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may be related to diseases such as bile duct stones and 
primary sclerosing cholangitis [3]. However, CCA has a 
high rate of metastasis and often metastasizes to nearby 
lymph nodes, resulting in high mortality rates [2, 4]. Cur-
rently, the only clinical treatment is surgical removal of 
the tumor [5]. However, the prognosis for surgical treat-
ment of CCA is poor, with a survival rate of 20–40% in 
patients who undergo surgery [6]. Currently, there is 
no effective treatment for CCA, and it is necessary to 
explore new therapeutic drugs.

Sevoflurane is a widely used inhalation anesthetic drug 
in clinical practice that has good cerebral and myocardial 
protective effects [7, 8]. Studies have shown that sevo-
flurane inhibits cell proliferation, induces apoptosis, and 
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Abstract
Background Cholangiocarcinoma (CCA) is a refractory malignancy derived from bile duct epithelial cells. This study 
aimed to explore the role and molecular mechanisms of action of sevoflurane in CCA.

Methods CCK-8 assay was used to assess the proliferation of cholangiocarcinoma cells, and flow cytometry was 
used to detect cholangiocarcinoma cell apoptosis. The effects of sevoflurane on TFK1 and QBC939 cell migration and 
invasion were investigated using a Transwell assay. Western blotting and RT-qPCR were used to assess the expression 
of apoptosis-related proteins and genes, and gene expression of the Wnt/β-catenin signaling pathway.

Results Our study found that sevoflurane inhibited cholangiocarcinoma cell proliferation in a dose-dependent 
manner. In addition, sevoflurane induced cholangiocarcinoma cell apoptosis, inhibited cholangiocarcinoma cell 
migration and invasion, as well as the Wnt/β-catenin signaling pathway evidenced by decreased Wnt3a, β-catenin, 
c-Myc, and Cyclin D1 protein and mRNA expression, reduced p-GSK3β protein expression and p-GSK3β/GSK3β ratio. 
Further mechanistic studies revealed that Wnt/β-catenin pathway inducer SKL2001 reversed the inhibitory effect of 
sevoflurane on cholangiocarcinoma cells.

Conclusions Sevoflurane induces apoptosis and inhibits the growth, migration, and invasion of cholangiocarcinoma 
cells by inhibiting the Wnt/β-catenin signaling pathway. This study not only revealed the role of sevoflurane in the 
development of CCA but also elucidated new therapeutic agents for CCA.
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inhibits tumorigenesis [9]. For example, recent studies 
have reported that sevoflurane regulates breast cancer 
development by activating the microRNA-203 signaling 
pathway to inhibit the proliferation of breast cancer cells 
[10]. In addition, sevoflurane regulates the development 
of gliomas as well as breast, lung, and colon cancers by 
inhibiting cell migration and invasion [10–13]. Studies 
have found Sevoflurane promotes the proliferation of 
colon cancer cells and inhibits the growth and migra-
tion of lung cancer cells [12, 14]. However, whether sevo-
flurane is involved in the development of CCA and its 
underlying mechanisms have not been fully elucidated.

Previous studies have shown that abnormal Wnt/β-
catenin signaling is associated with human diseases, 
including tumors, osteoporosis, and degenerative dis-
orders [15, 16]. Especially in cancer research, the Wnt/
β-catenin signaling pathway has been implicated in a 
variety of cancer processes, and has been shown to be 
a therapeutic target for anti-tumor therapy [17, 18]. 
LINC01133 inhibits gastric cancer progression by mod-
ulating the-catenin pathway [19]. Recent studies have 
found that Wnt/β-catenin signaling is associated with the 
induction and progression of CCA and is a new potential 
pharmacological target for CCA [20]. Overexpression of 
RNF43 can attenuate the Wnt/β-catenin signaling path-
way to inhibit the progression of CCA [21]. Song et al. 
found that mucin 1 promotes tumor progression by acti-
vating Wnt/β-catenin signaling pathway in CCA [22]. In 
addition, studies have found that sevoflurane inhibits the 
proliferation of neural progenitor cells in mice via Wnt/
β-catenin signaling pathway [23, 24]. This suggests that 
sevoflurane may play a role in the CCA through Wnt/β-
catenin signaling pathway.

In this study, we revealed the regulatory effects of 
sevoflurane on CCA and elucidated its effects on CCA 
proliferation and apoptosis. This study suggests that the 
Wnt/β-catenin signaling pathway may be a potential tar-
get for the prevention and treatment of CCA.

Methods
Cell culture and drug treatment
The cholangiocarcinoma cell lines TFK1 and QBC939 
were purchased from the American Type Culture Col-
lection (ATCC). To study the effects of sevoflurane on 
cholangiocarcinoma, we treated TFK1 and QBC939 cells 
with 1.7%, 3.4%, and 5.1% sevoflurane [25] for 2, 4, and 
6 h. Cells were cultured in Dulbecco’s modified DMEM 
medium (Basal Media) containing 10% fetal bovine 
serum (FBS; Biological Industries) for 24  h. Treatment 
of TFK1 and QBC939 cells with 3.4% sevoflurane for 6 h 
was selected for subsequent experiments.

To investigate the role of Wnt/β-catenin signaling 
pathway in the effects of Sevoflurane on cholangiocar-
cinoma, we treated 3.4% Sevoflurane-treated TFK1 and 

QBC939 cells with 40 µM SKL2001 (Wnt/β-catenin 
inducer). The groups were as follows: Control; Sevoflu-
rane; Sevoflurane + SKL2001.

CCK-8 assays for cell proliferation
Cell proliferation was detected using a CCK-8 kit (Bey-
otime), according to the manufacturer’s instructions. 
Briefly, 2000 cells/well were seeded in a 96-well plate. 
After 24 h, 10 µl CCK-8 solution was added to each well. 
This was followed by incubation for 1  h in a 37  °C cell 
incubator. Absorbance was measured at 490 nm using a 
spectrophotometer.

Flow cytometry detects apoptosis
Apoptosis was identified by flow cytometry using an 
Annexin V-FITC/PI Apoptosis Detection Kit (Beyotime). 
Briefly, drug-treated TFK1 and QBC939 cells were col-
lected, and binding buffer containing 5 µL Annexin V 
and 10 µL PI was added. Data were collected using flow 
cytometry (BD Biosciences) after incubation in the dark 
for 10–20 min and analyzed using FlowJo software.

Western blotting
Total protein was obtained from TFK1 and QBC939 
cells using RIPA lysis buffer containing protein inhibitors 
(Beyotime), and total protein was assayed using a BCA 
kit (Beyotime). Subsequently, 20  µg of each sample was 
separated by SDS-PAGE and transferred onto polyvi-
nylidene difluoride (PVDF) membranes (Millipore). The 
membranes were blocked with 5% bovine serum pro-
tein (BSA). After 1  h, membranes were incubated over-
night at 4 °C with primary antibodies against Bax (#2772, 
CST), Bcl-2 (ab196495, Abcam), Wnt3a (26744-1-AP, 
Wuhan Sanying Biotechnology), β-catenin (#8480, CST), 
p-GSK3β (#5558, CST), GSK3β (#12,456, CST), c-Myc 
(ab32072, Abcam), Cyclin D1 (ab134175, Abcam), and 
GAPDH (ab181602, Abcam). The next day, membranes 
were washed five times with TBST and incubated with 
horseradish peroxidase-labeled secondary antibodies 
(AS1107, ASPEN). After 2  h, the bands were visualized 
using an ECL luminescent solution (Beyotime). However, 
during the western blot experiments, the corresponding 
membrane was firstly cut out according to the molecular 
weight of the target protein prior to hybridisation with 
antibody, and then incubated with the primary antibody. 
Thus, the original image was not a full length membrane.

RNA extraction and real-time quantitative PCR (RT-qPCR)
Total RNA was extracted from TFK1 and QBC939 cells 
with an RNA-easy isolation reagent (Vazyme). RNA 
was reverse-transcribed to cDNA using the Super-
Script™ III Reverse Transcription Kit (Thermo Fisher 
Scientific) according to the manufacturer’s instruc-
tions. This was followed by RT-qPCR using the AceQ 
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qPCR SYBR Green Master Mix (Vazyme). The prim-
ers were synthesized by Sangon Biotech (Shanghai, 
China) with the following sequences: Bax forward 
5’-GCTGAGCGAGTCTCTCAAG-3’ and reverse 
5’-GTCCAATGTCCAGCCCATG-3’; Bcl-2 forward 
5’-GGTGAACTGGGGGAGGATT G-3’ and reverse 
5’-GGCAGGCATGTTGACTTCAC-3’; Wnt3a for-
ward 5’-ATGGGCGGGAGG GGACA-3’ and reverse, 
5’CGCCCATTGGATCCTTAAG3’; β-catenin forward 
5’-CGTTTCGCCTTC ATGGACTA-3’ and reverse, 
5’-GCCGCTGGGTCCTGATGTCCTGAT-3’; Cyclin 
D1 forward 5’-GCTGCGAAGTGGAAACCATC-3’ and 
reverse 5’-CCTCCTTCTGCACACATTTGAA-3’; c-Myc 
forward 5’-GCCTCAGAGTGCATCGAC-3’ and reverse 
5’-TCCACAGAAACAACATCG-3’; GAPDH forward, 
5’-GGAAGGTGAAGGTCGGAGTCA-3’ and reverse, 
5’-GTCATTGATGGCAACAATCCACT-3’. The relative 
mRNA expression is calculated as 2ΔΔCt.

Transwell assays to determine cell migration and invasion
Cell migration and invasion were assessed using Tran-
swell assays [26]. Briefly, 1 × 105 cells with serum-free cul-
ture medium were added to the upper layer of Transwell 

chambers with 8  μm pore size, while medium contain-
ing 10% serum was added to the lower layer of Transwell 
chambers. After 24  h, cells that penetrated the lower 
layer were fixed with 4% paraformaldehyde and stained 
with crystal violet. Finally, the migration and invasion of 
cells were counted using an inverted microscope (LEICA) 
under ×200 magnification.

Statistical analysis
All data were analyzed using the GraphPad Prism 7 soft-
ware. All data were obtained from at least three inde-
pendent experiments and expressed as mean ± SEM. An 
unpaired Student’s t-test or one-way analysis of vari-
ance (ANOVA) was used to analyze differences between 
groups, and P < 0.05 indicated statistical significance.

Results
Sevoflurane inhibits proliferation and promotes apoptosis 
in cholangiocarcinoma cells
To investigate the effect of sevoflurane on the prolif-
eration of cholangiocarcinoma cells, we used the CCK-8 
assay to detect changes in the proliferation and viabil-
ity of TFK1 and QBC939 cells treated with different 

Fig. 2 Effect of Sevoflurane on apoptosis of CCA cells. A-B. Flow cytometry were used to evaluate the apoptosis of TFK1 cells; C and D. Analysis of Bax 
and Bcl2 protein and mRNA expression in TFK1 cells by western blotting and RT-qPCR; E and F. Flow cytometry were used to evaluate the apoptosis of 
QBC939 cells; G and H. Analysis of Bax and Bcl2 protein and mRNA expression in TFK1 cells by western blotting and RT-qPCR. **p < 0.01 vs. control group

 

Fig. 1 Effect of Sevoflurane on proliferation of CCA cells. A-B. CCK-8 assays were used to evaluate the cell proliferation of TFK1 (A) and QBC939 (B) cells. 
*, **p < 0.05, 0.001 vs. control group
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concentrations of sevoflurane (1.7%, 3.4%, and 5.1%). 
Compared with the control group, sevoflurane inhibited 
the viability of TFK1 and QBC939 cells, and the inhibi-
tory effect of sevoflurane on the viability of TFK1 and 
QBC939 cells increased with increasing dose and treat-
ment time (Fig.  1A and B). Based on these results, we 
treated TFK1 and QBC939 cells with 3.4% sevoflurane 
for 6 h for subsequent experiments.

Flow cytometry indicated that sevoflurane signifi-
cantly induced apoptosis in both TFK1 (Fig.  2A and B) 
and QBC939 cells (Fig.  2E and F). Further experiments 

showed that sevoflurane increased the protein and 
mRNA levels of Bax and decreased the protein and 
mRNA levels of Bcl-2 in TFK1 cells (Fig. 2 C and D). In 
QBC939 cells, Sevoflurane had the same effect on the 
expression levels of Bax and Bcl-2 (Fig. 2G and H). These 
results suggest that sevoflurane inhibits the proliferation 
of cholangiocarcinoma cells in a dose- and time-depen-
dent manner and promotes apoptosis in cholangiocarci-
noma cells.

Fig. 3 Effects of Sevoflurane on migration and invasion of CCA cells. A-D. Transwell assays were used to evaluate migration (A-B) and invasion (C-D) 
of TFK1 cells; E-H. Transwell assays were used to evaluate migration (E-F) and invasion (G-H) of QBC939 cells. Magnification: ×200. **p < 0.01 vs. control 
group
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Sevoflurane inhibits migration and invasion of 
cholangiocarcinoma cells
Subsequently, we treated TFK1 and QBC939 cells with 
3.4% sevoflurane for 6  h and examined the effects of 
sevoflurane on the migration and invasion of cholan-
giocarcinoma cells using Transwell assays. The results 
indicated that 3.4% sevoflurane inhibited the migration 
(Fig.  3A and B) and invasion (Fig.  3  C and D) of TFK1 
cells. Similarly, 3.4% sevoflurane significantly inhibited 
the migration (Fig.  3E and F) and invasiveness (Fig.  3G 
and H) of QBC939 cells. These results suggest that sevo-
flurane inhibits the migration and invasion of cholangio-
carcinoma cells.

Sevoflurane inhibits Wnt/β-catenin signaling pathway in 
cholangiocarcinoma cells
Recent studies have shown that-catenin signaling is 
an emerging potential target for CCA [20, 27]. There-
fore, in this study, we analyzed the expression of catenin 
signaling-related genes in TFK1 and QBC939 cells 
using western blotting and RT-qPCR. Compared to the 

control group, the protein and mRNA levels of Wnt3a, 
β-catenin, c-Myc, and Cyclin D1, p-GSK3β protein 
expression, and p-GSK3β/GSK3β ratio in TFK1 cells 
were significantly reduced by 3.4% sevoflurane treatment 
for 6  h (Fig.  4A-F). Similarly, Sevoflurane inhibited the 
expression of Wnt3a, β-catenin, c-Myc, and Cyclin D1, 
p-GSK3β protein expression, and p-GSK3β/GSK3β ratio 
in QBC939 cells (Fig.  4G-L). These results suggest that 
sevoflurane inhibits Wnt/β-catenin signaling pathway in 
cholangiocarcinoma.

Activation of Wnt/β-catenin signaling reverses the 
inhibitory effect of sevoflurane on cholangiocarcinoma 
cells
To further explore the mechanism of action of Sevoflu-
rane in CCA, we treated TFK1 and QBC939 cells with 
3.4% sevoflurane for 6  h, followed by culturing with-
catenin inducer SKL2001 for 24  h. The inhibition of 
Wnt3a, β-catenin, c-Myc, and Cyclin D1 protein and 
mRNA expression, p-GSK3β protein expression, and 
p-GSK3β/GSK3β ratio in TFK1 cells by sevoflurane was 

Fig. 4 Sevoflurane inhibits Wnt/β-catenin Signaling in CCA cells. A-F. Western blotting and RT-qPCR detected the protein and mRNA expression of 
Wnt3a, β-catenin, p-GSK3β, GSK3β, c-Myc, and Cyclin D1 in TFK1 cells; G-L. Western blotting and RT-qPCR detected the protein and mRNA expression of 
Wnt3a, β-catenin, p-GSK3β, GSK3β, c-Myc, and Cyclin D1 in QBC939 cells. **p < 0.01 vs. control group
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significantly reduced by SKL2001 treatment compared 
to that in the sevoflurane group (Fig.  5A-F). Similarly, 
the inhibition of Wnt3a, β-catenin, c-Myc, and Cyclin 
D1 protein and mRNA expression, p-GSK3β protein 
expression, and p-GSK3β/GSK3β ratio by sevoflurane 
was significantly abolished by SKL2001 in QBC939 cells 
(Fig. 5G-L).

CCK-8 assays showed that SKL2001 abrogated the 
inhibitory effects of sevoflurane on TFK1 expression 
and QBC939 cell viability (Figs. 6 and 7 A). In addition, 
we investigated the effects of SKL2001 on the apopto-
sis of TFK1 and QBC939 cells. Flow cytometry showed 
that SKL2001 significantly inhibited apoptosis of TFK1 
(Fig.  6B and C) and QBC939 cells (Fig.  7B and C) after 
treatment with sevoflurane. Western blot analysis and 
RT-qPCR showed that, compared to the sevoflurane 
group, SKL2001 co-treatment with sevoflurane sig-
nificantly decreased the expression levels of Bax and 
enhanced the protein and mRNA levels of Bcl-2 in TFK1 
(Fig. 6D and E) and QBC939 cells (Fig. 7D and E). Tran-
swell assays showed that the inhibitory effects of sevo-
flurane on cell migration and invasion were significantly 

eliminated by SKL2001 treatment of TFK1 and QBC939 
cells (Figs.  6F-I and 7  F-I). These results suggest the 
inhibitory effects of Sevoflurane on cholangiocarcinoma 
cells could be reversed by activating the Wnt/β-catenin 
signaling pathway.

Discussion
CCA is a common malignant tumor characterized by 
high morbidity, high mortality, high metastasis rates, 
and a poor prognosis [1, 4–6]. The pathogenesis of CCA 
remains unclear, and an in-depth study of its molecular 
mechanisms will facilitate the development of new thera-
peutic approaches. There is growing evidence that sevo-
flurane plays an important role in tumor development 
[9, 28]. He et al. revealed that sevoflurane inhibits the 
proliferation and invasion of colon cancer cells by regu-
lating exosome-mediated circ-HMGCS1 via the miR-
34a-5p/SGPP1 axis [12]. In addition, sevoflurane inhibits 
the proliferation and migration of glioma and intestinal 
cancer cells and promotes apoptosis [12, 29]. To date, the 
effects of sevoflurane on CCA have not been reported.

Fig. 5 SKL2001 reversed the effects of Sevoflurane on Wnt/β-catenin Signaling. A-F. Western blotting and RT-qPCR detected the protein and mRNA 
expression of Wnt3a, β-catenin, p-GSK3β, GSK3β, c-Myc, and Cyclin D1 in TFK1 cells; G-L. Western blotting and RT-qPCR detected the protein and mRNA 
expression of Wnt3a, β-catenin, p-GSK3β, GSK3β, c-Myc, and Cyclin D1 in QBC939 cells. **p < 0.01 vs. control group; #, ##p < 0.05, 0.01 vs. Sevoflurane 
treatment group

 



Page 7 of 9Cheng and Li BMC Gastroenterology          (2023) 23:279 

This study is the first to investigate the role and poten-
tial molecular mechanisms of sevoflurane in the pro-
gression of CCA and to demonstrate that sevoflurane 
inhibits the proliferation and invasion of cholangiocar-
cinoma cells by inhibiting catenin signaling pathway. 
This study demonstrated that the Wnt/β-catenin signal-
ing pathway is involved in the progression of multiple 
tumors and is a new target for tumor therapy [17]. Pre-
vious reports have shown that activation of catenin sig-
naling pathway plays a key role in CCA progression [20]. 
For example, TTYH3 inhibits apoptosis in CCA through 
the Wnt/β-catenin signaling pathway [30]. Furthermore, 
sevoflurane has been found to function in tumors via the 
Wnt/β-catenin signaling pathway [31, 32]. Recent stud-
ies have shown that sevoflurane inhibits the proliferation 
and invasion of osteosarcoma cells by targeting the miR-
203/Wnt/β-Catenin axis [33]. However, the relationship 

between sevoflurane and the Wnt/β-Catenin signaling 
pathway in CCA is unclear.

In this study, we found sevoflurane inhibited the pro-
liferation, invasion, and migration of TFK1 and QBC939 
cells and promoted apoptosis by treating TFK1 and 
QBC939 cells with different concentrations of sevoflu-
rane. Moreover, the expression of Wnt/β-catenin signal-
ing pathway-related proteins was significantly reduced 
in sevoflurane-treated cells, and Wnt/β-catenin inducers 
could reverse the effect of sevoflurane on CCA. These 
results imply that sevoflurane may be a new therapeutic 
target for CCA and may be involved in the regulation of 
CCA through catenin signaling pathway.

However, this study was mainly conducted at the cel-
lular level, which has certain limitations that need to be 
studied in depth. Data from in vivo studies of sevoflurane 
would be beneficial for enhancing the reliability of these 
results. In future studies, we plan to verify the role and 

Fig. 6 SKL2001 reversed the effects of Sevoflurane on proliferation and apoptosis of TFK1 cells. A. CCK-8 assays were used to evaluate the cell proliferation 
of TFK1 cells; B-C. Flow cytometry were used to evaluate the apoptosis of TFK1 cells; D and E. Analysis of Bax and Bcl2 protein and mRNA expression in 
TFK1 cells by western blotting and RT-qPCR; F-I. Transwell assays were used to evaluate migration (F and G) and invasion (H and I) of TFK1 cells. Magnifica-
tion: ×200. **p < 0.01 vs. control group; ##p < 0.01 vs. Sevoflurane treatment group
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mechanism of action of sevoflurane in CCA in vivo by 
constructing a CCA mouse model.

Conclusions
Sevoflurane inhibits the proliferation, migration, and 
invasion of cholangiocarcinoma cells and induces apop-
tosis of cholangiocarcinoma cells by inhibiting the Wnt/
β-catenin signaling pathway. These results revealed the 
mechanism of action of sevoflurane in CCA and provided 
a new strategy for CCA treatment.
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