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Abstract
Several studies have shown significant involvement of tumor-associated macrophages (TAMs) in the tumor 
microenvironment and cancer progression. However, no data on reliable TAM-related biomarkers are available 
for predicting the prognosis of patients with colorectal cancer (CRC). We analyzed the clinical data and gene 
expression profiles of patients with CRC from databases. The single-cell transcriptomic data was applied to identify 
M2-like TAM-related differentially expressed genes. Univariate Cox and least absolute shrinkage and selection 
operator regression analyses were used to determine the prognostic signature genes. Then, seven key genes were 
screened to develop the prognostic signature. In the training and external validation cohorts, the overall survival 
(OS) of patients in the high-risk group was significantly shorter compared to the low-risk group. Consequently, we 
created a nomogram that could accurately and reliably predict the prognosis of patient with CRC. A significant 
correlation was observed between the patient’s prognosis, clinical features, sensitivity to anticancer drugs, TME, and 
risk scores. Moreover, risk score was strongly related to the response to immunotherapy in patients from GSE91061, 
GSE78220, and GSE60331 cohorts. Finally, high expression of HSPA1A, SERPINA1, CXCL1, and low expression of 
DNASE1L3 were found in human CRC tissue and normal tissue by using qRT-PCR. In conclusion, the M2-like 
TAM-related prognostic signature could predict the survival, prognosis, and response of patients with CRC to 
immunotherapy, which sheds light on the role of TAMs in CRCs and enhances our understanding of TAMs.
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Introduction
Colorectal cancer (CRC) is the third most prevalent can-
cer worldwide [1]. It accounts for 10.2% of incidences and 
9.2% of mortalities associated with cancers [2]. Despite 
advancements in therapeutic strategies for CRC, the 
prognosis of patients is still poor [3]. Furthermore, our 
understanding of immunotherapy in CRC is still limited. 
Therefore, it is necessary to explore and identify bio-
markers that can predict the prognosis and aid in design-
ing treatment strategies for patients with CRC.

Numerous studies have shown that tumor microen-
vironment (TME) contributes to tumor progression in 
CRC [4, 5]. In fact, most cells in TME are immune cells. 
Among all immune cells infiltrating TME, one of the 
most abundant immune cell types is tumor-associated 
macrophage (TAM) [6]. M2-type macrophages secrete 
high levels of anti-inflammatory stimuli and cytokines, 
like IL-10 and TGF-β1, that stimulate tumor growth and 
progression [5, 7]. TAMs often exhibit the M2 pheno-
type. Recent studies have shown an association between 
high macrophage levels and poor prognosis as well as 
an advanced stage of CRC. Badawi et al. demonstrated a 
high infiltration level of macrophages in TME of patients 
with colon carcinoma compared to adenomatous colon 
polyps [8]. Furthermore, M2 macrophage-derived exo-
somes transfer specific miRNAs to cancer cells, thus pro-
moting invasion and metastasis of cancers like CRC [9, 
10]. However, to date, no TAM-related biomarkers have 
been discovered and confirmed that can accurately pre-
dict the prognosis of patients suffering from CRC.

Recently, immunotherapy has been widely used as an 
optimal therapeutic approach for treating patients with 
carcinomas. M2-like TAMs display immunosuppressive 
characteristics [10]; hence the concurrent use of anti-
M2 macrophages and immune checkpoint inhibitors 
(ICIs) could improve the therapeutic efficacy of existing 
strategies and may also aid in designing new therapeu-
tic approaches [11]. Antitumor immunity is activated 
via ICIs, such as antibodies targeting cytotoxic T-Lym-
phocyte antigen-4 (CTLA-4) and anti-programmed cell 
death 1 (PD-1) [7, 12]. Hence, elucidating the role of 
TAMs in the pathogenesis of cancer will help predict the 
prognosis and develop new immunotherapeutic strate-
gies for treating patients with CRC.

However, the mechanism underlying the impact of 
TAMs on TME characteristics and the efficacy of immu-
notherapy in CRC is still unexplored. In this study, we 
have analyzed the single-cell, and bulk RNA sequenc-
ing data of patients with CRC. Next, we identified a 
novel M2-like TAM-related prognostic signature and 
constructed a reliable nomogram to predict the OS of 
patients with CRC. Further, we explored the poten-
tial intercorrelations between clinical features, TME, 
response to immunotherapy, and risk scores. Our results 

showed a link between clinical outcomes and response 
to immunotherapy in patients with CRC and M2-like 
TAMs.

Materials and methods
Data acquisition and processing
The GSE132465 dataset consisting of single-cell RNA-
sequencing (scRNA-seq) data of 33 samples (23 primary 
CRC and 10 normal tissues) were retrieved from the 
Gene Expression Omnibus (GEO) database. The process-
ing of scRNA-seq data was performed using the “Seurat” 
package [13]. The cells expressing < 15% mitochondrial 
genes and with > 200 genes detected in > 3 cells were 
retained. Principal component analysis (PCA) and uni-
form manifold approximation and projection (UMAP) 
were used for identifying clusters. Different cell clus-
ters were annotated using the “SingleR” package [14] 
and the CellMarker database. The bulk RNA sequenc-
ing and clinical data of patients with CRC (READ and 
COAD) were obtained from The Cancer Genome Atlas 
(TCGA) database. The datasets retrieved from GEO, like 
GSE39582, were used as independent validation cohorts, 
and GSE91061, GSE78220, and GSE60331 were used as 
immunotherapy cohorts.

Identification and enrichment of differentially expressed 
genes (DEGs)
We screened M2-like TAM-related DEGs (M2RDEGs) 
from the M2 clusters between CRC and normal tissues 
using the “FindMarkers” function of the “Seurat” pack-
age. The “limma” package was used to screen M2RDEGs 
on the basis of the following parameters: P.adj < 0.05 and 
|Log2fold change| > 1. The volcano plot was generated 
using the “ggplot2” package. The “heatmap” package was 
used for creating the heatmap plot. The “clusterProfiler” 
package [15] was used for performing functional enrich-
ment analyses.

Construction and validation of the risk model
We conducted univariate Cox regression analysis to 
investigate the correlation between M2RDEGs and the 
OS of patients. The threshold of P value was 0.05. The 
“glmnet” package was used to perform “least absolute 
shrinkage and selection operator (LASSO) regression 
analysis” to determine the optimum signature genes and 
construct a risk model using expression profiles obtained 
from TCGA-CRC cohort. The following formula was 
applied to compute the risk score:

 Σn
i=1 = expi × βi

.Here, the βi: the regression coefficient for a gene.
expi: the expression value of a prognostic gene for a 

patient.
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n: the number of prognostic genes.
The median risk score was utilized to split the patients 

with CRC into high- and low-risk groups. Kaplan-Meier 
(KM) survival analysis was performed for survival differ-
ence of cohorts with different risk score using the “Sur-
vival” and “survminer” packages. The “survivalROC” 
package was applied to create the Receiver operating 
characteristic (ROC) curves.

Gene set variation analysis (GSVA)
The “GSVA” package was required to perform GSVA. 
MsigDB database was used to obtain reference gene sets 
like Gene Ontology (GO) gene sets biological processes 
(BP), GO cellular processes (CC), molecular processes 
(MP), and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) gene sets [16]. The pathways with P.adj < 0.05 
were deemed to be statistically significantly different.

Correlation analysis between risk score and TME
We analyzed the expression of immune checkpoints in 
patients in two groups. Then, the “ESTIMATE” algorithm 
was utilized to obtain the stromal and immune scores for 
all patients. The “ssGSEA” package was used to calculate 
EMT scores based on the expression of epithelial-mes-
enchymal transition (EMT)-related genes. The stemness 
index per mRNA expression (mRNAsi) was obtained 
from the Progenitor Cell Biology Consortium database 
[17].

Risk score predicts immunotherapy response and 
anticancer drug sensitivity
Patients in immunotherapy cohorts were classified into 
partial (PR) and complete responses (CR), progressive 
(PD) and stable diseases (SD) subgroups. According to 
the median risk score, these patients were separated into 
high- and low-risk groups. The half-maximal inhibitory 
concentrations (IC50) values of different chemotherapeu-
tic drugs were calculated using the “pRRophetic” package 
[18].

Relationship between risk scores and clinical features
For the clinical correlation analysis, the relationship 
between clinicopathological parameters like tumor and 
pathologic TNM stage and risk scores. The differences 
of risk score among three or more than three groups 
were analyzed using Kruskal–Wallis test and exhibited 
through “ggplot2” package. Wilcoxon-ranked sum test 
was employed to investigate the differences between two 
groups.

Establishment and assessment of the nomogram
We integrated the risk scores and clinical features, and 
performed univariate and multivariate Cox regression 
analyses. The “regplot” package was used for constructing 

a nomogram. We created a calibration plot using the 
“rms” package.

Collection of clinical samples
Five human CRC and adjacent normal tissues were 
obtained from patients with CRC and received surgery at 
The Affiliated Hospital of Youjiang Medical University for 
Nationalities from December 2022 to February 2023. The 
utilization of clinical samples followed the guidelines of 
the Ethics Committee of the hospital. Informed consent 
was obtained from all participants.

Validating the expression of signature genes using 
quantitative real-time PCR (qRT-PCR)
Total RNA was extracted from clinical tissue samples 
(CRC and pared normal tissue) referenced to our previ-
ous study [19]. Then, qPCR was performed with an SYBR 
Green Master mix (Q111-02; Vazyme Biotech; Nanjing, 
China). The reactions repeated three times. Gene expres-
sion was quantitated via the 2 − ΔΔCt method and then 
normalized to GAPDH.

Statistical analyses
R 4.1.3 and Rstudio 2022.02.0 were used to perform 
data and statistical analyses. Spearman’s coefficient was 
used to perform correlation analyses. Wilcoxon-ranked 
sum test was used to investigate the differences between 
two groups. The differences among three or more than 
three groups were analyzed using Kruskal–Wallis test. 
* P < 0.05, ** P < 0.01, *** P < 0.001, or **** P < 0.0001 was 
used to indicate statistical significance.

Results
Processing of scRNA-seq data
After quality control, a total of 56,652 cells and 25,655 
genes were used for downstream analysis. More detailed 
information of quality control is showed in Supple-
mentary Fig.  1A-D. Twenty-five cell clusters were iden-
tified (Fig.  1A, Supplementary Fig.  2A). Overall, we 
identified 10 cell types, including B cells, macrophages, 
epithelial cells, endothelial cells, monocytes, neurons, 
NK cell, smooth muscle cells, tissue stem cells and T cells 
(Fig. 1B). Figure 1 C shows the proportion of different cell 
types in tumor and normal subsets. Macrophages were 
further divided into 10 clusters. CD86 and STAT1 were 
the specific markers for M1 macrophages, and MRC1 
and CD163 were the markers for M2 macrophages [20, 
21]. The expression of four marker genes in ten clusters is 
shown in Fig. 1D and Supplementary Fig. 2B. All macro-
phages were classified into three sub-types: M1, M2, and 
the unknown (Fig. 1E). The cell number of different types 
of macrophages is shown in Fig. 1F. The results revealed 
high infiltration of macrophages, specifically M2-like 
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TAMs in tumor tissue, thus indicating the significance of 
M2 macrophages in tumor progression.

Identification and functional enrichment of M2RDEGs
We identified 80 M2RDEGs, of which 48 DEGs were 
upregulated, and 32 were downregulated (Fig.  2A). The 
heatmap shows the expression of the top 20 M2RDEGs 
(Fig.  2B). GO results indicated that M2RDEGs were 

Fig. 1 Processing of scRNA-seq data. (A) UMAP plot shows all the single cells from 33 CRC samples. (B) Annotation of cell clusters. M2 macrophages 
are shown in deep blue and circled by a dotted line. (C) A histogram shows the proportion of different cell types in tumor and normal subsets. (D) The 
expression of four marker genes in ten macrophage clusters. (E) UMAP plot of three cell sub-types of macrophages, M1 macrophage, M2 macrophage, 
and the unknown. (F) The cell number of different types of macrophages in tumor and normal subsets
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Fig. 2 Identification and functional enrichment of M2RDEGs. (A) A volcano plot shows M2RDEGs that are upregulated (red) or downregulated (green) in 
M2 clusters between tumor and normal tissues. The top five upregulated genes and top five downregulated genes are labeled. (B) A heatmap shows the 
top 20 significantly expressed M2RDEGs. (C) GO and KEGG [16] (D) enrichment results of the 80 M2RDEGs. Identification of prognostic signature genes. 
(E) The forest plot shows the results of univariate cox regression of seven prognostic genes. Genes with Hazard Ratio < 1 were negatively associated with 
prognosis, and vice versa. (F, G) Lasso COX regression analysis was conducted to identify the best prognostic signature genes for constructing the risk 
model
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enriched in processes like leukocyte cell-cell adhesion, 
antigen processing and presentation, and collagen-con-
taining extracellular matrix (Fig. 2C). The KEGG results 
showed that M2RDEGs were enriched in the interleu-
kin-17 signaling pathway and pathways linked to anti-
gen processing and presentation (Fig. 2D). These results 
revealed that M2RDEGs were strongly correlated with 
biological processes and pathways associated with the 
immune system.

Construction and validation of the risk model
Univariate Cox regression analysis revealed a significant 
correlation between seven M2RDEGs and the prognosis 
of patients (Fig. 2E). Next, LASSO regression analysis was 
performed on these seven M2RDEGs (Fig.  2F-G). The 
risk scores were calculated using the following formula:

risk score = (-0.050 * DNASE1L3 exp) + (0.152 * 
HSPA1A exp) + (-0.080 * SERPINA1 exp) + (0.011 * 
HSPA1B exp) + (-0.132 * CXCL1 exp) + (-0.108 * IL7R 
exp) + (0.182 * G0S2 exp).

The patients with high risk score in TCGA-CRC 
(Fig.  3A) and validation cohorts (Fig.  3B) had a shorter 
survival time. The KM survival curves show a signifi-
cantly more unfavorable OS of patients in the high-risk 
compared to the low-risk group (Fig.  3C-D). The ROC 
curve indicates that the predictive efficacy of risk score 
was good. In TCGA-CRC cohort, the AUC values for 
the 3-year period were 0.64, 0.67 for the 5-year period, 
and 0.64 for the 7-year period (Fig. 3E). In the GSE39582 
cohort, the AUC values for the 3-year were 0.61, the 
5-year was 0.60, and the 7-year was 0.62 (Fig. 3F). Over-
all, the risk score demonstrated robust accuracy in pre-
dicting the prognosis of patients in both the training and 
validation cohorts.

GSVA analysis between two risk groups
In patients in the low-risk group, the pathways like CCR6 
chemokine-receptor binding were enriched, and the 
pathways like ECM receptor interaction were enriched in 
the high-risk group. These pathways are, to some extent, 
related to the biological process of immune activation; 
hence, their involvement should be investigated further. 
Figure 4 A-D shows the top two most significantly differ-
ent pathways.

Correlation between risk score and TME
A total of 24 immune checkpoint genes expressed dif-
ferently. The expression of CTLA4, LGALS9, and CD44 
were significantly higher in patients in high-risk group 
(Fig.  5A), whereas TNFRSF25, TNFSF4, and ICOSLG 
were highly expressing in low-risk group. Figure  5B 
demonstrated a significant (P = 0.0006, R = -0.14) nega-
tive correlation between the immune scores and risk 
scores. Figure 5 C shows a significant positive correlation 

(P = 8.7e-08, R = 0.22) between the stromal scores and risk 
scores. Further, a significant positive correlation (P = 1.6e-
11, R = 0.27) was observed between the EMT scores and 
risk scores (Fig.  5D), whereas a significant (P = 7.1e-07, 
R = -0.2) negative correlation was observed between 
mRNAsi and risk scores (Fig. 5E). These results indicate 
a difference in the tumor immune microenvironment 
between high-risk and low-risk groups. Hence, novel tar-
gets for immunotherapy should be explored.

Risk score predicts immunotherapy response and 
anticancer drug sensitivity
We further analyzed if risk scores could predict a patient’s 
response to immunotherapy. Figure  5  F-H shows the 
number of patients who responded or did not respond 
to immunotherapy in three independent immunotherapy 
cohorts. A higher CR/PR proportion was observed in the 
low-risk group compared to the SD/PD group. The che-
motherapeutic drugs with lower IC50 values had higher 
efficacy in treating cancer. Figure 6 A shows that patients 
in the high-risk group could be highly sensitive to dasat-
inib and imatinib. Furthermore, patients in the low-risk 
group could be more sensitive to gemcitabine and met-
formin. These results may help in designing therapeutic 
strategies on the basis of the risk score of patients.

Relationships between risk score and clinical features
Figure 6B-E shows a significant positive link between the 
risk score and tumor stages (I, II, III, and IV), pathologic 
T stages (T1/T2, T3, and T4), pathologic N stages (N0, 
N1, and N2) and pathologic M stages (M0, M2). Signifi-
cant correlations were observed between risk score and 
clinical parameters. In addition, stratified analyses were 
performed to analyze the survival differences between 
patients with different clinical characteristics in different 
risk groups. In the survival analysis based on pathologic 
T stage, there was a significant difference between the 
high- and low-risk groups at T3. According to pathologic 
M stage, there was a significant difference at M0 stage 
(Supplementary Fig.  3). Thus, a high risk score could 
indicate tumor progression and poor clinical outcomes.

Establishment and assessment of the nomogram
Univariate COX regression and multivariate COX 
regression analyses demonstrated a significant correla-
tion between the risk scores, age, tumor stage, patho-
logic TNM stages, and the survival of patients with CRC 
(Fig.  7A-B). Next, a nomogram was constructed, which 
could better predict the patient’s prognosis (Fig. 7C). The 
calibration curve indicated that the nomogram demon-
strated great accuracy and was reliable in predicting the 
prognosis of patients with CRC (Fig. 7D).
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Fig. 3 Validating the risk model. (A, B) Risk score distribution and scatter plots of the survival status in patients from TCGA-CRC and GSE39582 cohorts. 
Blue dots denote low risk scores, and red dots denote high risk scores. (C, D) Kaplan–Meier survival curves show a significant difference in the prognosis 
of patients from TCGA-CRC and GSE39582 cohorts. The prognosis of patients in the low-risk groups was better. (E, F) ROC curves and their AUC values 
for 3-, 5-, and 7-year OS.
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Expression of signature genes and validation by qRT-PCR
The mRNA expression of seven prognostic signature 
genes in patients in the TCGA-CRC were analyzed 
(Fig.  8A). All genes, excluding IL7R, shows significant 
expression differences. Further, K-M curves were plotted 

to investigate the correlation of signature genes expres-
sion and patient survival based on the corresponding 
overall survival (OS), disease-specific survival (DSS), 
disease-free interval (DFI), and progression-free interval 
(PFI) data. As showed in the KM plots (Fig. 8B-G), high 

Fig. 4 Gene set variation analysis (GSVA). (A-D) The results of GO: BP, GO: CC, GO: MF and KEGG pathway enrichment analysis
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Fig. 5 Correlation between tumor immune microenvironment, immunotherapy response and risk score. (A) The expression of immune checkpoint 
genes in patients in the two risk groups from TCGA-CRC. Spearman’s correlation analysis of the immune score (B), stromal score (C), EMT score (D), 
mRNAsi (E) and risk score. (F) A bar plot shows the proportion of CR/PR and SD/PD in patients in the high- and low-risk groups from GSE91061, GSE78220 
(G), and GSE60331 cohort (H). * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001
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expression of DNASE1L3 and SERPINA1 indicates a bet-
ter prognosis of patients with CRC. Whereas patients 
with high expression of HSPA1A and HSPA1B had a low 
probability to survive. Likewise, in DSS analysis, except 
for DNASE1L3 and IL7R, the significant survival differ-
ences of other genes were observed based on high- and 
low-expression groups. In DFI analysis, except for G0S2, 
the survival difference of other genes was significant. 

In PFS analysis, all genes showed significant differences 
between high- and low-expression groups (Supplemen-
tary Figs. 4–6).

Then, qRT-PCR analysis was performed. The mRNA 
expression of DNASE1L3 is lower in human CRC tissue 
than that in normal tissue (Fig.  8H). On the contrary, 
HSPA1A, SERPINA1 and CXCL1 are highly expressed in 
human CRC tissue (Fig. 8I-K).

Fig. 6 Drug sensitivity and clinical features. (A) The IC50 values of dasatinib, imatinib, gemcitabine and metformin in two risk groups. The relationship 
between risk score and clinicopathological characteristics: Tumor stage (B), pathologic T (C), pathologic N (D) and pathologic M (E). (Wilcoxon and/or 
Kruskal-Wallis test). * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, ns no statistical difference
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Discussion
The TME plays a crucial role in the onset progression 
of various cancers [22, 23]. Macrophages are a major 
immune cell type of TME and are involved in angiogen-
esis, invasion, and metastasis of cancer cells, regulation 
of the TME, and drug resistance [24]. Mounting evidence 
has suggested the involvement of TAMs in the interac-
tions between TME and CRC cells [25–27]. Nevertheless, 
few studies have explored multiple TAM-related prog-
nostic markers and the relationship between TAMs and 
TME in CRC.

In current study, we investigated the M2-like TAM-
related genes combining single cell and bulk RNA-seq 
data of patients with CRC. We conducted univariate and 
LASSO Cox regression analyses to identify key genes 
affecting the progression of CRC. Seven prognostic sig-
nature genes were identified. Next, a risk model based 
on these seven prognostic signature genes was validated 
on independent validation cohorts and demonstrated 
good performance. A nomogram based on clinical fea-
tures (age, tumor stage, pathologic T stage) and the risk 
scores could effectively predict patient prognosis. Finally, 

Fig. 7 Construction and assessment of nomogram. (A, B) Univariate and multivariate Cox regression analyses of prognostic factors in TCGA cohort. (C) 
Nomogram was constructed by incorporating risk score and clinical indicators. (D) The calibration curve showed that the nomogram had good accuracy 
in predicting prognosis
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our results validated that the risk scores could be an inde-
pendent predictor of the prognosis in patients with CRC. 
Higher mortality and higher/advanced tumor stage and 
pathologic T stage were observed in patients with higher 
risk scores. Together, this indicates that we developed a 
robust M2-like TAM-related prognostic signature that 
demonstrated good performance in predicting the prog-
nosis and survival of patients with CRC, thereby contrib-
uting to developing M2-like TAM-related biomarkers.

Studies have shown the involvement of prognos-
tic signature genes in tumor progression and metasta-
sis, thereby contributing significantly to CRC onset and 

progression. For example, Serpin Family A Member 1 
(SERPINA1) encodes for alpha-1 antitrypsin (A1AT) pro-
tein, which regulates the invasive and metastatic capaci-
ties of various cancers like lung, gastric, and CRC [28]. 
A study has shown a positive correlation between A1AT 
levels and the stage of CRC progression [29]. An increase 
of A1AT was observed in the blood of patients with CRC 
and has a superior accuracy and specificity than carcino-
embryonic antigen [30]. Chemokine ligand 1 (CXCL1) 
is overexpressed in CRC. Zhou et al. performed immu-
nohistochemistry and revealed a significant increase 
in CXCL1 expression of CRC tissues compared to the 

Fig. 8 Investigating the signature genes and validation using qRT-PCR. (A) The mRNA expression of DNASE1L3, HSPA1A, SERPINA1, HSPA1B, CXCL1, IL7R, 
and G0S2 in patients from TCGA-CRC. (B-G) Kaplan–Meier survival curves of seven signature genes showed significant difference of prognosis in TCGA. 
(H-K) The mRNA expression of DNASE1L3, HSPA1A, SERPINA1, and CXCL1 were analyzed by qRT-PCR with human CRC and normal tissue. * P < 0.05, ** 
P < 0.01, *** P < 0.001, ns no statistical difference
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adjacent normal tissues to determine CXCL1 expression 
in CRC and normal tissues [31]. Additionally, CXCL1 is 
an independent biomarker that could predict the progno-
sis of patients with CRC [2, 31]. Deoxyribonuclease 1-like 
3 (DNASE1L3) is secreted by macrophages and could be 
an independent prognostic marker to predict survival 
outcomes in patients following radical liver cancer resec-
tion [32, 33]. In our study, the mRNA expression level of 
DNASE1L3 is lower in the cancer samples than that in 
normal samples. On the contrary, HSPA1A, SERPINA1 
and CXCL1 are highly expressed in tumor tissues. How-
ever, few studies have investigated the underlying mecha-
nism of HSPA1A, HSPA1B, IL7R, and G0S2 in CRC.

Immune cells form the primary component of the 
TME, of which macrophages account for approximately 
30–50% of the total immune cells [9]. In our study, the 
levels of M2 macrophages were higher in CRC tissues 
compared to normal tissues. Previous studies have dem-
onstrated that an increase in levels of M1 macrophages 
could be a protective factor, whereas high levels of M2 
macrophages could be a risk factor for patients with CRC 
[27]. The results of our study are in line with previous 
studies. TAMs induce immune suppression by express-
ing inhibitory receptors ligands of immune checkpoints 
[27, 34]. An increase in the expression of CTLA4 and 
Indoleamine-2,3-Dioxygenase (IDO) was observed in the 
patients in the high-risk group. Whereas in patients in 
the low-risk group, an increase in TNFRSF25, TNFSF4, 
and ICOSLG expression was observed. ICIs are promis-
ing treatment strategies for cancer and have been suc-
cessfully exploited for treating various cancers such as 
bladder, lung, melanomas, and CRC [35]. Inhibiting PD-
L1, CTLA4, and LAG3 could increase the levels of CD8+ 
T cells and CD4+ T cells and decrease levels of regulatory 
T cells, thereby enhancing anticancer immune response 
[36]. High IDO expression level is observed in macro-
phages and tumor cells, and IDO expression indicates 
poor prognosis in patients [36, 37]. Currently, clinical 
trials are evaluating the efficacy of small-molecule inhibi-
tors targeting IDO for reestablishing positive immune 
responses. During preclinical studies, a synergistic effect 
of ICIs and TAM repolarization was observed, which 
enhances the activation and infiltration of CD8+ cyto-
toxic T cells in tumors [38, 39]. Moreover, in our study, 
the patients in the low-risk group of independent cohorts 
showed a greater likelihood of responding to treatment 
with immunotherapy like ICIs, which confirms that the 
risk score could predict a patient’s response to immu-
notherapy. Growing evidence has shown a strong asso-
ciation between macrophages and immune, EMT, and 
stromal scores [6]. TAMs promote EMT and invasion 
of tumor cells by increasing cytokines and TGF-β levels. 
Furthermore, aberrant EMT activation is associated with 
tumor aggressiveness, cancer progression, and increased 

CRC relapse [6]. In our study, the risk score was distinctly 
related to EMT and stromal scores. TAMs induce che-
moresistance by promoting cell survival and antiapop-
totic signals, thereby inducing pro-tumor polarization 
in the TME [40]. A study has shown that Macrophages 
derived exosomes enriched in miR-223 induce chemo-
resistance in gastric tumor cells [41]. Thus, repolariza-
tion or ablation of M2-like TAMs could benefit cancer 
therapy. Our results demonstrated high sensitivity to 
dasatinib and imatinib in patients in the high-risk group, 
whereas patients in the low-risk group exhibited a higher 
sensitivity to drugs like gemcitabine and metformin. 
Interestingly, metformin is traditionally used to treat 
type П diabetes. Recently, studies have demonstrated 
that metformin mediates anti-inflammatory and antican-
cer effects. Kang et al. showed that metformin activates 
AMPK, downregulating the mevalonate pathway, thereby 
reducing the infiltration of M2 macrophage [5]. Thus, 
metformin could regulate immune cells in the TME; 
therefore, it could be considered as a promising preven-
tion and treatment strategy for treating CRC. Together, 
these previous findings and our results indicates that 
treatment strategies using macrophages alone or in com-
bination could improve their therapeutic efficacy.

However, our study has some limitations. First, tumor 
heterogeneity could cause sampling bias, leading to dif-
ferences in macrophage levels in each sample. Secondly, 
there is more or less subjectivity while annotating the 
cell clusters. This is a common concern during single-
cell analysis. Third, the underlying mechanism of TAMs 
and CRC cell interaction is yet to be explored; our results 
should be verified by performing multicenter clinical and 
further experimental studies. Finally, large sample size 
population-based prospective studies are required to 
enhance our understanding of TAMs and TAM-related 
prognostic signature.

In summary, we analyzed single-cell and bulk RNA 
sequencing data of patients with CRC to explore the 
promising M2-like TAM-related prognostic biomarkers 
for CRC. The new M2-like TAM-related prognostic sig-
nature could improve our understanding of the TME of 
CRC and could be used in clinical settings for predicting 
the prognosis and designing potential immunotherapeu-
tic strategies for patients with CRC.
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