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Abstract 

Background Infiltration of CD8 + T cells in the tumor microenvironment is correlated with better prognosis in vari-
ous malignancies. Our study aimed to investigate vital genes correlated with CD8 + T cell infiltration in stomach 
adenocarcinoma (STAD) and develop a new prognostic model.

Methods Using the STAD dataset, differentially expressed genes (DEGs) were analyzed, and co-expression networks 
were constructed. Combined with the CIBERSORT algorithm, the most relevant module of WGCNA with CD8 + T cell 
infiltration was selected for subsequent analysis. The vital genes were screened out by univariate regression analysis 
to establish the risk score model. The expression of the viral genes was verified by lasso regression analysis and in vitro 
experiments.

Results Four CD8 + T cell infiltration-related genes (CIDEC, EPS8L3, MUC13, and PLEKHS1) were correlated 
with the prognosis of STAD. Based on these genes, a risk score model was established. We found that the risk score 
could well predict the prognosis of STAD, and the risk score was positively correlated with CD8 + T cell infiltration. 
The validation results of the gene expression were consistent with TCGA. Furthermore, the risk score was significantly 
higher in tumor tissues. The high-risk group had poorer overall survival (OS) in each subgroup.

Conclusions Our study constructed a new risk score model for STAD prognosis, which may provide a new perspec-
tive to explore the tumor immune microenvironment mechanism in STAD.

Keywords Stomach adenocarcinoma, CD8 + T cells, Immune infiltration, Tumor microenvironment, Prognostic 
biomarkers

Introduction
 Gastric cancer (GC) is the third leading cause of cancer 
death worldwide [1–3]. According to latest cancer statis-
tics information, 1,958,310 new cancer cases and 609,820 

cancer deaths are projected to occur in the United States 
[4]. The vast majority (about 90%) of GCs are adenocar-
cinomas arising from the glands in the most superficial 
or mucosal layers of the stomach [5]. The early symptoms 
of gastric adenocarcinoma (STAD) are not obvious, but 
the late symptoms are poor digestion, anorexia nervosa 
and celialgia [6]. Despite major advances in the treat-
ment of STAD, the prognosis of STAD patients remains 
unsatisfactory [7–9]. In recent years, the development 
of immunotherapy has a significant impact on the treat-
ment of STAD [10]. It is worth noting that the immuno-
therapy effect mainly depends on the immune response 
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[11], which is markedly affected by the tumor microenvi-
ronment [12]. CD8 + T cells are core effector cells in the 
tumor microenvironment, and highly infiltrating CD8 + 
T cells have prognostic value in most tumors [13]. How-
ever, the mechanism of CD8 + T cell infiltration in the 
STAD tumor microenvironment remains unclear. There-
fore, identification of novel biomarkers correlated with 
CD8 + T cell infiltration is helpful to explore the mecha-
nisms of immune infiltration in STAD.

There are various deconvolution methods for quanti-
fying the cellular composition of immune cells, such as 
xCell, TIMER, EPIC, QuanTIseq and CIBERSORT. xCell, 
a novel gene signature-based method, can be used to 
infer 64 immune and stromal cell types [14]. TIMER was 
able to estimate the abundance of 6 immune cell types 
in 32 cancer types [15]. EPIC is to estimate the propor-
tion of immune and cancer cells from bulk tumor gene 
expression data, and can accurately detect all major cell 
types in tumors [16]. QuanTIseq is a method to quantify 
the fractions of ten immune cell types from bulk RNA-
sequencing data [17]. CIBERSORT is a common method 
for calculating immune cell infiltration, providing expres-
sion data for 22 common immune infiltrating cells [18]. 
CIBERSORT consistently outperformed other methods 
in some cases, and unknown content and lab-specific fac-
tors had little effect on CIBERSORT performance [19]. It 
was successfully applied to estimate the level of immune 
cell infiltration in various cancers, including renal cell 
carcinoma [20], colon cancer [21]. Therefore, CIBER-
SORT was selected in our study to quantify the cellular 
composition of immune cells.

In our current research, we obtained differentially 
expressed genes (DEGs) in the Cancer Genome Atlas 
(TCGA) database. The important modules and genes 
associated with CD8 + T cell infiltration were identified 
with WGCNA and CIBERSORT methods. The risk score 
model was constructed by univariate regression analy-
sis and LASSO regression analysis. And the expression 
levels of these genes in risk score model were verified in 
validation set and in vitro experiment. This may provide 
a theoretical basis for the exploration of prognostic bio-
markers of STAD.

Materials and methods
Data set sources and preprocessing
All data in this study were obtained from the TCGA 
and GEO database. In TCGA database, STAD expres-
sion and clinical data from 375 STAD patients and 32 
adjacent normal tissue samples were downloaded from 
UCSC Xena. After excluding samples with overall sur-
vival (OS) less than 30 days, 335 STAD samples were 
ultimately included in the TCGA cohort. TCGA data-
set was used to screen vital genes and the construct the 

prognostic model. The GSE26899 dataset and GSE29272 
dataset were downloaded from the GEO database for the 
expression validation of vital genes. The GSE26899 data-
set included 96 tumor tissues and 12 adjacent normal 
tissue samples, and the GSE29272 dataset included 134 
tumor tissues and 134 adjacent normal tissue samples. 
GSE84437 dataset was downloaded from the GEO data-
base to verify the prognostic ability of the constructed 
model, which included 431 tumor samples. Among them, 
the TCGA dataset was regarded as the training set, and 
the GEO dataset was regarded as the validation set.

Identification of DEGs
DEGs were identified using the limma package in R, and 
visualized with volcano plots and heatmaps. False dis-
covery rate (FDR) < 0.05 and |log2 Fold Change (FC)| 
>2 were considered as the criteria for identifying DEGs. 
Heatmaps and volcano plots were drawn by the R pack-
ages “pheatmap” and “ggplot”, respectively.

WGCNA
WGCNA is a typical phylogenetic algorithm to describe 
the correlation patterns between gene expression pro-
files and build gene co-expression networks. The DEGs 
co-expression network analysis was performed by the R 
package “WGCNA”, and a scale-free gene co-expression 
network was built. First, outliers were detected by clus-
tering sample data with the “hclust” function. Then, the 
“pickSoftThreshold” function was applied to select a suit-
able soft-threshold power regulator to construct a scale-
free topology with a soft threshold of 5. The adjacency 
matrix was calculated from this value, which was trans-
formed into a topological overlap matrix (TOM) and 
the corresponding dissimilarity matrix (1-TOM). Genes 
were clustered by the mean linkage hierarchical cluster-
ing method. The minimum number of genes per gene 
network module was set to 30 based on the criteria of 
the hybrid dynamic clipping tree method. The signature 
genes of each module were calculated in turn, and the 
modules were clustered.

Analysis of immune infiltration and functional enrichment
The proportion of immune cells in the sample was calcu-
lated by “CIBERSORT”. Correlations between WGCNA 
module genes and T cell subtypes were calculated using 
Pearson’s test. The modules most significantly associated 
with CD8 + T cells were used for subsequent analyses. 
Enrichment analysis of genes in the modules most sig-
nificantly associated with CD8 + T cells was performed 
by the R package “clusterProfiler” with a threshold of p < 
0.05.
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Construction and verification of prognostic model
The genes significantly associated with CD8 + T cells in 
the module were analyzed by univariate Cox regression, 
and the prognostic genes were screened (p < 0.05). The 
prognostic model was further constructed by LASSO 
Cox regression analysis. The risk score was calculated 
as follows: risk score = (ßA × gene A expression) + (ßB 
× gene B expression) + (ßN × gene N expression). The 
genes used to construct the risk score were defined as 
vital genes. The median risk score served as a cut-off 
point to divide patients into high- and low-risk groups. 
The risk score was also calculated in the GSE84437 vali-
dation set. OS curves of risk score were analyzed by 
Kaplan-Meier, and the accuracy of the model was veri-
fied using the time-dependent ROC curve. Additionally, 
univariate Cox regression analysis and multivariate Cox 
regression analysis were used to identify whether the risk 
score was an independent prognostic factor for OS in 
patients with STAD.

Expression and verification of vital genes
The expression of genes in prognostic model was ana-
lyzed in the TCGA validation set by rank sum test. It 
was displayed by boxplot. Furthermore, we also validated 
the expression of genes in the GSE26899 and GSE29272 
validation sets. The Human Protein Atlas (HPA) (https:// 
www. prote inatl as. org/) provided immunohistochemi-
cal (IHC) results of genes in adjacent normal tissues and 
tumor tissues.

In vitro expression validation of vital genes by real time 
polymerase chain reaction (RT‑PCR)
Nine STAD patients were recruited from First Affiliated 
Hospital of Fujian Medical University. Tumor tissues 
and adjacent normal tissues were collected from 9 STAD 
patients. Clinical information of individuals was dis-
played in Table 1, mainly including the age, gender, stage, 
grade, drinking, smoking and family history.

Inclusion criteria of STAD patients: (1) The patients 
were initially diagnosed with STAD; (2) The patients 
did not undergo other therapy before diagnosis; (3) The 
patients had no other malignant tumor; (4) The patients 
had no other autoimmune diseases; (5) The patients 
were 18 to 70 years old. The exclusion criteria of STAD 
patients: (1) Patients had other malignancy; (2) Patients 
received other treatment before surgery; (3) Patients had 
incomplete clinical data; (4) Patients had a history of 
STAD; (5) Patients with recurrence. The Ethics Commit-
tee of First Affiliated Hospital of Fujian Medical Univer-
sity approved this study (2,020,219). Informed consent of 
patients and their families was obtained.

Total RNA was extracted from tissue samples using 
TRIzol® Reagent. FastKing cDNA first-strand synthesis 

kit (KR116) was used for reverse transcription of mRNA, 
and Gene-9660 fluorescence quantitative PCR instru-
ment was used for relative quantitative analysis of data by 
 2-??ct method. GAPDH and ACTB was used for internal 
reference genes. The primer information for RT-PCR is 
shown in Table 2.

Subgroup analyses to evaluate model performance
Risk score for different subgroups of tumor (T), node (N), 
metastasis (M), and grade (G) was assessed in the TCGA 
and GEO datasets to test the performance of the model. 
In addition, the Kaplan-Meier method and the log-rank 
test were applied to assess the ability of prognosis pre-
diction in different subgroups. p < 0.05 was statistically 
significant.

Evaluation of drug therapy and risk score
To assess the response of risk score for drug therapy, 
the “pRRophetic” R package was applied to calculate the 
half-maximal inhibitory concentration (IC50) of samples. 
Based on clinical recommendations, molecular drugs 
such as Axitinib, Dasatinib, Etoposide, Midostaurin, 
Pyrimethamine and Sunitinib were selected as drug can-
didates. IC50 was compared between high- and low-risk 
groups by Wilcoxon signed-rank test.

Statistical analysis
All statistics were performed with R software. “Limma” 
and “WGCNA” were applied to screen genes correlated 
with CD8 + T cells. Univariate Cox regression analysis 
was performed by the “survival” and “survminer” pack-
age. Lasso analysis and model construction were per-
formed by the “glmnet” software package. The Wilcox 
test was applied to determine statistical differences. 
Kaplan-Meier curves were plotted and log-rank was 
applied to test for significant differences in OS among 
groups. ROC analysis was applied to assess the prognos-
tic performance of risk score. ROC-AUC was an indica-
tor for judging the accuracy of prognosis. P < 0.05 was 
statistically significant in all analyses.

Results
Identification of DEGs and WGCNA
In total, 1013 DEGs were identified, including 700 up-
regulated genes and 313 down-regulated genes (Fig. 1A). 
In addition, the heatmap of the top 100 DEGs is shown in 
the Fig. 1B. The 1013 DEGs were subjected to construct a 
weighted gene co-expression network. First, the samples 
were clustered by the mean linking method in WGCNA 
(Fig.  2A). 120 was chosen as the cutting tree height to 
remove outliers (red line). After re-clustering, the num-
ber of samples below the red line was 406. The dendro-
gram and rating feature heatmap for the 406 samples 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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in the study are shown in Fig.  2B. ß = 5 was chosen as 
the soft threshold to construct the scale-free network 
(Fig. 2C), and 7 modules were confirmed (Fig. 2D).

Identification of key modules
The proportions of 7 T cell subtypes including CD8 + T 
cells in the samples were calculated by CIBERSORT and 
their association with the WGCNA module were ana-
lyzed. The highest correlation was identified between 
genes in the yellow module (65 genes) and CD8 + T cells. 
Therefore, genes in yellow module were selected for sub-
sequent analysis (Fig. 3).

Functional enrichment analysis of genes
Gene Ontology (GO) and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) function enrichment analy-
sis were performed on the 65 genes in the yellow module 
using the R package “clusterProfiler” at a screening crite-
ria of p < 0.05. Top 15 of biological process (BP), cellular 
component (CC) and molecular function (MF) analyzed 
by GO enrichment are shown in Fig. 4A-C, respectively. 
DEGs were mostly enriched in the BP of O-glycan pro-
cessing and protein O-linked glycosylation, and CC of 
apical part of cell. KEGG analysis indicated that DEGs 
were mostly enriched in maturity onset diabetes of the 
young, retinol metabolism and GC. The top 5 enriched 
pathways were used to construct a network. From the 
network, regenerating family member 4 (REG4), caudal 
type homeobox  2 (CDX2), cadherin 17 (CDH17) were 
supposed to have a direct relationship with GC (Fig. 4D).

Construction and verification of a prognostic model
After univariate Cox regression analysis of 65 genes, 
4 prognostic genes were obtained (p < 0.05) (Fig.  5A). 
Afterwards, a four-gene risk model consisting of CIDEC, 
EPS8L3, MUC13 and PLEKHS1 was constructed 
(Fig. 5B). Risk score was calculated for each tumor sample 
using the coefficients obtained by the LASSO algorithm. 
The formula was as follows: risk score = CIDEC * 0.104 
+ PLEKHS1* (-0.035) + MUC13 * (-0.059) + EPS8L3 
* (-0.052). STAD patients were divided into high- and 
low-risk groups based on a median risk score. Patients 
in the low-risk group had a higher survival proportion 

Table 2 Primer sequence in the RT-PCR

Primer name Primer sequence (5’ to 3’)

GAPDH-F (Internal reference) GGA GCG AGA TCC CTC CAA AAT 

GAPDH-R (Internal reference) GGC TGT TGT CAT ACT TCT CATGG 

ACTB-F (Internal reference) CAT GTA CGT TGC TAT CCA GGC 

ACTB-R (Internal reference) CTC CTT AAT GTC ACG CAC GAT 

CIDEC-F TTC CCC AGT GAA GGA CTG ACT 

CIDEC-R GAC CAG TCT GGA TGG GCT AAG 

EPS8L3-F CAG AAG CTG TTC GAG ATG GATG 

EPS8L3-R GCT GTC TAG GCG GTA AGA GTC 

MUC13-F AGC GCT TGT CAG AGA GGT G

MUC13-R ACC TCC ACA GTT GAT GCG T

PLEKHS1-F GAC GTG GTG GTT CAT GCC T

PLEKHS1-R CAT GTG CCA CAA TGC CCA G
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Fig. 1 Volcano plot (A) and heat map of top 100 DEGs (B)
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(Fig. 5C). Kaplan-Meier survival analysis showed signifi-
cantly lower OS in the low-risk group patients (Fig. 5D). 
To evaluate the predictive efficiency of the model in 1-, 
3-, and 5-year survival, ROC curves were performed on 
the training set, indicating that the prognostic model has 
good sensitivity and specificity (Fig. 5E).

To further assess the robustness of the prognostic 
model constructed by the four vital genes, the risk score 
was calculated in the GSE84437 validation set. Patients 
with low-risk score had longer OS, which was in line 
with the results in training set (Fig.  5F). Kaplan-Meier 
survival analysis showed that the OS of patients in the 
low-risk group was lower than that in the high-risk group 
(Fig. 5G). Survival prediction by risk score was assessed 
by ROC analysis at 1, 3 and 5 years (Fig. 5H).

Expression and verification of vital genes
In addition, the relative expression of four vital genes 
between tumor tissues and adjacent normal tissues was 
explored by the TCGA dataset and further validated 
by the GSE26899 and GSE29272 dataset. CIDEC was 
significantly down-regulated in tumor tissues, while 
EPS8L3, MUC13 and PLEKHS1 were significantly highly 

expressed in tumor tissues (Fig. 6A-C). In addition, RT-
PCR results displayed that CIDEC was significantly 
reduced in tumor tissues, MUC13 was significantly 
increased in tumor tissues, EPS8L3 showed an up-reg-
ulated tendency, while PLEKHS1 was down-regulated 
in tumor tissues (Fig. 6D). We speculated that the small 
sample size may cause this difference. IHC further con-
firmed the differential expression of CIDEC, EPS8L3 and 
MUC13 in tumor tissues and adjacent normal tissue. The 
expression of CIDEC in tumor tissue was significantly 
lower than that in adjacent normal tissues (Fig. 6E), while 
the expression of EPS8L3 and MUC13 was significantly 
higher in tumor tissues (Fig. 6F-G).

Risk score was an Independent prognostic factor for STAD
The correlation analysis shows that the risk score was 
positively connected with CD8 + T cell infiltration 
(Fig.  7A). Univariate analysis revealed that, except for 
gender and G stage, the other factors were correlated 
with OS (Fig. 7B). Incorporating these factors into mul-
tivariate analysis, risk score remained significantly related 
to OS (Fig. 7C). These results indicate that risk score was 
an independent prognostic factor for STAD.

Fig. 2 Weighted Gene Co-expression Network Analysis (WGCNA) analysis.  A Sample clustering to detect outliers; B Sample dendrogram 
and scoring feature heatmap; C Soft threshold screening: D Genes clustering
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Correlation analysis of vital genes and immune cell 
subtypes
The correlation analysis of vital genes and CD8 + T 
cells was performed based on the TIMER2.0 database. 
With XCELL algorithm, TIMER algorithm, CIBER-
SORT algorithm and EPIC algorithm, CIDEC, EPS8L3, 
and MLC13 were remarkable negatively correlation 
with CD8 + T cells, but PLEKHS1 were positively cor-
relation with CD8 + T cells (Fig. 8).

Subgroup analysis
Kaplan-Meier curves were plotted for subgroups 
including age, gender, clinical stages in the training 
set. In the clinical indicators such as age = 60, T3 + 
T4, the high-risk groups have poor survival prognosis 
(Fig. 9). Survival was significantly different in age = 60 
and T3 + T4 subgroups between high- and low-risk 
groups in GSE84437 validation set (Fig. 10). The result 

Fig. 3 Correlation of T cell subtypes infiltration with different gene modules
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suggests that risk score model could identify outcomes 
in different subgroups of patients.

 Evaluation of drug therapy and risk score
The IC50 of Axitinib, Dasatinib, Midostaurin, and 
Sunitinib was higher in the low-risk group and the 
IC50 of Etoposide and Pyrimethamine was lower in 
low-rish group based on the evaluation of risk score 
model and drug treatment sensitivity (Fig. 11). In addi-
tion, the IC50 of Cisplatin and Docetaxel, which are 
commonly used in the treatment of gastric adenocar-
cinoma, was higher in the low-rish group in GEO data-
set (Supplementary Fig.  1). These results suggest that 
risk score has potential predictive value for chemo-
therapy and targeted therapies.

Discussion
STAD is a heterogeneous malignancy with high risk of 
locoregional recurrence and distant metastasis after 
surgery [22, 23]. In recent years, increasing studies 
have explored the prognostic biomarkers of STAD. For 
instance, Jiang et al. mined the differentially expressed 
genes (DEGs) in the early stage of STAD and con-
structed a prognostic signature with 10 early-stage 
specific mRNAs [24]. Shen et  al. constructed a STAD 
prognosis prediction model based on 8 chemotherapy-
related characteristic genes to provide a reference for 
the treatment and prognosis improvement of STAD 
patients [25]. Immunotherapy is increasingly recog-
nized for its potential therapeutic effects on various 
tumors [26, 27]. CD8 + T cells are the central effector 
cells of anti-tumor immunity [28]. Identification of vital 
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genes associated with CD8 + T cell infiltration may 
provide novel ideas for the prevention and treatment of 
STAD.

CD8 T cell infiltration is correlated with better clini-
cal outcomes in many cancers. Triple Negative Breast 
Cancer (TNBC) patients with high infiltration of CD8 
T cells had better survival and highly immunoreactiv-
ity [29]. High expression of CD8 + T lymphocytes has 
a strong association with prognostic in GC [30]. The 
study by Huang et al. in breast cancer further confirms 

that CD8 T cells are regarded as the main effector cells 
of anti-tumor immunity [31]. Therefore, tumor-infil-
trating CD8 T cells may be an important biomarker for 
predicting cancers.

In total, 700 up- and 313 down-regulated DEGs were 
identified in STAD. Subsequently, essential modules 
and genes most significantly associated with CD8 + T 
cells were confirmed. Finally, we identified four vital 
genes (CIDEC, EPS8L3, MUC13 and PLEKHS1) corre-
lated with prognosis and CD8 + T cell infiltration by 
Lasso Cox regression analysis.

A

C

D E

G H

F

B

Fig. 5 Construction and validation of a prognostic model of CD8 + T cell infiltration-related genes.  A Screening of vital genes; B LASSO Cox 
regression analysis; C Distribution map of risk score in TCGA training set; D Survival Curve in TCGA training set; E ROC curve in TCGA training set; F 
Distribution map of risk score in GSE84437 validation set; G Survival curve in GSE84437 validation set; H ROC curve in GSE84437 validation set
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CIDEC

Tumor Tissues Adjacent Normal Tissues

EPS8L3

MUC13

A

E

F

G

B

C

D

Fig. 6 Expression of CD8 + T cell infiltration-related genes in tumor tissues and tumor adjacent tissues.  A Expression of genes in TCGA training 
set; B Expression of genes in GSE26899 validation set; C Expression of genes in GSE29272 validation set; D Expression of genes in RT-PCR; 
E-G Immunohistochemical analysis of genes.  *p  < 0.05; **p  < 0.01; ***p  < 0.001 and ****p  < 0.0001; ns, not significant
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Cell death-inducing DFFA-like effctor c (CIDEC) is 
predominantly expressed in white adipose tissue, which 
is essential in lipid metabolism and energy regulation 
[32]. Relevant literature studies have revealed that CIDEC 
is over-expressed in various cancers, such as hepatocel-
lular carcinoma [33] and clear cell renal cell carcinoma 
[34]. Wang et al. reported that the expression of CIDEC 
increase may reduce fatty acid oxidation and promotes 
de novo lipogenesis in human adenovirus-infected pri-
mary cultured skeletal muscle [35]. Nevertheless, there is 
no study about the expression of CIDEC in STAD. The 
low expression of CIDEC in STAD was first found in 
this study. Epidermal growth factor receptor kinase sub-
strate 8 like 3 (EPS8L3) has reported in various cancers, 
sunch as live cancer, pancreatic cancer and gastric cancer, 
which involved in regulating cell proliferation, differen-
tiation and migration [36–38].The expression of EPS8L3 
is markedly up-regulated in liver cancer tissues and cell 
lines, and patients with high expression of EPS8L3 have 
shorter survival [36, 39]. In the hepatocellular carcinoma 
(HCC) cell line, overexpression EPS8L3 can enhance cell 

proliferation [40]. This indicates that EPS8L3 is corre-
lated with poor clinical prognosis. Mucins are recognized 
as potential oncogenes and possible therapeutic targets 
in various malignancies [41, 42]. MUC13, a high molec-
ular weight transmembrane glycoprotein, is frequently 
overexpressed in various epithelial cancers [43]. Shima-
mura et  al. detected up-regulation of MUC13 at GC’s 
mRNA and protein levels [44]. Cai et  al. showed that 
the expression of MUC13 increase can enhance GC cell 
proliferation and invasion [45]. In addition, MUC13 can 
be used as a marker for early cancer screening, provid-
ing a promising target for targeted therapy. PLEKHS1 is 
up-regulated in the majority of cancers. Highly recurrent 
mutations in PLEKHS1 may lead to tumorigenesis [46]. 
Chessa et al. reported that PLEKHS1 can escape homeo-
stasis, actovate the PIP3 signaling, and support tumour 
progression in cells absenting PTEN [47]. Further-
more, Xing et al. showed that overexpression PLEKHS1 
enhanced anaplastic thyroid carcinomas (ATC) invasion 
in cell experiment [48]. Besides, Over-expressed PLE-
KHS1 increases the risk of disease progression in bladder 

A B

C

Fig. 7 Correlation of risk score with CD8 + T cells and OS.  A Correlation analysis; B Univariate regression analysis; C Multivariate regression analysis
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cancer [49]. PLEKHS1 is one of the up-regulated DEGs in 
hepatocellular carcinoma and a poor prognostic indica-
tor [50]. Therefore, the expression of PLEKHS1 may be 
correlated with cancer prognosis.

We built a risk score model based on four genes. Risk 
score was an independent prognostic factor for OS in 
patients with STAD and was positively connected with 
CD8 + T cell infiltration. These four genes may play a 
role in CD8 + T cell infiltration in the immune micro-
environment. CD8 + tissue-resident memory T (Trm) 

cells depended on fatty acid oxidation for cell survival 
in STAD patients. Absention of fatty acid leads to Trm 
cell death [51]. Furthermore, Joseph et al. evidenced that 
CD8 + T cells suppress tumour metastasis in mouse 
tumour models [52]. Correlation analysis indicated that 
CIDEC, EPS8L3, and MLC13 were remarkably negatively 
correlated with CD8 + T cells. Li et al.‘s study showed a 
correlation between CD8 T cells and CIDEC [53]. The 
correlation between the other two genes and CD8 T 
cells in tumours has not been reported. Based on the 

Fig. 8 Correlation analysis of genes and immune cell subtypes in the TIMER database
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Fig. 9 Subgroup survival analysis in TCGA training set
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above results, we speculated that CIDEC expression may 
influence fatty acid metabolism and reduce the number 
of CD8 T cells. In addition, EPS8L3, MLC13, and PLE-
KHS1 can enhance tumour invasion. Therefore, CIDEC, 
EPS8L3, MLC13, and PLEKHS1 may reduce the number 
of CD8 T cells and increase the aggressiveness of STAD, 
leading to poor prognosis. CIDEC, EPS8L3, MLC13 
and PLEKHS1 may be potential prognostic factors for 
STAD and can be used to assess the level of immune cell 

infiltration in tumour tissues. However, we look forward 
to collecting more samples for mechanistic analysis to 
demonstrate the correlation between these genes and 
CD8 + T cell infiltrating tumours in future studies.

Additionally, we assessed the sensitivity of the risk 
score model to drug therapy. IC50 is the concentration 
at which an anticancer drug kills half of the inhibitory 
concentration of cancer cells [54]. It helps to quantify 
the therapeutic ability of a drug to induce apoptosis 

A B C

D E

G H

F

Fig. 10 Subgroup survival analysis in GSE84437 validation set
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in cancer cells, which is inversely proportional to the 
sensitivity of small molecule drugs [55]. Among them, 
the IC50 of Axitinib, Dasatinib, Midostaurin and Suni-
tinib in the low-risk group was significantly higher 

than that in the high-risk group. In contrast, the IC50 
of Etoposide and Pyrimethamine was higher in low-
risk group. Above results suggested that the drugs may 
have a good therapeutic effect in STAD patients. The 

A B C

D E F

G H I

J K L

Fig. 11 Sensitivity to drugs in high- and low-risk groups of risk score.  A-F: in TCGA training set; G-I: in GSE84437 validation set
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results of related studies also showed that these drugs 
had lower IC50 values in STAD high-risk group com-
pared with low-risk group, suggesting that these drugs 
may be more sensitive to high-risk patients [55–58]. In 
addition, the IC50 of Cisplatin and Docetaxel in GEO 
dataset was lower in higer-rick group, suggesting that 
Cisplatin and Docetaxel are certain effective in high-
risk subgroups of gastric adenocarcinoma patients. In 
summary, we speculate that the four-gene risk score 
model can not only divide patients into different risk 
groups, but also may help clinicians in clinical decision 
making for patients in different risk groups.

However, some limitations in our study should be 
pointed out. First, the identification of four risk genes 
and construction of the risk score model were based on 
the systematic bioinformatics analysis of gene expres-
sion profiles and public database. Further experiments, 
such as immunostaining, are needed to evaluate the 
association between risk score and the extent of CD8 + 
T cells. Second, the mechanisms underlying the impact 
of these genes on CD8 + T cell infiltration were not 
investigated in this study; which will be included in our 
further study. Third, validation were only conducted in 
a public database, and a prospective study with a sub-
stantial sample size is essential to confirm the clinical 
utility of the risk score.

Conclusions
In short, we built a four-gene risk score model corre-
lated with CD8 + T cell infiltration, which may provide 
some guidance for future prognosis prediction and 
molecular targeted therapy of STAD.
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