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Abstract
Background  Crohn’s diseases and ulcerative colitis, both of which are chronic immune-mediated disorders of 
the gastrointestinal tract are major contributors to the overarching Inflammatory bowel diseases. It has become 
increasingly evident that the pathological processes of IBDs results from interactions between genetic and 
environmental factors, which can skew immune responses against normal intestinal flora.

Methods  The aim of this study is to assess and analyze the taxa diversity and relative abundances in CD and UC in 
the Saudi population. We utilized a sequencing strategy that targets all variable regions in the 16 S rRNA gene using 
the Swift Amplicon 16 S rRNA Panel on Illumina NovaSeq 6000.

Results  The composition of stool 16 S rRNA was analyzed from 219 patients with inflammatory bowel disease 
and from 124 healthy controls. We quantified the abundance of microbial communities to examine any significant 
differences between subpopulations of samples. At the genus level, two genera in particular, Veillonella and 
Lachnoclostridium showed significant association with CD versus controls. There were significant differences between 
subjects with CD versus UC, with the top differential genera spanning Akkermansia, Harryflintia, Maegamonas and 
Phascolarctobacterium. Furthermore, statistically significant taxa diversity in microbiome composition was observed 
within the UC and CD groups.

Conclusions  In conclusion we have shown that there are significant differences in gut microbiota between UC, 
CD and controls in a Saudi Arabian inflammatory bowel disease cohort. This reinforces the need for further studies 
in large populations that are ethnically and geographically diverse. In addition, our results show the potential to 
develop classifiers that may have add additional richness of context to clinical diagnosis of UC and CD with larger 
inflammatory bowel disease cohorts.
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Background
A complex and dynamic microbial community within 
the gastrointestinal tract regulates host metabolic and 
immune functions [1]. Collectively these gut microbio-
tas provide a wide range of physiological and immuno-
logical functions that can have significant contributions 
to sickness or health across a variety of conditions [2]. 
Crohn’s disease (CD) and ulcerative colitis (UC) are 
chronic immune-mediated disorders of the gastroin-
testinal tract falling under an overarching category of 
inflammatory bowel diseases (IBDs). It is evident that the 
pathological processes of IBDs represent a complex inter-
play of genetic and environmental factors and can skew 
immune responses against normal intestinal flora [3, 4]. 
The resulting intestinal dysbiosis, where loss of beneficial 
bacteria and diversity is evident, along with expansion of 
potentially pathogenic bacteria, has been widely charac-
terized in IBD and is postulated to influence the onset 
and perpetuation of inflammation within the gut [5–7]. 
Several factors contribute to intestinal dysbiosis, includ-
ing diet and lifestyle factors, host genetics and medica-
tions [8–13]. Low fiber/high fat and sugar diets reduce 
gut microbiota diversity and also promote pathogenic 
species expansion [13–16]. Diet modification is often 
used to reduce inflammation episodes thereby reducing 
IBD-related symptomology [17].

Saudi Arabia has undergone significant changes in 
industrialization and lifestyle over the last four decades 
which has greatly impacted dietary and sedentary behav-
iors [18, 19]. Prior to the 1980’s, IBD was considered to 
be rare in Saudi Arabia and surrounding regions but the 
incidence of IBD has been gradually increasing over the 
last four decades [20]. Prospective studies in Saudi Ara-
bian populations observed an incidence of 5 per million 
and prevalence of 50 per million for IBD in children from 
1993 to 2002 [21]. The annual incidence of the CD was 
observed to be 3.2 cases per million from 1983 to 1992 
and rising to 16.6 cases per million /from 1993 to 2002 
[22]. Dietary factors, medication and smoking are postu-
lated to contribute to the increased CD pathogenesis in 
Saudi Arabia [23]. A retrospective hospital-based study 
of 312 Saudi IBD subjects from 1970 to 2008 showed the 
mean age of patients with IBD was 25.5 (SD 10.6) years. 
Recently, a report by Al-Amrah et al. (2023) reported the 
composition of gut microbiota in patients with IBD [24]. 
However, these results were not sub-classified into UD 
and CD and the study sample was small (11 patients of 
UC and CD). Even though some of the results are simi-
lar, a comparison cannot be made due to the reasons 
above. Given the rapidly rising incidence of UC and CD 
in this population, and also considering the scarcity of 
microbiome studies in Saudi populations, we performed 
a large-scale microbiome profiling study of Saudi patients 
with UC and CD in order to characterize dysregulated 

microbiota in this population and compare to other 
populations.

Methods
Study populations
Between 2015 and 2019, stool samples and data were col-
lected from 219 IBD subjects (CD or UC) attending the 
Internal Medicine Clinics, King Fahd Hospital of the 
University, Al-Khobar and King Fahad Hospital, Alhafof, 
Saudi Arabia. Diagnosis of IBD was based on endoscopy 
(for CD) or colonoscopy (for UC) together with imag-
ing studies [25]. The inclusion criteria included patients 
over the age of 18 years who had a clinical diagnosis of 
IBD through endoscopy or colonoscopy examinations. 
Patients were excluded from the study if they had intes-
tinal cancer, H. pylori infection, or had been prescribed 
antibiotic treatment in the two-month period prior to 
the date of inclusion in the study. Equivalent samples 
and data were also derived from 124 healthy controls. 
The control population did not have any evidence of 
T2D from HbA1C readings or from physician notes, nor 
did they have a family history of T2D. Participants who 
had been treated with antibiotics in the previous three 
months, were pregnant or lactating, or had a metabolic 
disease were excluded from the study.

Ethical approval of the study was obtained from the 
Abdulrahman Bin Faisal University Institutional Review 
Board (IRB-2019-01-115) and the study was conducted 
according to the ethical principles of the Declaration of 
Helsinki and Good Clinical Practice guidelines. All par-
ticipants provided signed written informed consent.

DNA extraction and preparation
Stool samples were taken from IBD (n = 219) and healthy 
(n = 124) participants. Bacterial DNA extraction from 
stool samples was performed using QIAamp Fast DNA 
Stool Mini Kit (Qiagen, Hilden, Germany) according to 
the manufacturer’s instructions.

Methods for DNA Library generation and sequencing
Libraries were prepared using the Swift Amplicon 16  S 
rRNA Panel according to the manufacturer’s instruc-
tions and including SNAP Combinatorial Dual Indexes 
for multiplexing (Integrated DNA Technologies [IDT], 
Coralville, IA, USA). Bead-based library normalization 
and pooling was performed using Swift Normalase (IDT, 
Coralville, IA, USA), and representative sets of libraries 
were assessed for quantity and quality.

16 S microbiome sequencing
We utilized a sequencing strategy that targets all variable 
regions in the 16 S rRNA gene. This was carried out using 
the Swift Amplicon 16 S rRNA Panel (IDT, Coralville, IA, 
USA) to enable strain-specific identification of microbial 
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species. The assay utilizes a pool of five overlapping 
primer pairs for a total targeted area spanning V1-V9, 
and the resultant libraries are suitable for sequencing 
on Illumina NovaSeq 6000. The indexed libraries were 
on average 620 base pairs (bp) in length, and individual 
DNA libraries were diluted to 2.5 nM, pooled in equimo-
lar proportion, and sequenced on a flow cell (Illumina, 
CA) using 250 bp paired-end reads. Taq PCR Master Mix 
from Qiagen was used to prepare the PCR master mix. 
The three PCR products from each sample were pooled 
together.

Analyses
Illumina software was used for deconvolution the initial 
primer and barcode processing of all raw sequences. Raw 
sequences were demultiplexed with Illumina’s bcl2fastq2 
v2.20 Seqtk [26]. FastQC was then used for further pro-
cessing to remove samples with low quality scores across 
the majority of bases [27]. After de-multiplexing the raw 
sequences and screening via FastQC, the majority of data 
processing was executed in Quantitative Insights into 
Microbial Ecology Version (QIIME2) with custom scripts 
[28]. Paired-end reads were joined using the VSEARCH 
function [29]. Chimera amplicon removal and abun-
dance filtering were processed using Deblur [30]. Ampli-
con sequences were clustered and assembled into OTUs 
using closed reference clustering against the Greengenes 
(13_8 database) using VESEARCH[]. Taxonomic assign-
ment was performed using a pre-trained Naïve Bayes 
classifier with Greengenes OTU database. The abun-
dance tables and data obtained from QIIME2 were com-
bined into a Phyloseq object (version 4.1.1), normalized 
for library size variation using DADA2 (ttps://github.
com/benjjneb/dada2), and further analyzed in R with 
custom scripts [31]. Within each sample, we calculated 
the relative abundance of each phylum for each UC, CD 
and control group and biological sex. Next, we evaluated 
alpha- and beta-diversity for all groups and calculated the 
Shannon diversity index.

We calculated the number of meaningful principal 
components to retain using the broken-stick test imple-
mented in the package PC-Dimension (v 1.1.11). Briefly, 
the broken-stick test simulates a series of principal com-
ponents corresponding to random variation and only the 
empirical principal components explaining more varia-
tion than those generated by the broken-stick model are 
retained. We visualized samples in PCA space using all 
combinations of meaningful principal components. 
Second, we calculated the Bray-Curtis dissimilarity, a 
measure of the dissimilarity in taxonomic composition 
between groups, using the vegan package. We visualized 
the Bray-Curtis dissimilarity between all pairwise com-
binations and annotated samples by UC, CD and con-
trol group status and sex using the pheatmap package 

(v 1.0.12). All other visualizations were created with the 
ggplot2 package and custom scripts (version 3.3.5) to cull 
poorly sequenced reads (https://ggplot2.tidyverse.org.).

Principal coordinates analysis (PCoA) was performed 
to evaluate the differences in microbial community struc-
ture across sample types. Briefly, the phyloseq package 
(1.38.0) was used to calculate the relative abundance of 
each OTU, from that a Bray-Curtis dissimilarity matrix 
was generated using the vegan package (v 2.5-7). A PER-
MANOVA model was used to assess the effect diagnosis, 
sex, diabetes status, region of sample collection (area), 
family history of IBD, number of family members with 
IBD, and nationality had on the beta diversity utilizing all 
patients grouped together. Patients were then assigned 
to one of three individual bins based on age (0–27 
years, N = 75 patients, 28–36 years, N = 74 patients, and 
> 36 years, N = 70 patients. The same analysis was then 
repeated on the patients from the respective age bins 
assessing the effect that the aforementioned variables had 
on beta diversity.

Differential abundance testing
The DESeq2 package (v 1.32.0) was used to test for dif-
ferential abundance of OTUs by modeling counts using 
the negative binomial distribution. Custom R scripts 
were used to process the abundance and metadata to cre-
ate a DESeq2 object and design formula that modeled 
the DESeq2 normalized counts as a function of the area, 
nationality, diagnosis, diabetes status, and age bin.

Data Quality Control and Filtering
For the 16 S sequencing data from IBD and healthy con-
trols, most samples generated sufficient reads for down-
stream analyses, with mean number of reads per sample 
and median number of reads per sample being 1,198,986 
and 1,182,939, respectively (Additional File 1: Figure. 
S1). Principal component analysis (PCA) was performed, 
and the results of the broken-stick test indicated that 2 
principal components were most meaningful to retain 
(explaining 9% and 3% of the variance, respectively). 
The scatterplots were annotated using various categori-
cal variables from the metadata: area, nationality, family 
history, number of family members affected, sex, diag-
nosis, and diabetes status (Additional File 2: Fig. S2). 
Sample pruning using read filters showed that the mid-
dle 50% of the distribution of reads per sample was suf-
ficient (917,332–1,474,985), although a small number of 
samples were observed with relatively low read counts 
that could bias downstream results (Additional File 1: 
Fig. S1). To determine the appropriate read count filter 
to prune samples, a tabulation for the number of samples 
to be retained was generated using filters ranging from 0 
to 150,000 reads in increments of 5,000 and plotted the 
results (Additional File 3: Fig. S3). Based on the results 

https://ggplot2.tidyverse.org
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of the read filter comparison, only samples with at least 
25,000 reads were retained for downstream analyses, 
bringing the total number of samples in the data set to 
227.

An evaluation of the number of Operational Taxo-
nomic Units (OTUs) was performed to facilitate 
removing and reducing the burden of multiple testing 
correction in downstream analyses using a prevalence 
filter. Within each phylum, we plotted the prevalence of 
each OTU as a percentage against the total abundance of 
all OTUs in the data set (Additional File 4: Figure. S4). To 
determine the most appropriate prevalence filter which 
balanced removing rare taxa while preserving those rele-
vant to the biological questions of interest, the minimum 
number of samples in which an OTU had to be observed 
was computed using a range of prevalence filters. Specifi-
cally, we tested prevalence filters from 0 to 100% in incre-
ments of 5% and plotted the number of OTUs retained 
in a barplot (Additional File 5: Figure. S5). A dramatic 
decrease in the number of OTUs retained was observed 
after applying a 5% prevalence threshold. To maximize 
statistical power in downstream analyses, a 10% preva-
lence filter was chosen, leaving a total of 2,502 OTUs in 
the taxa-pruned data set.

Next, we evaluated the proportion of uncharacterized 
OTUs at each taxonomic level (Additional File 6: Table 
S1). One OTU was uncharacterized at the phylum level 
and was removed from the data set. Reads were agglom-
erated at the genus level, as approximately 41% of OTUs 
were uncharacterized at the species level, resulting in a 
data set with 198 distinct OTUs.

Unsupervised discovery methods
To determine whether there were distinct differences 
between the different subpopulations that would drive 
overall classification using unsupervised methods, PCA 

was performed using the phyloseq package and on a Bray-
Curtis dissimilarity matrix using the vegan package. The 
scatterplots were annotated using various categorical 
variables from the metadata: area, nationality, family his-
tory, number of family members affected, sex, diagnosis, 
and diabetes status (Additional File 7: Figure. S6.1-S6.21). 
Scatterplots of individual coordinates on principal coor-
dinates axes 1 and 2 which explained 24% and 14% of the 
variance, respectively.

Supervised Discovery
We performed specific pairwise differential abundance 
comparisons to ask whether specific OTUs were signifi-
cantly associated with CD, UC and control participants. 
The DESeq2 package (v 1.32.0) was used to test for dif-
ferential abundance of OTUs. Custom R scripts were 
used to process the abundance and metadata to create 
a DESeq2 object and design formula that modeled the 
DESeq2 normalized counts as a function of the area, 
nationality, diagnosis, diabetes status, and age bin.

Results
There were 135 and 84 individuals with CD and UC, 
respectively, with microbiota datasets available for analy-
ses (Table 1). In the overall 219 IBD cases, 8 (3.6%) and 
6 (2.7%) of subjects had confirmed or borderline Type-2 
Diabetes (T2D), respectively, as assessed by HbA1C read-
ings and physician notes. The mean age in the IBD cases 
and controls was 34.0 (± SD = 11.7) and 46.8 (± SD = 9.9). 
Family history of T2D was evident in 16 IBD subjects 
(7.3%) (Table 1).

Unsupervised discovery methods
We created a heatmap of the Bray-Curtis dissimilarity 
matrix using the pheatmap package and annotation of 
the plot was performed using the same categorical fields 

Table 1  Clinical and demographic characteristics for Saudi Arabian IBD cases (244) and controls (124)
All IBD cases Controls p-value

N 343 219 124

Age (Mean ± SD) 57.5 ± 12.5 34.0 ± 11.7 46.8 ±
9.9

< 2.2e-16

Sex N (%) Male 219 (63.8%) 143 (65.2%) 76 (61.2%) 0.86

Type-2 Diabetes N (%)

Yes N (%) 8 (2.3%) 8 (3.6%) 0 (0%) 0.013

Borderline N (%) 6 (1.7%) 6 (2.7%) 0 (0%)

Family history N (%) 16 (4.6%) 16 (7.3%) NA --

Diagnosis

Crohn’s N (%) 135 (39.3%) 135 (61.6%) NA --

Ulcerative N (%) 84 (24.4%) 84 (38.3%) NA

Normal N (%) 124 (36.1%) NA 124
(100.0%)

HbA1c (%) Median [IQR] 5.7 [5.1,6.1] 5.7 [5.1,6.1] NA --

CRP Median [IQR] 1.2 [0.3,3] 1.2 [0.3,3] NA --
Note: Statistically significant difference in CRP levels between Crohn’s Disease and Ulcerative Colitis Median [IQR]: 1.85 [0.5,3.85] vs. 0.6 [0.2,2] (p = 0.0002)
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in the metadata except for number of family members 
affected (Fig. 1).

In the PCoA scatterplots, evidence of structure in the 
data related to differences in community composition 
was observed but no clear patterns associated with the 
disease status were evident. Evidence of structure in the 
heatmap was also observed, with groups of samples with 
clear differences in community compositions evident by 
the relatively high Bray-Curtis dissimilarity estimates. 
However, similar to the PCoA scatterplots, there was no 
obvious pattern evident with case diagnosis. From this 
we conclude that IBD status was not a main driver of 
microbiome dissimilarity in this population.

To determine whether other population character-
istics were associated with microbiome dissimilarity, 
various fields from the metadata were fitted onto the 
ordination scores from Additional File 7: Fig. S6.1-S6.21 
and tested for statistical significance using a permuta-
tion test with 10,000 iterations. In addition to the cat-
egorical fields described in previous figures, age was 
also included. Age was significant (p-value = 5e-04), 
but only explained approximately 7% of the variation in 
the data (R2 = 0.0665). In addition, sex was significant 
(p-value = 0.0379), but only explained approximately 
1.5% of the variation in the data (R2 = 0.0147). None of 
the other categorical metadata variables, including case 
diagnosis, were statistically significant. Given that age 

Fig. 1  Heatmap of Bray-Curtis dissimilarity. Each sample is represented as a cell in the heatmap matrix. Color scale describes the Bray-Curtis dissimilarity, 
with 0 meaning the two microbial communities are the same, and 1 meaning they are completely different. Horizontal bar plots above the dendrogram 
are annotated with categorical fields from the metadata
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was statistically significant in the permutation test, the 
PCoA scatterplot was annotated by age. First, the age was 
categorized variable into 6 distinct bins using the ggplot2 
package: [4-15.8], [15.8–27.7], [27.7–39.5], [39.5–51.3], 
[51.3–63.2], and [63.2–75]. The gg-highlight package (v 
0.3.2) (https://cran.r-project.org/ web/packages/ gghigh-
light/index.html) was used to plot samples from each 
age bin on top of the rest of the data in a series of fac-
eted scatterplots (Fig. 2). Given that age was determined 
to be a statistically significant driver of differences in beta 
diversity, we performed the same analysis but sorted each 
patient into one of three bins based on age (0–27 years, 
28–36 years, and > 36 years). The only variables to show 
a statistically significant effect on beta diversity were 
family history of IBD and the number of family mem-
bers affected by IBD in the 0–27 age bin (Additional Files 
8,9,10,11: Figs S7, S8, S9, S10).

Supervised Discovery
Figure  2 illustrates the DESeq2 normalized counts as a 
function of the area, nationality, diagnosis, diabetes sta-
tus, and age bin. Results for each covariate comparison 
were tabulated in the model formula and shrunk the 
log2 fold change estimates using the apeglm function in 

DESeq2, resulting in a total of 294 differential abundant 
OTUs across all comparisons (adjusted p-value < 0.05 
using Benjamini and Hochberg FDR method). We cre-
ated volcano plots faceted by each comparison in the 
model to visualize the effect size of differential abun-
dances estimates and p-values (Fig. 3).

Each OTU in the plot is represented as a dot, with red 
dots representing differentially abundant OTUs with 
adjusted p-values < 0.05 and absolute value of log2 fold 
change estimates > 1. Figure  4 illustrates comparisons 
across IBD disease diagnoses, with the differentially 
abundant OTUs shown as barplots. Negative log2 fold 
change estimates correspond to reduced abundance of 
each OTU in the normal and UC samples in the left and 
right plots, respectively. In contrast, positive log2 fold 
change estimates correspond to increased abundance of 
each OTU in CD samples in both plots.

At the genus level, two genera in particular, Veillonella 
and Lachnoclostridium showed significant association 
with CD versus controls (Fig.  4). There were significant 
differences between subjects with CD versus UC, with 
the top differential genera spanning Akkermansia, Har-
ryflintia, Maegamonas and Phascolarctobacterium. 
Additional Files 12 & 13: Figures S11 and S12 illustrate 

Fig. 2  Bray-Curtis PCoA scatterplots of dissimilarity on principal coordinates axes 1 and 2. Each dot represents a sample, colored by 6 age bins with 
remaining samples shown in grey. Percent of variance explained by each principal coordinate is displayed on associated axis
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both the UC versus healthy, and Crohn’s versus healthy, 
for Species Level Differential Abundance Testing respec-
tively, with the top 20 upregulated and top 20 downregu-
lated species listed in Additional File 14: Supplementary 
Table S2 (UC versus normal) and Additional File 15: 
Supplementary Table S3 (Crohn’s versus normal). The 
full datasets are listed in Additional File 16: Supplemen-
tary Table S4 (UC versus normal) and Additional File 
17: Supplementary Table S5 (Crohn’s versus normal). At 
the species level, both UC and CD groups had a larger 
abundance of Blautia hansenii, which has been previ-
ously shown to be associated with visceral fat accumula-
tion [32], when compared to controls. Additionally, both 
CD and UC patients saw a lower abundance of multiple 
species of Prevotella which is consistent with what other 
studies have shown [33]. Furthermore, significant diver-
sity in microbiome composition was observe within the 
UC and CD groups (Fig.  5). Overall, we conclude that 
key differences in microbiome composition are observed 
between UC and CD and healthy patients.

Discussion
Unlike the relationship witnessed in rodent models, the 
host-microbe relationship in IBD patients is consider-
ably more multifaceted and diverse. In both the CD and 
UC forms of the disease, dysbiosis is evident. However, 

whether it is the cause or the effect of inflammation in 
the intestinal tissue is uncertain. Therefore, further delin-
eation of IBD requires a greater level of microorganism 
differentiation analysis as well as taking into account 
environmental, lifestyle and genetic factors.

Previous studies have characterized gut microbiomes 
in patients with UC and CD, however, these few stud-
ies have been performed on populations not from the 
Middle East. Given cultural and dietary dissimilarities in 
Middle Eastern versus Western populations, we hypothe-
sized that key IBD-associated microbes may be distinctly 
different in Middle Eastern study participants. Indeed, 
in our study of Saudi Arabian participants we observed 
a number of microbial genera that were not well charac-
terized in prior IBD studies. In particular, Lachnoclostrid-
ium, which was at higher abundance in CD versus normal 
in our dataset, was recently observed to be upregulated 
in response to a high protein diet and associated with 
colonic mucus thickness, though a clear link with UC or 
IBD in general has not been elucidated [34]. While Har-
ryflintia has been recently identified as associated with a 
high-fat diet in mice, much less is known about specific 
associations with CD [35]. Akkermansia is commonly 
associated with protective effects in the gut for a variety 
of diseases, here we show that there is significant differ-
ential Akkermansia abundance in CD versus UC [36–38]. 

Fig. 3  Volcano plots faceted by each comparison in DESeq2 model with log2 fold change in abundance between groups (x-axis) and -log10 raw p-value 
(y-axis). Dashed vertical black lines represent − 1 and + 1 log2 fold change; the dashed horizontal black line represents the raw p-value threshold of 0.05. 
Each OTU is represented as a dot, with red dots representing differentially abundant OTUs with adjusted p-values < 0.05 and absolute value of log2 fold 
change estimates > 1
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This may not be unique to the Saudi population and may 
reflect differential presentation and severity in CD versus 
UC. In particular, only a subset of OTUs were overlap-
ping with UC versus CD characterizations by Jansson 
and colleagues, and as such their previously developed 
classifier and any other classification algorithm trained 
largely on mostly IBD subjects of European ancestry and 
may not perform well when applied to participants from 
the Middle East [39].

For the two genera that showed significant association 
with CD versus controls - Veillonella is a an anaerobic 
bacteria genus commonly associated with gut inflam-
mation and has been previously observed at differen-
tial abundances in IBD versus healthy subjects across a 
number of studies [40–43]. Lachnoclostridium was also 
observed as significantly upregulated in our CD popula-
tion which to our knowledge not been observed in any 
studies to date. One small study of CD versus UC sub-
jects showed it was upregulated in UC patients but not 
CD subjects [43]. In 2019 a modestly sized 16  S rRNA 
microbiota study comparing two sub-types of the UC, as 

defined by traditional Chinese Medicine theory, showed 
a significant increase in Lachnoclostridium [38].

Conclusions
In conclusion, we have shown that there are significant 
differences in gut microbiota between UC, CD and con-
trols in a Saudi Arabian IBD cohort. This reinforces the 
need for further studies in large populations that are 
ethnically and geographically diverse. In addition, our 
results show the potential to develop classifiers that may 
have add additional richness of context to clinical diagno-
sis of UC and CD with larger IBD cohorts.

Fig. 4  Barplot of statistically significant differentially abundant OTUs for disease diagnosis comparisons (adjusted p-value < 0.05). Genus associated with 
each OTU (x-axis) and the shrunken log2 fold change estimate (y-axis_. Negative log2 fold change estimates correspond to reduced abundance of each 
OTU in the Healthy controls (left plots) and CD samples (right plots)
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