop-
erative sampling of bile in patients without liver disease 
whose serum hepatobiliary enzyme levels were normal, 
and analysis of the bile revealed no difference between 
the amylase level in bile and the serum amylase level. 
Consistent with the methodologies used in other relevant 
studies [2, 13–15], this study classifies bile amylase levels 
that surpass the established normal plasma thresholds as 
indicative of PBR [2, 14, 16, 17]. In this study, 30 patients 
with gallstones combined with PBR and 30 patients with-
out PBR were included. The control group consisted of 
patients with gallstones combined without PBR.

Metabolite extraction
A total of 100 µL of each sample was transferred to an 
Eppendorf tube. After adding the 400 µL of an extract 
solution (acetonitrile:methanol = 1:1, containing iso-
topically-labeled internal standard mixture), the sam-
ples were vortexed for 30  s, sonicated for 10  min in 
an ice-water bath, and incubated for 1  h at − 40  °C to 
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precipitate proteins. Then the samples were centrifuged 
at 12,000  rpm (RCF = 13,800 × g, R = 8.6  cm) for 15 min 
at 4 °C. The resulting supernatants were transferred to a 
fresh glass vial for further analysis. A quality control sam-
ple was prepared by mixing an equal aliquot of the super-
natants of all samples.

Metabolic profiling of bile
LC–MS/MS analyses were performed using a UHPLC 
system (Vanquish, Thermo Fisher Scientific) with the 
UPLC BEH Amide column (2.1 mm × 100 mm, 1.7 μm) 
coupled with the Q Exactive HFX mass spectrometer 
(Orbitrap MS, Thermo). The mobile phase consisted of 
25 mmol/L ammonium acetate and 25 ammonia hydrox-
ide in water (pH = 9.75) (A) and acetonitrile (B). The auto-
sampler temperature was 4 °C, and the injection volume 
was 2 µL. The QE HFX mass spectrometer was used for 
its ability to acquire MS/MS spectra on information-
dependent acquisition mode in the control of an acqui-
sition software (Xcalibur, Thermo). In this mode, the 
acquisition software continuously evaluates the full scan 
MS spectrum. The ESI source conditions were set as 
follows: sheath gas flow rate, 30 Arb; Aux gas flow rate, 
25 Arb; capillary temperature, 350  °C; full MS resolu-
tion, 60,000; MS/MS resolution, 7500; collision energy, 
10/30/60 in NCE mode; and spray voltage, 3.6 kV (posi-
tive) or − 3.2 kV (negative).

Bioinformatics and statistical analysis
Simca-p 14.1 (Umetrics, Umea, Sweden) was used for 
pattern recognition. After the data were preprocessed 
by Pareto scaling, multivariate statistical analysis was 
performed, including unsupervised principal com-
ponent analysis (PCA) and orthogonal projections to 
latent structure-discriminant analysis (OPLS-DA). To 
perform this analysis, we calculated the variable impor-
tance for the projection (VIP) value and used VIP > 1.0 as 

a screening criterion for differential metabolites. More-
over, commercial databases, including the Kyoto Ency-
clopedia of Genes and Genomes (http://www.genome.jp/
kegg/), were used to search for pathways of bile metabo-
lites. For all analyses, P < 0.05 was considered statistically 
significant.

Results
Characteristics of the study population
No signifcant diferences were found between the groups 
with regard to age, gender, BMI, characteristics of gall-
bladder stones: cholesterol / mixed / pigmented, comor-
bidity: diabetes, hypertension, hypercholesterolemia, 
hypertriglyceridemia(Table  1). The bile amylase level in 
the PBR group was significantly higher than that in the 
Control group (Supplementary Fig. 1).

Multivariate analysis of bile metabolites
The bile samples were characterized by LC–MS in the 
positive and negative ion modes to obtain the mass 
spectra of the two groups of the bile samples. The mass 
spectral data were then processed by multivariate anal-
ysis, which mainly included PCA and OPLS-DA, to 
observe the stability of the whole analysis and distribu-
tion between the samples. PCA was initially conducted 
to generate an outline of the bile metabolites variabili-
ties between patients with PBR, and controls. The PCA 
score chart showed that the samples were within Hotell-
ing’s t-squared ellipse, and a certain separation trend was 
observed between the sample data obtained under the 
positive and negative ion modes, indicating that changes 
in some bile metabolites were related to disease processes 
(Fig. 1A, B).

Moreover, we established an OPLS-DA model based 
on positive and negative ion mode data to further verify 
the separation trend of the metabolic spectrum between 
the two groups. The results revealed a separation trend 

Table 1 Clinical characteristics of gallstone patients with or without PBR
Variables C group (n = 30) PBR group (n = 30) P-value
Gender (M/F) 18/30 19/30 NS
Age (years), median (Q1 - Q3) 54.5 (41.75-63) 57.5 (50.75-65) NS
BMI (kg*m − 2), median (Q1 - Q3) 24 (21–26) 23 (20.75-25) NS
Hypertension, n (%) 30% 23.33% NS
hypercholesterolemia, n (%) 0 3.33% NS
hypertriglyceridemia, n (%) 10.00% 6.67% NS
Diabetes history, n (%) 6.67% 3.33% NS
Amylase levels (U/L), median (Q1 - Q3) 30 (10-52.5) 2520 (975-17500) < 0.001
characteristics of gallbladder stones,n (%)

cholesterol 86.67% 83.33% NS
mixed 6.67% 10.00% NS
pigmented 6.67% 6.67% NS

Data are represented as the median (25th − 75th percentiles) or percentage

C: control, PBR: pancreaticobiliary reflux, M: male, F: female, BMI: body mass index, NS: no significance

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
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between the PBR and benign biliary tract disease groups 
(Fig.  1C, D). As a key model for differential metabolite 
screening, the robustness of OPLS-DA model will signifi-
cantly affect the key conclusions of the entire data analy-
sis. Therefore, we conducted an additional evaluation of 
the robustness of OPLS-DA model. The permutation test 
of the OPLS-DA model showed the original model R2Y is 
close to 1, indicating that the model is more in line with 
the real situation of sample data. Also the permutation 
test demonstrating that the model was well-fit and the 
modes had good explanatory and predictive capabilities 
(Fig. 1E, F).

Screening and identification of differential metabolites
For analyzing differential metabolites classified in the 
two groups of the samples, we considered VIP values 
greater than 1 as a screening criterion for these differen-
tial metabolites. After material identification, 40 metab-
olites showed reliable results (Supplementary Table 1). 
Among these differential metabolites, the levels of four 
metabolites decreased, whereas the levels of the remain-
ing 36 metabolites increased significantly compared with 
those in the control group. These metabolites mainly 
included amino acids and lipid compounds. In the PBR 
group, the levels of PC and PC (20:3 (8Z, 11z, 14z)/14:0) 
decreased significantly, whereas the levels of lysoPC, pal-
mitic acid, and arachidonic acid increased significantly. 
Moreover, an increase in the levels of palmitoleic acid 

and arachidonic acid was observed. The levels of various 
amino acids, including leucine, methionine, and phenyl-
alanine, increased significantly in the PBR group.

Pathway enrichment and metabolic pathway analysis of 
the potential metabolic mechanism
We used the levels of qualitatively significant differential 
metabolites to perform the hierarchical clustering of the 
samples in the two groups. The heatmap showed differ-
ences between the metabolic profiles of the samples in 
the two groups (Fig.  2A). Pathway enrichment analysis 
was performed to identify affected metabolic and signal 
transduction pathways after PBR. The pathway with an 
impact-value threshold above 0.10 was considered the 
potential target pathway [18]. As shown in Fig. 2B, pro-
tein digestion and absorption, mineral absorption, lysine 
degradation, linoleic acid metadata, D-amino acid meta-
data, central carbon metadata in cancer, arginine and 
proline metadata, aminoacyl-tRNA biosynthesis, alanine, 
aspartate, and glutamate metadata, and ABC transport-
ers were significantly different between the two groups. 
The matching status, P-value, −log10 (P-value), and rich 
factor of each pathway are presented in Table  2, which 
indicates that the metabolic pathways of lipids and some 
amino acids changed significantly after PBR.

Fig. 1 Principal component analysis score plots (A and B), Orthogonal projections to latent structure-discriminate analysis (OPLS-DA) score plots (C and 
D), and permutation tests of the OPLS-DA mode (E and F) of bile metabolomic analysis
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Discussion
PBR is closely related to the occurrence and development 
of gallstones [19, 20]. Long-term PBR can cause chronic 
inflammation of the gallbladder mucosa and changes in 
bile composition and ultimately induce the formation of 
gallstones [3, 17]. Chronic inflammatory changes in the 
gallbladder mucosa are often accompanied by decreased 
gallbladder motility and changes in bile transport, 
absorption, and secretion, which can induce gallstone 
formation [21, 22]. Moreover, increased PLA2 levels 
affect the formation of bile salt-lecithin microparticles, 
affecting the dissolution of cholesterol, thereby leading to 
gallstone formation [21, 23]. However, the mechanism of 
PBR that leads to gallstone formation is still unclear, and 
new methods are needed to diagnose PBR. Here, we used 
the LC–MS method to perform the metabolomic analysis 
of the bile samples of 60 patients.

Some scholars have reported that metabolomic analy-
sis can be a new method for diagnosing breast cancer, 
biliary tract cancer, and PBM [24, 25]. Previous results 
showed that the bile metabolites of patients with PBM 
and extrahepatic cholangiocarcinoma were similar, and 
significant differences were observed between the control 

and PBM or extrahepatic cholangiocarcinoma groups. 
Previously, bile metabolomic methods were only used 
for diagnosing bile duct cancer and PBM, and few studies 
are available on their application [25, 26]. Here, we ana-
lyzed many samples. The metabolomic analysis results 
showed that the OPLS-DA model established based on 
the positive and negative ion mode data obtained in this 
study was a good fit and statistically valid [25, 26]. The 
PCA and OPLS-DA models showed sufficient sensitiv-
ity and specificity to distinguish the PBR group from the 
control group. Compared with the control group, the 
levels of 106 bile metabolites related to energy homeo-
stasis, amino acid metabolism, bile acid metabolism, and 
lipid synthesis changed significantly in the PBR group. 
Additionally, potential biomarkers that greatly contrib-
uted to this differentiation were identified and selected 
based on their VIP values for further study. The results 
showed that the levels of PC and PC (20:3 (8Z, 11z, 
14z)/14:0) were significantly lower in the PBR group than 
in the control group, whereas the levels of lysoPC (16:1 
(9z)/0:0), lysoPC (15:0), lysoPC (16:0), palmitic acid, leu-
cine, methionine, L-tyrosine, and phenylalanine were 
significantly higher in the PBR group than in the control 

Table 2 Results of pathway enrichment analysis of signifcant metabolites
No. Pathway Total Hits number Raw p -log10(p) Rich factor
1 D-Amino acid metabolism 40 15 9.88538E-17 16.0050 0.224
2 Protein digestion and absorption 40 13 7.66515E-16 15.1154 0.277
3 Central carbon metabolism in cancer 40 11 7.23559E-14 13.1405 0.297
4 Aminoacyl-tRNA biosynthesis 40 12 1.32113E-13 12.8790 0.231
5 Mineral absorption 40 7 1.98608E-08 7.70200 0.241
6 ABC transporters 40 11 2.38156E-07 6.62314 0.079
7 Arginine and proline metabolism 40 6 0.0001193 3.92311 0.086
8 Lysine degradation 40 5 0.0002249 3.64786 0.1
9 Alanine, aspartate and glutamate metabolism 40 4 0.0002512 3.59984 0.143
10 Linoleic acid metabolism 40 4 0.0002512 3.59984 0.143

Fig. 2 Potential metabolic pathways in patients with pancreaticobiliary reflux (PBR). (A) Hierarchical cluster analysis heatmap of the bile metabolic pro-
files of the PBR and control groups. Red represents upregulation, whereas blue represents downregulation. Each column represents an individual sample, 
and each row represents a compound. (B) Bubble plot of the potential metabolic pathways in the PBR group
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group. A strong correlation between the formation of 
gallstones and the high level of amylase in the gallblad-
der bile of patients with PBR has been observed [2, 15, 
27], and PBR is usually caused by the reflux of pancre-
atic juice to the biliary tract, resulting in metabolic disor-
ders of bile compounds, especially amino acid and lipid 
metabolism disorders, which lead to chronic inflamma-
tion and biliary mucosal damage [19, 25].

Many studies have shown that disorders of lipid profiles 
play a pivotal pathogenetic role in the initiation and pro-
gression of gallstones and gallbladder carcinoma (GBC) 
[25, 28]. LysoPC is one of the major lysophospholipids 
and is mainly generated by PC hydrolysis. PC is synthe-
sized in liver cells, and its main function in bile is to form 
mixed micelles with bile acids and cholesterol to improve 
cholesterol solubility, which is important to ensure the 
stability of mixed micelles. PC also exerts cytoprotective 
effects and reduces the damage of the biliary epithelium 
caused by bile acids [29, 30]. After pancreatic juice reflux 
in the biliary tract, activated PLA2 hydrolyzes PC, result-
ing in decreased PC content in bile [17], which contrib-
utes to gallstone formation [31, 32]. LysoPC is mainly 
produced by the hydrolysis of PC by PLA2 [23]. LysoPC 
exhibits cytotoxicity by inducing biliary epithelial cell 
injury, and ultimately causing gallstone formation and 
biliary cancer [33]. Lyso-PC can increase the secretion of 
gallbladder mucin in cats and other animals and promote 
the formation of stones [34, 35]. Here, compared with the 
control group, PC in the bile of the PBR group decreased, 
and lysoPC increased significantly. Therefore, we specu-
late that Lyso-PC plays a role in promoting the forma-
tion of gallstones and the occurrence of biliary tumors in 
patients with PBR. Patients with biliary tract cancer were 
not included in this study. Therefore, a subsequent com-
parison of bile samples from patients with biliary tract 
cancer and those with simple gallstones are needed to 
verify our hypothesis.

It is believed that changes in bile composition caused 
by various reasons, including changes in cholesterol, 
phospholipids, and free fatty acids (FFA), are one of the 
main reasons for gallstone formation [36, 37]. Bile FFAs 
play an important role in maintaining the stable dissolu-
tion of cholesterol, and palmitic acid is the main com-
ponent in this process [38]. Some studies have revealed 
that the total FFA content in the bile of patients with 
gallstones is significantly higher than that in normal 
individuals. Moreover, many unsaturated FFAs can dam-
age the gallbladder mucosa and gallbladder contraction 
function and promote the high secretion of gallbladder 
mucin. All these factors play a positive role in gallstone 
formation [38]. Previous study showed that the total FFA 
content in the bile of patients with PBR was significantly 
higher than that in the control group [39]. Interestingly, 
here we found that palmitic acid increased significantly 

in patients with PBR, which might play an active role in 
gallstone formation.

PLA2 plays a crucial role in arachidonic acid metabo-
lism and secretion and is upregulated in patients with 
multiple cholesterol stones [40]. After pancreatin reflux 
in the biliary tract, the concentration of PLA2 in bile 
increased. Some studies have shown that arachidonic 
acid damages the gallbladder mucosa, causing the high 
secretion of mucin, which plays an important role in 
stone formation [23, 41]. The present results showed 
that arachidonic acid increased significantly in the bile of 
patients with PBR. Therefore, arachidonic acid metabo-
lism may play an active role in gallstone formation in 
patients with PBR.

Phenylalanine is an essential amino acid that partici-
pates in the synthesis of important neurotransmitters and 
hormones, including tyrosine, and in glucose metabo-
lism and fat metabolism [42]. A study showed that the 
abnormal proliferation of malignant tumors in the early 
and middle stages of lung cancer caused normal cell 
stress reactions, resulting in a significant increase in tyro-
sine concentration [43]. Other studies have shown that 
a diet restricted with phenylalanine inhibits the growth 
and metastasis of several malignancies [44]. We found 
that phenylalanine and tyrosine in the bile of patients 
with PBR increased significantly. The GBC incidence in 
patients with PBR in Japan is 200 times higher than that 
in patients with non-PBM [45]. We believe that a sig-
nificant increase in phenylalanine and tyrosine may be 
related to the mechanism of biliary carcinogenesis in 
patients with PBR. The present results are consistent with 
those of a bile metabolomic study on biliary tract cancer 
[25].

Here, we performed bile metabolomic analysis to com-
pare bile metabolites between patients with PBR and 
control individuals. To the best of our knowledge, this is 
the first study on the bile metabolomic analysis of PBR, 
which is a novelstudy with clinical application value. We 
found that bile lithogenic and carcinogenic metabolites 
were significantly different between the PBR and con-
trol groups, which would help identify high-risk groups 
for benign and malignant biliary diseases. However, the 
present study has some limitations. First, the number of 
patients included is relatively small. Hence, we are plan-
ning to perform a validation study consisting of more bile 
samples of PBR with gallstones. Second, this is a prelimi-
nary study. Nevertheless, the results provide a basis for 
further studies on the mechanism of gallstone formation 
in PBR.

Conclusion
The results indicated that LC–MS-based metabolomics 
was an effective and promising approach for identifying 
patients with PBR and bile-specific metabolites, which 
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might help elucidate the PBR mechanism that leads to 
gallstone formation. Bile metabolites in patients with 
PBR changed significantly compared with those in the 
control group. Therefore, patients with PBR can be con-
sidered high-risk groups for gallstone formation.
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