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Abstract 

Background RNA methylation is a crucial in many biological functions, and its aberrant regulation is associated with 
cancer progression. N6‑Methyladenosine (m6A), 5‑Methylcytosine (m5C), N1‑methyladenosine (m1A) are common 
modifications of RNA methylation. However, the effect of methylation of m6A/m5C/m1A in hepatocellular carcinoma 
(HCC) remains unclear.

Method The transcriptome datasets, clinic information, and mutational data of 48 m6A/m5C/m1A regulator genes 
were acquired from the TCGA database, and the prognostic hazard model was established by univariate and Least 
absolute shrinkage and selection operator (Lasso) regression. The multivariate regression was performed to deter‑
mine whether the risk score was an independent prognostic indicator. Kaplan–Meier survival analysis and ROC curve 
analysis were used to evaluate the predictive ability of the risk model. Decision curve analysis（DCA）analysis was 
conducted to estimate the clinical utility of the risk model. We further analyzed the association between risk score and 
functional enrichment, tumor immune microenvironment, and somatic mutation.

Result The four‑gene (YTHDF1, YBX1, TRMT10C, TRMT61A) risk signature was constructed. The high‑risk group had 
shorter overall survival (OS) than the low‑risk group. Univariate and multivariate regression analysis indicated that risk 
score was an independent prognostic indicator. Risk scores in male group, T3 + T4 group and Stage III + IV group were 
higher in female group, T1 + T2 group and stage I + II group. The AUC values for 1‑, 2‑, and 3‑year OS in the TCGA data‑
set were 0.764, 0.693, and 0.689, respectively. DCA analysis showed that the risk score had a higher clinical net benefit 
in 1‑ and 2‑year OS than other clinical features.The risk score was positively related to some immune cell infiltration 
and most immune checkpoints.

Conclusion We developed a novel m6A/m5C/m1A regulator genes’ prognostic model, which could be applied as a 
latent prognostic tool for HCC and might guide the choice of immunotherapies.
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Introduction
Hepatocellular carcinoma (HCC) is the most common 
primary liver cancer all worldwide, characterized by 
insidious onset, high incidence, rapid growth, strong 
invasiveness, and high mortality. Because it lacks 
effective treatments, it is vital to elucidate the molecu-
lar mechanism of HCC for developing new diagnostic 
methods and defining new targets.

RNA methylation has become an essential form of 
epigenetic modification and is integral to tumor gene-
sis, progression and prognosis [1–3]. 6-methyladenine 
(m6A), 5-methylcytosine (m5C) and 1-methylad-
enine (m1A) are the three most common RNA meth-
ylation modifications in eukaryotes. RNA methylation 
includes writers, erasers, and readers. M6A methyla-
tion participates in the progression of glioblastoma, 
hepatocellular carcinoma, breast cancer, colorec-
tal cancer and other cancers [4–8]. M6A methylase 
METTL3 has a carcinogenic function in human liver 
cancer. In the orthotopic liver transplantation model, 
knockdown of METTL3 can reduce the occurrence of 
liver cancer and lung metastasis. Loss of METTL3 can 
down-regulate m6A in  vivo and in  vitro, and reduce 
the migration, invasion and epithelial-stromal trans-
formation ability of cancer cells [9, 10]. M5C methyl-
transferase NSUN2 and m5C binding protein YBX1 
are overexpressed in bladder cancer and have poor 
prognosis, promoting bladder cancer development 
[11]. M5C methyltransferase NSUN4 and binding pro-
tein ALYREF are closely linked to HCC prognosis [12]. 
M1A demethylases ALKBH3 expression is over-regu-
lated in HCC and has a worse outcome. Down-regula-
tion of ALKBH3 inhibits tumor cell proliferation [13].

Our study is to evaluate predictive ability of m6A/
m5C/m1A regulators genes for HCC prognosis. The 
prognostic risk model of four genes (YTHDF1, YBX1, 
TRMT10C and TRMT61A) was established by uni-
variate Cox regression, Lasso regression and mul-
tivariate Cox regression to predict the prognostic 
characteristics for HCC patients. First, different data 
sets were conducted to verify the prediction power for 
risk model. Then we explored the correlation between 
the risk model and immune cell infiltration, immune 
checkpoints and tumor mutations of patients to pro-
vide a theoretical study basis for the discovering HCC 
biomarkers and targets for cancer immunotherapy.

Materials and methods
Data collection
The RNA sequence, clinic information, and somatic 
mutation date were downloded from the TCGA-LIHC 
database (https:// portal. gdc. cancer. gov/) as a train-
ing cohort, including 374 HCC patients and 50 normal 

liver tissues. Similarly, gene expression data and clinical 
information were also acquired from LIRI-JP in ICGC 
database (https:// dcc. icgc. org/) as a validation cohort, 
including 232 HCC tissues.

Screening of differentially expressed genes (DEGs)
Based on previously published literature, we chose 23 
m6A regulator genes, 15 m5C regulator genes, and ten 
m1A regulator genes for study [14–17]. M6A regula-
tor genes included METTL3, METTL14, METTL16, 
YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2, 
RBM15, RBM15B, RBMX, IGF2BP1, IGF2BP2, IGF2BP3, 
KIAA1429, FMR1, LRPPRC, HNRNPA2B1, HNRNPC, 
ZC3H13, FTO, ALKBH5 and WTAP. M5C regulator 
genes contained TRDMT1, NSUN1, NSUN2, NSUN3, 
NSUN4, NSUN5, NSUN6, NSUN7, DNMT1, DNMT2, 
DNMT3A, DNMT3B, ALYREF, YBX1 and TET2. M1A 
regulator genes were comprised of TRMT6, TRMT61A, 
TRMT61B, TRMT10C, ALKBH1, ALKBH3, YTHDF1, 
YTHDF2, YTHDF3, and YTHDC1. Wilcoxon test 
was applied to compare the differential expression of 
these genes HCC and normal tissues. Then we used the 
CPTAC from UALCAN to test the protein levels in HCC 
tissues and normal tissues [18]. In addition, immunohis-
tochemical staining images of HCC and normal liver tis-
sues were obtained from the HPA database.

Establishment and validation for the prognostic signature 
of m6A/m5C/m1A regulator genes
To study the prognostic significance of m6A/m5C/
m1A regulator genes in HCC, we selected differen-
tially expressed genes (DEGs) in HCC for univariate cox 
regression to screen prognostic genes using the survival 
package in R and visualized with a forest plot. Then, the 
Least Absolute Shrinkage selection operator (LASSO) 
cox regression analysis was performed by glmnet package 
in R language for subsequent screening. The prognostic 
risk signature of four m6A/m5C/m1A regulator genes 
was constructed. The median risk score acted as the cut-
off value. Patients with risk scores above the median were 
included in the high-risk group, and others in the low-
risk group [19]. Kaplan–Meier survival curve was applied 
to compare the prognosis between the high-risk and low-
risk groups for HCC patients by the "survminer" pack-
age. We used the timeROC package in R to plot ROC 
curves further to estimate the predictive accuracy of 
the risk model. Moreover, we conducted univariate and 
multivariate cox analyses to decide whether m6A/m5C/
m1A regulator genes’ prognostic risk model could be 
independent predictors for HCC patients. Subsequently, 
the stdca.R package was used to perform decision curve 

https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
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analysis (DCA) analysis to evaluate the clinical utility of 
the risk model. Meanwhile, we adopted the ICGC data-
base to verify the accuracy of the hazard model.

Immune cell infiltration and immune checkpoint analysis 
of prognostic risk model
Single-sample gene set enrichment analysis (ssGSEA) was 
performed using the "GSVA" package to evaluate the level 
of infiltration of 24 immune cells in the tumor microen-
vironment (TME) [20]. CIBERSORT (https:// ciber sort. 
stanf ord. edu/) is used for quantifying the proportion of 
tumor infiltrating immune cells in TME, which can pre-
dict the infiltration of various tumor-related immune 
cells in tumors and is widely used in disease research 
based on TME [21]. Additionally, we evaluated the dif-
ferential expression of immune checkpoints in both risk 
groups.

GSEA enrichment analysis
For the gene expression data in TCGA cohort, DESeq2 
package was utilized to study the difference in gene 
expression between high and low-risk groups. We applied 
the ClusterProfiler package to perform the Gene Ontol-
ogy (GO) enrichment [22]. GO analysis included three 
aspects: molecular function (MF), cellular component 
(CC), and biological process (BP). Among these, molecu-
lar functions define molecular processes, cellular compo-
nents define locations where molecular processes occur, 
and biological processes define biological programs com-
prised of regulated factors [23]. The gene set enrichment 
analysis (GSEA) was conducted using the clusterProfiler 
package [24]. P < 0.05 and FDR < 0.25 were considered 
significant.

Statistical analysis
Wilcoxon test was adopted for differential expres-
sion analysis. Univariate regression and Least absolute 
shrinkage and selection operator (Lasso) analysis were 
employed for model construction, and the Kaplan–Meier 

method analyzed the prognosis. The multivariate regres-
sion was used for identifing independent prognostic 
markers. Statistical significance was set at a P-value < 0.05 
[25].

Result
Differential expression of m6A/m5C/m1A regulator genes 
in HCC
Because four genes (YTHDC1,YTHDF1-3) in m6A 
and m1A were duplicated, and there were no expres-
sion profile data of NSUN1 and DNMT2 for the TCGA 
database, we used the Wilcoxon test to analyze the dif-
ferential expression of 42 m6A/m5C/m1A regulator 
genes from 374 HCC tissues and 50 normal tissues. The 
results showed that thirty-nine genes were up-regulated, 
one gene (NSUN6) was down-regulated, and two genes 
(ZC3H13, TET2) did not have a significant difference in 
HCC and normal tissues (Fig. 1).

Establishment for prognostic risk model of m6A/m5C/m1A 
regulator genes
By univariate cox regression, 25 DEGs were found 
to affect prognosis (Fig.  2), including ALKBH1, 
ALYREF, DNMT1, DNMT3A, DNMT3B, HNRN-
PA2B1, IGF2BP3, KIAA1429, LRPPRC, METTL3, 
NSUN2, NSUN3, NSUN4, NSUN5, RBM15, RBM15B, 
TRMT10C, TRMT6, TRMT61A, TRMT61B, WTAP, 
YBX1,YTHDC1, YTHDF1 and YTHDF2. The four-gene 
prognostic risk model was constructed by Lasso regres-
sion. Risk Score was defined as follows: Risk Score = 0.13
19 × YTHDF1 + 0.468 × YBX1 + 0.1538 × TRMT10C + 0.1
17 × TRMT61A (Fig. 3A, B).

Meanwhile, we studied the potein expression of four 
genes in the CPTAC from the UALCAN database and 
immunohistochemical  staining from the HPA data-
base. The results demonstrated that the protein expres-
sion of four genes (YTHDF1, YBX1, TRMT10C and 
TRMT61A) was higher in HCC tissues than nor-
mal tissues in the CPTAC database (Fig.  4A), and 

Fig. 1 The expression of m6A/m5C/m1A‑related genes in HCC patients and normal tissues from TCGA database. (*P < 0.05, **P < 0.01,***P < 0.001)

https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
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immunochemistry demonstrated that the expression of 
YBX1 and TRMT10C was higher in HCC than normal 
tissues (Fig.  4B). Kaplan–Meier survival analysis dem-
onstrated that high expression of four genes (YTHDF1, 
YBX1, TRMT10C and TRMT61A) were linked with 
adverse prognosis (P < 0.05) (Fig. 4C).

Development and validation for prognostic risk model
To evaluate and validate the predictive value of the risk 
score prognostic model, we classified HCC patients into 
high-risk and low-risk groups based on the median risk 
score (Fig.  5A). Survival analysis demonstrated that the 
high-risk group’s overall survival rate (OS) was poor 

(Fig.  5B). In addition, ROC curves displayed that 1-, 2- 
and 3-year OS were 0.764, 0.693, and 0.689, respectively 
(Fig.  5C). LIRI-JP in the ICGC database was adopted 
to confirm the accuracy of the risk model. Similarly, 
we divided the risk score into high and low-risk groups 
(Fig.  5D). The high-risk group had poorer OS than the 
low-risk group (Fig. 5E). AUC of OS in year 1-, 2- and 3- 
was predicted to be 0.705, 0.754 and 0.755, respectively 
(Fig.  5F). These findings suggested that the prognostic 
risk model of m6A/m5C/m1A regulator genes had sig-
nificant effects on predicting the outcome of HCC.

To determine whether the risk score was an inde-
pendent prognostic factor, univariate and multivariate 

Fig. 2 The relationship between differentially expressed genes of m6A,m5C and m1A regulator genes and overall survival (OS) through univariate 
cox regression
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regression analyses were performed. By univariate and 
multivariate cox regression analysis, we found that risk 
score and M-stage were independent prognostic factors 
affecting HCC patients’ survival (Fig. 6A). In addition, the 
DCA showed that compared with other clinical features, 
the risk score had a higher clinical net benefit in 1-,2-year 
OS (Fig.  6B, C). These results displayed that the hazard 
model had good prognostic power for HCC patients.

Correlation of risk score subgroups with clinical features
We discussed the association between risk score and 
clinical features, including gender, age, T stage, M stage, 
N stage, and pathological stage. The risk score signifi-
cant correlated with gender, T stage, and pathological 
stage, but with no relation to age, M stage, and N stage 
(Fig.  7A-F). Kaplan-Merier survival demonstrated that 
high-risk group had a worse prognosis for the StageI + II 
group, Stage III + IV group, T1+T2 group, T3+T4 
group, ≤ 60  years old group, > 60  years old group, male 
group, and female group (Fig.  7G-N). All these indi-
cated that risk score had a reliable ability to predict the 
prognostic risk model. The landscape of somatic muta-
tions suggested that the top three mutations in both risk 
groups were TP53, CTNNB1 and TTN. The TP53 muta-
tion rate was the highest in high-risk group (46.7%) and 
the TTN mutation rate was the highest in low-risk group 
(30.1%) (Fig. 7O).

Immune cell infiltration and immune checkpoint analysis 
for prognostic risk model
TME is essential in tumor prognosis, malignant pro-
gression, and treatment. The composition of immuno-
cyte subsets affects anti-tumor immunity [26]. We used 
ssGSEA algorithm in the GSVA package to estimate the 
correlation between risk score and TME for HCC [27]. 

As these findings showed, the proportion of iDC, mac-
rophages, NK CD56 bright cells, T helper cells,  TFH, 
Th1 cells, and Th2 cells was significantly increased with 
increasing risk score, and the ratio of cytotoxic cells, 
DC, pDC, Th17 cells, and Treg decreased substantially 
with the increase of risk score (Fig. 8A). Then, the CIB-
ERSORT algorithm demonstrated that risk score was 
positively associated with B cell naive, B cell memory and 
Macrophage M0, while negatively associated with T cell 
CD4 + memory resting, T cell CD4 + memory activated, 
mast cell activated, and mast cell resting (Fig. 8B). Mean-
while, we also investigated the relationship of risk score 
with immune checkpoints, and discovered that high-
risk group had higher expression levels of PD-L1, PD-1, 
CTLA4, HAVCR2, PDCD1LG2, and TIGIT than low-risk 
group (Fig. 8C).

GSEA analysis for prognostic risk model
To further study the biological process, we employed GO 
analysis to analyze the gene enrichment analysis of HCC 
patients in the high and low risk group. Biological process 
participated in membrane invagination, plasma mem-
brane invagination, et al. The cellular component mainly 
focused on the apical part of cell, immunoglobulin com-
plex, et al. The molecular function involved antigen bind-
ing, immunoglobulin receptor binding, et al. (Fig. 9A).

GSEA enrichment analysis demonstrated that the 
high risk groups were enriched in ECM receptor inter-
action, cell cycle, type I diabetes mellitus, FC gamma R 
mediated phagocytosis, and primary immunodeficiency 
(Fig.  9B). Conversely, the low-risk groups were signifi-
cantly involved in retinol metabolism, fatty acid metabo-
lism, glycine serine  and threonine metabolism, primary 
bile acid biosynthesis,  and complement and coagulation 
cascades (Fig. 9C).

Fig. 3 Identification of m6A/m5C/m1A regulaor genes’ risk model. A Cross validation for tuning parameter selection in the Lasso regression 
analysis. B The four key m6A/m5C/m1A regulator genes were selected by the Lasso regression analysis
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Fig. 4 The protein expression and overall survival of four m6A/m5C/m1A regulator genes. A The protein expression of four m6A/m5C/m1A 
regulator genes in CPTAC database. B The immunochemistry image of YBX1 and TRMT10C in HCC and normal tissues. C The Kalplan‑Meier curve of 
four m6A/m5C/m1A regulator genes’ overall survival
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Fig. 5 The prognostic model of m6A/m5C/m1A regulator genes in TCGA and ICGC database. A The risk score were divided into low risk and high 
risk group, and the hotmap of four m6A/m5C/m1A regulators expression in TCGA. B Kaplan–Meier curves for overall survival in TCGA. C ROC curves 
were used to predict the 1‑,2‑ and 3‑years OS of patients in TCGA. D The risk score were divided into low risk and high risk group, and the heapmap 
of four m6A, m5C and m1A‑related genes expression in ICGC database. E Kaplan–Meier curves for OS in ICGC. F ROC curves were used to predict 
the 1‑, 2‑ and 3‑years OS of patients in ICGC 

Fig. 6 Cox regression analysis and DCA for HCC patients in TCGA database. A Univariate and multivariate regression analysis of risk score and 
clinical features. B,C The DCA of 1,2‑year survival probability for HCC patients in TCGA 
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Fig. 7 The relationship of risk score with clinical features and somatic mutation. A-F The risk score in T stage, pathological stage, gender, age, 
N stage and M stage. G-N Kaplan‑Merier curve of low risk group and high risk group in stage I + II group, stageIII + IV group, T1+T2 group, 
T3+T4 group, ≤ 60 year group, > 60 year group, male group, and female group. O The somatic mutation in low risk group and high risk group 
(***P < 0.001,**P < 0.01,*P < 0.05, ns no significance)
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Fig. 8 The expression of immune cell infiltration and immune checkpoints in low risk and high risk group. A The expression of immune cell 
infiltration in low risk and high risk group using ssGSEA algorithm. B The expression of immune cell infiltration in low risk and high risk group by 
CIBERSORT algorithm. C The expression of immune checkpoints in low risk and high risk group. (***P < 0.001,**P < 0.01,*P < 0.05)

Fig. 9 Functional enrichment analysis of risk groups. A GO enrichment analysis. B The GSEA enrichment in high risk group. C The GSEA enrichment 
in low risk group
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Discussion
Hepatocellular carcinoma (HCC) is a most typical malig-
nant tumors, with more than 740,000 new HCC patients 
and about 700,000 deaths due to HCC in the world every 
year [28]. Therefore, finding independent prognostic 
factors as new targets for advanced treatment of HCC 
patients and improving patients’ survival is cricial. With 
the rapid development of high-throughput sequenc-
ing technology, epigenetic modification, especially RNA 
methylation modification (mainly including m6A, m5C 
and m1A), has been paid more attention and developed 
rapidly over recent years. Many studies have confirmed 
that RNA methylation is crucial in malignant tumors 
progression [29–32]. Recent studies have established a 
prognostic model of skin melanoma base on m6A/m5C/
m1A regulator genes [33]. However, only some prognos-
tic models for m6A/m1A/m5C regulator genes have been 
studied in HCC.

In our study, 48 m6A/m5C/m1A regulator genes were 
selected for research and then screened out 40 differ-
entially expressed genes for HCC. A four-gene prog-
nostic risk model (YTHDF1, YBX1, TRMT10C and 
TRMT61A) was constructed using univariate and Lasso 
regression. The risk score was researched by univariate 
and multivariate regression, and regarded the risk score 
as an independent adverse prognostic factors for HCC. 
Kaplan–Meier analysis was conducted on the high-and 
low-risk group, and found that the prognosis of the low-
risk group was significantly better than that of high-risk 
group. Moreover, the risk score was related to gender, T 
stage  and pathological stage. We also performed ROC 
analysis to test the sensitivity and specificity of the haz-
ard model, and calculated the corresponding AUC values 
at 1-, 2- and 3- years, respectively. The DCA analysis con-
sidered the risk score a higher clinical net benefit than 
the clinical characteristics. The research results showed 
that the risk model had good prediction ability. The vali-
dation set ICGC also demonstrated that the prognostic 
risk model had good predictive value.

As readers of m6A, YTHDF1 has high expression in 
colon cancer, and knockdown of YTDHF1 expression sig-
nificantly inhibits the CRC cells tumorigenicity in vitro, 
mouse xenograft tumors the growth and Wnt/β-catenin 
pathway activity in CRC cells [34]. YTHDF1 is strongly 
expressed in HCC and leads to a bad prognosis. Experi-
ments in  vitro and in  vivo have demonstrated that 
YTHDF1 could promote liver cancer’s proliferation and 
metastasis [35, 36]. YTHDF1 playes a vital role in the 
epithelial-mesenchymal transformation of HCC. After 
YTHDF1 is knocked out, EMT markers N-cadherin and 
vimentin expression are  suppressed, and E-cadherin is 
up-regulated. YTHDF1 may activate AKT/GSK-3 β/β- 
Catenin signaling pathway and promotion of EMT to 

enhance HCC cells’ proliferation, invasion, and metas-
tasis [37]. YBX1, a newly discovered m5C binding pro-
tein  that regulates the stability of mRNA in cytoplasm, 
and is overexpressed in most cancers, is associated with 
tumor cell proliferation, anti-apoptosis, migration and 
prognosis, and is expected to be an ideal diagnostic bio-
marker and a candidate therapeutic target [38]. YBX1’s 
high expression in breast cancer is associated with low 
survival, drug resistance, and high recurrence rates for 
all subtypes, indicating the potential importance of YBX1 
as an oncogene in breast cancer [39]. It is reported that 
YBX1 directly binds to lncRNALINC00312 to promote 
lung cancer cell invasion, migration, and angiogenesis 
[40]. TRMT10C is overexpressed in ovarian and cervi-
cal cancer, and has a poor prognosis, which may pro-
mote tumorigenesis by affecting C-Myc-related pathways 
[41]. TRMT61A and TRMT6 forme a complex of m1A 
methyltransferase, which is up-regulated in HCC and is 
linked with poor survival. TRMT6/TRMT61A enhances 
m1A methylation in tRNA subsets to increase PPARδ 
translation, which triggers cholesterol synthesis, acti-
vates Hedgehog signaling, and ultimately promotes self-
renewal and tumorigenesis of liver CSC [42]. Our study 
also confirmed that the protein expression of four genes 
was higher in HCC than corresponding normal tissues, 
which was consistent with the above research.

We performed enrichment and immunological analy-
sis to explore the biological processes involved in HCC. 
GSEA enrichment analysis showed that the high-risk 
group was engaged in ECM receptor interaction, cell 
cycle, type I diabetes mellitus, FC gamma R mediated 
phagocytosis and primary immunodeficiency. Studies 
have shown that dysregulation of these processes will 
lead to tumorigenesis and progression [43–47]. TME 
contains fibroblasts, vascular endothelial cells, immune 
cells and cytokines released by cells, which are closely 
linked with tumor proliferation, invasion, and metastasis. 
More and more studies have shown that RNA methyla-
tion relates to TME [48, 49]. Zhao et al. construct a prog-
nostic model of m6A, which reveals the TME features 
of HCC patients with distinct m6A expression patterns 
and find that the high LRPPRC m6A modulator expres-
sion had depletion of T cells, cytotoxic cells, dendritic 
cells, and cytolytic activity response [50]. Yong Liu et al. 
divide m5C methylation regulators into three different 
m5C clusters, and the results show that m5C modifica-
tion patterns play a crucial role in the TME for HCC [51]. 
It has been reported that m1A-score model in HCC is 
correlated with TME [52]. Based on the above research, 
we studied the correlation the risk model for m6A/m5C/
m1A regulator genes with TME. We used the ssGSEA 
algorithm to analyze the association of risk score with 
immune cell infiltration. The findings suggested that 
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the risk score was positively correlated with iDC, mac-
rophage, NK CD56 bright cells, T helper cells, TFH, 
Th1 cells, and Th2 cells. Macrophages, as the first line 
of defense for immune defense, play an essential part 
in all stages of tumor genesis and development, and are 
central regulators of TME [53]. It also promotes tumor 
angiogenesis and tumor metastasis [54–57]. Th2 expres-
sion level increased with increasing risk scores, possibly 
due to Th1/Th1 drift caused by Th1/Th2 imbalance and 
tumor cells escaping from immune surveillance, lead-
ing to tumor occurrence. CIBERSORT algorithm also 
indicated that the high-risk group had higher infiltration 
of B cell naive, B cell memory and Macrophage M0 and 
lower infiltration of T cell CD4 + memory resting, T cell 
CD4 + memory activated, mast cell activated, and mast 
cell resting.

With the discovery of tumor biology and immunol-
ogy, tumor immunotherapy has become a new way of 
tumor therapy. The discovery of immune checkpoints 
provides a new idea for tumor immunotherapy. Immune 
checkpoints are negative immunomodulatory mol-
ecules expressed on the surface of immune and tumor 
cells, and are  closely related to tumor proliferation, 
invasion, metastasis and prognosis assessment.They 
are a good target for tumor therapy. Our study chose 
eight common immune checkpoints, containing PD-L1, 
PD-1, CTLA4, HAVCR2, PDCD1LG2, TIGIT, LAG3 
and SIGLEC15, and discovered increased expression 
of PD-L1, PD-1, CTLA4, HAVCR2, PDCD1LG2, and 
TIGIT in high-risk group. The upregulation of immune 
checkpoints in TME benefits tumor growth [58]. High-
risk patients might benefit from immunotherapy.

In summary, we constructed a risk model  of m6A/
m5C/m1A regulator genes in HCC and discovered that 
these genes had particular clinical value in diagnosis and 
prognosis. However, this study also had some limita-
tions. We perfomed bioinformatics analysis to study the 
relationship between m6A/m5C/m1A regulator genes 
and prognosis for HCC patients. Its mechanism in HCC 
remained unclear. Many experiments are needed to 
investigate further the role of m6A/m5C/m1A regulator 
genes in HCC.

Conclusion
We established a prognostic signature of four-gene for 
predicting HCC prognosis and were a potential pre-
dictor in patients with HCC. Our study could perform 
individual-based treatment and might help to improve 
the prognosis of HCC patients.
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