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Abstract 

Background Recently, radiomics has been widely used in colorectal cancer, but many variable factors affect the 
repeatability of radiomics research. This review aims to analyze the repeatability of radiomics studies in colorectal 
cancer and to evaluate the current status of radiomics in the field of colorectal cancer.

Methods The included studies in this review by searching from the PubMed and Embase databases. Then each study 
in our review was evaluated using the Radiomics Quality Score (RQS). We analyzed the factors that may affect the 
repeatability in the radiomics workflow and discussed the repeatability of the included studies.

Results A total of 188 studies was included in this review, of which only two (2/188, 1.06%) studies controlled the 
influence of individual factors. In addition, the median score of RQS was 11 (out of 36), range-1 to 27.

Conclusions The RQS score was moderately low, and most studies did not consider the repeatability of radiomics 
features, especially in terms of Intra-individual, scanners, and scanning parameters. To improve the generalization of 
the radiomics model, it is necessary to further control the variable factors of repeatability.
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Background
Colorectal cancer (CRC) is one of the most common 
clinical malignant tumors [1]. Medical imaging tools 
have become crucial in CRC for staging and treatment 
evaluation [2]. However, traditional radiology is mainly 
dependent on the subjective qualitative interpretations 
of the doctor [2], which often leads to suboptimal posi-
tive and negative predictive values [2, 3]. In recent years, 
with the rapid development of image analysis methods 

and pattern recognition tools, there is a growing shift 
away from qualitative to quantitative analysis of medical 
images [2].

As a quantitative analysis tool, radiomics extracts fea-
tures from medical images through high-throughput 
computing and applies them to personalized clinical deci-
sions to improve the accuracy of diagnosis and prognosis 
[4]. In recent years, radiomics showed a unique advan-
tage for staging, differential diagnosis, and prognosis [5]. 
Although an increasing amount of radiomics research 
has been published, the comparability and repeatabil-
ity of radiomics models remain a great challenge due to 
the lack of standardization in the field of radiomics [6, 7]. 
Assessing the repeatability of radiomics is necessary to 
achieve the clinical implementation of radiomics results 
and to ensure a high predictive capability of the radiom-
ics model for a variety of populations and institutions [8]. 
In addition, several factors that affect the repeatability 
have been identified in the complicated workflow of radi-
omics, such as scanner [9–11], acquisition parameters 
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[11–16], pretreatment method [17, 18], segmentation 
method [19–22], inter/intra-observer variability [16, 17, 
19], feature selection method [23], modeling method 
[23].

Therefore, we conducted a systematic review to survey 
the repeatability of radiomics research in CRC. Further-
more, we gave some suggestions to increase radiomics 
repeatability for future research.

Methods
Review strategy
We conducted a systematic review according to the Pre-
ferred Reporting items for Systematic review and Meta-
Analysis (PRISMA) checklist [24]. But the review was not 
registered before. The systematic search was conducted 
by two reviewers via PubMed and Embase databases 
until Jul 4, 2022. The full search strategies from Addi-
tional Text 1.

Study selection
Population
We included primary research assessing the role of radi-
omics for diagnostic or prognostic with CRC patients. 
However, studies consisting of animal subjects and other 
types of articles than original articles (reviews, case 
reports, brief communications, technical reports, letters 
to editors, comments, and conference proceedings) were 
excluded.

Intervention
To be included, studies had to use the radiomics analysis 
of the preoperative or postoperative medical images in 
CRC patients for stratification of the CRC, prediction of 
response to therapy, or prognosis.

Outcome
In this review, the primary outcome of interest was 
the repeatability in the whole process of the radiomics 
research (including intra-individual, imaging acquisition, 
segmentation, feature selection, modeling, and evalua-
tion). Studies with insufficient information for assessing 
the methodological quality were excluded.

Study extraction and quality assessment
The following data from each eligible study was system-
atically recorded: author, year, purpose, type, sample size, 
imaging modality, acquisition parameters, reconstruc-
tion parameters, pretreatment method, feature selection 
method, modeling method, segmentation method, num-
ber of features, verification method, performance index, 
and clinical utility.

In addition, the methodological quality of the eligi-
ble studies was assessed by the Radiomics Quality Score 

(RQS) [4]. The RQS was a unique quality assessment tool 
in radiomics [25], which score was composed of 16 parts 
with a total score of 36. A higher score represents better 
quality of the article. There were great differences in the 
methods used in the eligible studies, so the meta-analysis 
did not conduct.

Risk of bias in individual studies
The common bias analysis tools were not applicable here 
for the following reasons. First, the systematic review 
aims to assess the repeatability of radiomics research 
rather than the clinical purpose and outcomes. Second, 
there is no strictly causal association between repeatabil-
ity and outcomes (diagnostic or prognosis performance). 
So the TRIPOD (Transparent Reporting of a multivari-
able prediction model for Individual Prognosis Or Diag-
nosis) and ROBINS (Risk Of Bias in Non-randomized 
Studies) were not applicable. Finally, the purposes of the 
eligible studies were highly heterogeneous, including 
staging, diagnosis, prognosis, and evaluating treatment. 
Thus, QUADAS-2(Quality Assessment of Diagnostic 
Accuracy Studies), which assesses the risk of bias in diag-
nostic studies, and QUIPS (Quality in Prognosis Studies), 
which assesses the risk of bias in prognostic studies, were 
not applicable.

Quality assessment was conducted using the RQS. 
Furthermore, the risk of bias in the eligible studies was 
assessed by two reviewers from the following specific 
aspects:

1) Sufficiency of method description and disclosure 
(imaging acquisition, stability of the segmentation, 
details of the selected features, methods for selecting 
features and modeling, and sufficiency of model per-
formance description).

2) Description of the code used to compute features, 
establish models, verify models, and statistical analy-
sis.

3) The methods to improve study reproducibility (phan-
tom study and test–retest study) and validating the 
model in the external validation cohort.

Results
Study selection
A total of 624 articles were retrieved from the compre-
hensive literature search (PubMed and Embase), of which 
were reduced to 358 based on screening of title and 
abstract. Of these studies, 188 articles were included after 
the full-text articles were assessed for eligibility. Include 
and exclude flowchart is shown in Fig. 1. 
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Statistics of the studies
The current situation of radiomics in patients with colo-
rectal cancer was analyzed in the following aspects, and 
the included articles were given an overall overview. The 
key information of included studies is summarized in 
Additional Table 1.

Figure 2A shows the published number based on radi-
omics in patients with colorectal cancer in recent years. 
The number of articles continued to increase from 2016 
to 2020 and decreased from 2020 to 2022. The publica-
tion number has an overall increasing trend.

The included studies were designed to assess the prog-
nosis (101, 53.72%), response (74, 39.36%), staging (9, 
4.79%), and diagnosis (4, 2.13%) of patients with colorec-
tal cancer (Fig.  2B). Predictive performance was mod-
erate to good in all radiomics models, but performance 
varied widely between models (the area under the curve 
values ranging from 0.56 to 0.98).

The imaging modalities of the studies include CT, 
MRI, PET, PET-CT, US, and multi-modality (Fig.  2C). 
It is worth noting that CT and MRI account for 35.11% 
(66/188) and 51.60% (97/188) of all studies.

Most radiomics of colorectal cancer were based on ret-
rospective data sets (177, 94.15%), and only a few were 
prospective studies. Multicenter studies might fully 
reflect the overall situation and evaluate the generaliza-
tion ability of the model. Of all the studies, only 9.04% 
(17/188) of articles had data from multiple medical 

institutions and 12.77% (24/188) of articles were dual-
center studies.

Quality of the studies
RQS score
The included articles were scored by RQS, and the spe-
cific scores were shown in Additional Table  2. Its score 
ranges from-1 to 27 (-3.03% to 75.00%), the median was 
11 (30.56%), of which 93.09% (175) studies scored less 
than 50%.

The total score of each item in the RQS is different, so it 
is difficult to compare the scores of each item. Therefore, 
the score ratio (actual score /total score*100%) was used 
to compare the scores of each item (Fig. 3).

Even though feature reduction was performed in all 
studies, 34.57% (65/188) of all studies still had the risk 
of overfitting, following the “one in ten” rule of thumb 
(at least ten patients for each feature in the model) [26]. 
Although well-documented image protocols for the 
studies were provided in 173 articles, only P Lovinfosse, 
et al. [27] showed [8] their study’s images were acquired 
and reconstructed according to the public image pro-
tocols. The cost-effectiveness of the clinical application 
has not been considered in the included studies, which 
is one of the most important components for the clini-
cal application of the models. Only 0.53% (1/188) of 
the studies detect inter-scanner differences by phan-
tom (Phantom study), and only 1.06% (2/188) analyzed 

Fig. 1 Flow diagram of study selection process
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Fig. 2 General situation of radiomics studies. A, Published frequency of radiomics studies on colorectal cancer from 2016 to 2022; B, Pie chart of the 
research purpose of studies; C, waffle plot of imaging mode of studies

Fig. 3 Completion rate of 188 studies in RQS



Page 5 of 12Liu et al. BMC Gastroenterology          (2023) 23:125  

feature robustness to temporal variabilities (Multiple 
time points).

Risk of bias
The potential risk of bias was present in the included 
studies to varying degrees and different aspects. The risk 
of bias in the studies was assessed in the terms of method 
details provided, code details provided, and repeatability 
(Additional Table 3).

Repeatability
The repeatability of radiomics features was directly 
related to the accuracy of model [11]. The repeatabil-
ity might be affected by many factors in the radiomics 
process, Such as scanner [9–11], acquisition parameters 
[11–16], pretreatment method [17, 18], segmentation 
method [19–22], inter/intra-observer variability [16, 17, 
19], feature selection method [23], modeling method 
[23]. The factors and solutions in the radiomics workflow 
are shown in Fig. 4.

Intra‑individual repeatability
Radiomic features may be influenced by organ motion or 
expansion or shrinkage of the target volume caused by 
physiological factors such as respiration, bowel peristal-
sis, cardiac and cardiac activity [4]. The robustness of the 
radiomics features affected by various physiological fac-
tors of the individual was called intra-individual repeat-
ability. The intra-individual repeatability was neglected 
in the majority of included studies, while the robust-
ness of the features was analyzed by test–retest in only 
two (2/188, 1.06%) studies [28, 29]. X Ma, et al. [28] set 
the basis of an intraclass correlation coefficient (ICC) of 
0.6 for test–retest analysis, but the population or phan-
tom, time interval, and the ICC form in the test–retest 
analysis were not described. J Wang, et al. [29] performed 

a test–retest analysis on 40 patients with stage II rec-
tal cancer, which scanned twice using the same scanner 
and imaging protocol before treatment, and calculated 
the Spearman’s correction coefficients for each feature. 
Although the test–retest analyses were taken, the meth-
odology among the two studies varied considerably.

Acquisition parameters
The radiomics features were derived from the same scan-
ner and imaging protocol in the 89 (89/188,47.34%) stud-
ies, and the impact on radiomics features due to scanner 
differences might be reduced. Notable was that K Nie, 
et  al. [30] underwent quality assurance checks monthly 
and maintained bimonthly to ensure the image qual-
ity. And the standardized uptake value (SUV) measure-
ment difference between the two scanners was reduced 
to less than 10 percent through regular standardization 
and quality assurance in the study of J Kang, et al. [31]. 
The effect of acquisition parameters on radiomics fea-
tures might be further controlled by taking the above 
measures.

In addition, various image post-processing approaches 
were conducted to reduce the variation of the radiomics 
features. The image intensity discretization and normali-
zation were investigated to reduce the noise and incon-
sistencies in the 60 (60/188, 31.91%) studies. In total, 
42 (42/188, 22.34%) studies conducted the resampling, 
which was performed by linear interpolation, to mitigate 
the influence of the layer thickness. The size of voxels 
after resampling was not uniform between the included 
studies.

Segmentation
The radiomics features’ robustness may be related to the 
segmentation of regions of interest (ROI) [10]. The seg-
mentation method includes manual, semi-automatic, and 

Fig. 4 Radiomics workflow and repeatability. Each step has associated factors which may influence the repeatability of the study. Although 
modelling affect reproducibility, there is still no solution
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automatic segmentation. Manual segmentation is usually 
regarded as the gold standard, but it was time-consuming 
[19] and suffered from great subjective differences among 
the observers [32, 33].

The advantages of semi-automatic segmentation in 
terms of segmentation time have been reported in the 
existing studies [19–21, 34, 35]. MM van Heeswijk, et al. 
[19] analyzed the segmentation methods and found that 
semi-automatic segmentation has similar accuracy to 
manual segmentation while reducing the time by 4 min 
(manual segmentation time 60–1118 s). Semi-automatic 
segmentations were used in 22 (11.70%) studies, while 
automatic segmentations were used in 11 (5.85%) stud-
ies. The segmentation methods were not mentioned in 
the twelve (6.38%) studies, manual segmentations were 
adopted in the remaining 143 (76.06%).

The radiomics features might be affected by segmen-
tation variation (inter-observer variation and intra-
observer variation), while multi-person/multi-method 
segmentation may reduce segmentation variation [4]. The 
multi-person/multi-method segmentation was not per-
formed in 37 (37/188, 19.68%) studies. Segmentation var-
iation was not measured quantitatively in 44 studies but 
was measured with different parameters in the remaining 
111 studies. Among the included studies, intraclass cor-
relation coefficient (ICC), Dice similarity Coefficient and/
or Jaccard similarity coefficient, Bland–Altman plots, and 
Spearman correlation coefficient was used as evaluation 
parameters in 94 (94/111, 84.68%), 9 (9/111,8.11%), 1 
(1/111, 0.90%), and 1 (1/111, 0.90%) articles, respectively. 
Notable was that P Lovinfosse, et al. [27] used automatic 
segmentation which repeatability was verified, and 4 arti-
cles [26, 36–38] defined a segmentation z-score that cap-
tures the robust features in the segmentation. In a word, 
most studies (84.68%) used ICC to evaluate segmentation 
variability, while I Fotina, et al. [39] preferred to use the 
Jaccard similarity coefficient, conformal number, or gen-
eralized conformability index to evaluate segmentation 
variability.

The ROI definition among studies varied considerably. 
The tumor region was defined as the ROI in most stud-
ies (174/188, 92.55%), while the peri-tumor region was 
also taken into account in 6 (6/188, 3.19%) studies. Three 
(3/188, 1.60%) studies used the entire parenchyma as the 
ROI. In addition, the tumor region and the lymph node 
region were defined as the ROIs in 3 (3/188, 1.60%) stud-
ies, and the ROIs were traced manually along the largest 
lateral pelvic lymph node in the study of R Nakanishi, 
et al. [40].

Feature selection
A large number of features were extracted in the radi-
omics studies, leading to the dimension disaster and the 

model overfitting so greatly reducing the generalization 
ability of the model [41, 42]. To reduce the false posi-
tive rate, A Chalkidou, et al. [42] proposed the following 
measures: (1) repeatability of features (2) cross-correla-
tion analysis (3) inclusion of clinically important features 
(4) at least 10–15 patients with each feature (5) external 
verification.

The main purposes of feature selection were (1) to 
select repeatable features among the institutions, (2) 
to remove redundant features (highly related features 
between features), and (3) to select features with pre-
dictive potential. Various methods and combinations of 
feature selection were applied to reduce the number of 
features [43]. In total, only one feature selection method 
was used in 77 (77/188, 40.96%) articles, while two, three, 
four, five, and six feature selection methods were used in 
combination in 62 (62/188, 32.98%), 36 (36/188, 19.15%), 
11 (11/188, 5.85%), 1(1/188, 0.53%), and 1(1/188, 0.53%) 
articles, respectively. L Boldrini, et al. [44] extracted only 
two features to predict the clinical complete response 
after neoadjuvant radio-chemotherapy, so no feature 
selection measures were taken. The Least Absolute 
Shrinkage and Selection operator (LASSO) (106/188, 
56.38%) was the most commonly used, followed by cor-
relation analysis (52/188, 27.66%). The feature selection 
scheme should be adjusted according to the number of 
features and samples [41].

The sample size of all studies ranged from 15 to 918, 
with a median of 149, and 66.49% (125/188) of the stud-
ies had a sample size of 0–200. To assess the adequacy 
of the sample size in the study, MA Babyak [26] sug-
gested that at least 10–15 patients were needed for each 
feature. Based on this standard, 65 (65/188, 34.57%) of 
the included studies did not meet the above conditions 
except 4 (4/188, 2.13%) studies [44–47] which did not 
establish a model, and 14 (14/188, 7.45%) studies did not 
indicate the number of features (Fig. 5).

Modelling methodology
Five (5/188, 2.66%) studies [27, 44–47] analyzed the 
predictive performance of individual radiomics fea-
tures, while no predictive models were constructed. M 
Hotta, et al. [46] reported the gray-level co-occurrence 
matrix entropy was the relevant feature for overall sur-
vival and progression-free survival. The delta radiom-
ics features (L_least and glnu) were the most predictive 
feature ratios in clinical complete response prediction 
in the studies of L Boldrini, et al. [44]. Subsequently, D 
Cusumano, et  al. [45] validated the prognostic poten-
tial of these delta radiomics features on an external 
validation cohort, while the accuracy of L_least is 
significantly higher than glnu. AA Negreros-Osuna, 
et al. [47] found that the spatial scaling factor was the 
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potential biomarker for determining BRAF mutation 
status and predicting the 5-year overall survival.

Radiomics models were constructed in 183 (183/188, 
97.34%) studies, while prediction models were con-
structed by combining clinical factors with radiomics 
features in 100 (100/184, 54.35%) studies. Z Liu, et al. 
[48] constructed a radiomics-clinical model which sig-
nificantly improved the classification accuracy com-
pared to the clinical model, based on the integrated 
discrimination improvement values. And the radiom-
ics model outperformed the qualitative analysis by 
radiologists in the study of H Tibermacine, et al. [36].

A variety of models including machine learning 
models and statistical models were used in the radi-
omics studies, such as logistic regression (LR), ran-
dom forest (RF), supporter vector machine (SVM), K 
nearest neighbor (KNN), neural network (NN), Bayes-
ian network (BN). The LR (96/183, 52.46%), SVM 
(20/183, 10.93%) and RF (20/183, 10.93%) were the fre-
quently used models in the included studies. Notewor-
thy, SP Shayesteh, et  al. [49] observed the ensemble 
model of machine learning classifiers (SVM.NN.BN.
KNN) showed the best predictive performance. And 
Z Zhang, et  al. [50] performed a retrospective study 
on 189 patients with locally advanced rectal cancer 
to assess the performance and stability of classifica-
tion methods (SVM, KNN and RF), the result showed 
that the RF outperformed KNN and SVM in terms of 
AUCs.

Evaluation
According to the principle of confirmatory analysis, the 
generalization ability of the model could be evaluated in 
the independent verification set [51]. However, only 144 
(144/188, 76.60%) articles used the independent data-
set validation, the internal validation was performed by 
applying resampling methods in the remaining studies.

The performance of the models was assessed in the 
terms of discrimination, calibration, and clinical util-
ity. The discrimination statistics (C-statistic, ROC curve 
and AUC) of the models were reported in 173 (173/188, 
92.02%) studies, and resampling analysis (bootstrapping 
and cross-validation) were applied in 78 (78/173, 45.09%) 
studies. The calibration statistics (calibration curve or 
Brier score) of the models were mentioned in only75 
(75/188, 39.89%) articles s, of which 12 (12/75, 16.00%) 
used resampling analysis. In addition, the clinical util-
ity was evaluated by the decision curve in 76 (76/188, 
40.43%). The differences in evaluation metrics between 
studies lead to difficulties in comparing performance 
between models.

How to increase repeatability
Standardization protocol
D Mackin, et  al. [9] performed a phantom analysis to 
compare the radiomics features extracted from four CT 
scanners (GE, Philips, Siemens, and Toshiba) and found 
that radiomics features might be affected by the scan-
ners. The result was subsequently confirmed in the study 

Fig. 5 Sample size of included studies. Adequate sample means the ratio of the sample size to the feature number of the study is more than 10, 
inadequate sample means the ratio is less than 10, unclear means the study did not establish a model or did not specify the number of features
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of R Berenguer, et al. [11], who used two phantoms (the 
pelvic phantom and the phantom of different materials) 
to detect the features of intra-CT analysis (differences 
between different CT acquisition parameters) and inter-
CT analysis(differences between five different scanners). 
R Berenguer, et al. [11] found that 71/177 were reproduc-
ible, and reported that the influence of scanners could be 
reduced by standardizing the acquisition parameters. RJ 
Gillies, et al. [37] have the same point of view.

The image Biomarker Standardization Initiative (IBSI) 
[52] standardized the definition, naming, and software of 
radiomics features. The Quantitative Imaging Network 
(QIN) [38] project initiated by NIC (National Cancer 
Institute) has promoted the standardization of imaging 
methods and imaging protocols. In addition, the Quan-
titative Imaging Biomarkers Alliance (QIBA) [53] organi-
zation sponsored by, the Radiological Society of North 
America (RSNA) has developed a standardized quantita-
tive imaging document "Profiles" to promote clinical tri-
als and practices of radiomics.

Test–retest reliability
JE van Timmeren, et al. [54] scanned forty patients with 
rectal cancer twice with the same scanning scheme at 
15-min intervals and found that some radiomics features 
were not repeatable at different times for the same indi-
vidual. But a set of highly reproducible radiomics features 
could be extracted by the test–retest based on phantom 
or patients [55, 56]. Moreover, JE van Timmeren, et  al. 
[54] indicated that appropriate test–retest would be 
applied in the terms of the effects of hardware, acquisi-
tion, reconstruction, tumor segmentation, and feature 
extraction.

Post‑processing
With the continuous emergence of new features, the effi-
ciency of test–retest research becomes lower [18]. The 
variability of features might be reduced by the following 
post-processing methods.

Resampling and normalization: L He, et  al. [15] dem-
onstrated that acquisition parameters (slice thickness, 
convolution kernel, and enhancement) had affected the 
diagnostic performance of radiomics. Similarly, L Lu, 
et  al. [14] demonstrated variation of radiomics features 
due to the slice thicknesses and reconstruction meth-
ods. Features associated with tumor size, border mor-
phology, low-order density statistics, and coarse texture 
were more sensitive to variations in acquisition param-
eters. Subsequently, a more rigorous experiment [13] 
showed that 63/213 features were affected by voxels, but 
42 features were significantly improved, and 21 features 
changed greatly after resampling. Therefore, some stud-
ies [12, 13, 57]showed that resampling could effectively 

improve the feature variation caused by voxel differences. 
However, resampling alone is not enough [13], normali-
zation was used to reduce the influence of different gray 
ranges or the effects of low frequency and intensity inho-
mogeneity in some studies. Introducing noise, blurring 
the image, and causing the loss of image details are the 
disadvantages of normalization [58].

ComBat: Previously, genomics has been affected by 
batch effects, that is, systematic technical biases intro-
duced by samples in different batches of processing and 
measurement that are not related to biological status 
[59]. WE Johnson, et  al. [60] developed and validated a 
method to deal with the "batch effect"-ComBat. In radi-
omics, the impact of different scanners or scanning 
schemes is similar to the batches. Studies [61–63] showed 
that ComBat could reduce the feature differences caused 
by different scanners or scanning schemes, and retain 
the feature differences formed by biological variation. 
Although ComBat is practical, convenient and fast, it will 
be affected by the distribution of validated data sets [18], 
and it cannot be directly applied to imaging data [64]. So 
Y Li, et al. [18] developed a normalization method based 
on deep learning, which may effectively avoid the above 
problems.

Discussion
This review analyzed the repeatability of radiomics on 
patients with colorectal cancer by discussing the method 
details in 188 studies and evaluated the quality of stud-
ies by RQS. Although the included studies demonstrated 
excellent predictive performance, the methodology var-
ied considerably among studies in the terms of imaging 
parameters, feature selection and modeling, so the com-
parison between study results is difficult. In addition, the 
values of test–retest have been investigated for improving 
study reproducibility, but test–retest was rarely used in 
the included studies. In the review, many radiomics stud-
ies had poor quality by RQS.

Since 2016, the number of radiomics studies on patients 
with colorectal cancer continued to increase, but the low 
RQS score (-1 ~ 27) was shown in many studies, indicat-
ing that radiomics was an immature new technology in 
the field of colorectal cancer. This finding has been con-
firmed in the previous study [65]. C Xue, et al. [8] dem-
onstrated the RQS is highly correlated with reliability, 
especially in the phantom study and imaging at multiple 
time points. P Lambin, et al. [4] explained that multiple 
time point was used to eliminate the unstable radiomics 
features which strongly related to organ movement or the 
expansion or shrinkage of the target volume, and reduce 
the influence of intra-individual variability [55, 56]. J 
Wang, et al. [29] selected the most stable radiomics fea-
tures based on the test–retest on 40 patients with rectal 
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cancer. Although the subjects of the test–retest could be 
patients or phantoms [66, 67], the unnecessary radiation 
damage might be increased in the patients’ test–retest. 
In addition, JE van Timmeren, et  al. [54]proposed that 
extensive retest-test experiments can provide a stable set 
of radiomics features, and emphasized that retest-test 
studies should be adopted in each step, including intra-
individual variability, scan acquisition and reconstruc-
tion, tumor segmentation and feature extraction. Open 
science data includes opening scanning information, 
opening segmentations of ROIs, opening source code and 
opening feature extraction methods (including formulas)
[4]. Opening science data is beneficial for other research-
ers to reproduce the research results (independent 
researchers use the same technology and different data 
to repeat the research results and independently verify 
the results) and promote the application of the research 
model in clinical practice [3, 4, 6].

There are many variable factors and a wide variety of 
diseases in radiology, so the standardization of scanning 
parameters, acquisition parameters and reconstruction 
parameters could effectively reduce variability [3, 6]. In 
addition, the influence of scanning parameters might be 
reduced by using the same scanning scheme, unstable 
features may be reduced by retest tests [66], resampling 
might be used to control the influence of slicer thickness 
[13], and the "batch effect" could be reduced by combat 
method [61–63]. To balance the deviation of imaging fea-
tures from four institutions, Z Liu, et al. [48] normalized 
the data, adopted combat methods to control the devia-
tion of radiomics features, and weighted the radiomics 
features with inverse probability of treatment weighting 
(IPTW) to eliminate the covariant effect among the four 
cohorts. M Taghavi, et  al. [68] conducted two experi-
ments with the fake label to verify the validity of the 
radiomics and the results show that the model was not 
influenced by noise (first experiment) or the patient dis-
tribution across hospitals (second experiment).

For the method of segmentation, semi-automatic seg-
mentation was not only more efficient but also useful to 
reduce the variability of manual segmentation [19–21, 
34, 35]. Of all the studies, 143 (143/188, 76.06%) were 
segmented manually, and only 22 (22/188, 11.70%) were 
segmented semi-automatically. For inter-observer vari-
ability, only 111 studies took into account inter-observer 
variability and excluded instability. Even though the Jac-
card index, Cn and CIgen may be better as evaluation 
parameters [39], 94 (94/111, 84.68%) studies were evalu-
ated by ICC.

According to the Harrell criterion [69], the sample size 
should be more than 10 times the number of variables, 
and feature selection can reduce redundant features and 
reduce the risk of model over-fitting [41, 42]. Such as, 

random forest on 89 patients was used to measure the 
Gini importance of parameters, and finally 10 important 
parameters were included in the study of C Yang, et  al. 
[70]. M Sollini, et  al. [71] recommended that at least 
50 patients would be included in the radiomics stud-
ies because the quality of the studies and the credibility 
of the results might be seriously affected by the sample 
size [72]. But, M Hennessy, et  al. [73] constructed the 
formal model, which was the mathematical algorithms 
formulated by the experts. The formal model was more 
interpretable than machine learning models and does 
not require large amounts of data for validation[74]. The 
formal models have been applied and have shown excel-
lent predictive performance in previous studies [74–79]. 
However, the formal methods were not widely used and 
the predictive performance of the models needed to be 
further validated in the field of cancer.

It is also important to avoid overly optimistic results 
in addition to repeatability. In many studies, the type 
I errors might be increased by the combination of opti-
mal cut-off method and multiple hypothesis testing [42], 
while the multiple hypothesis test correction (Holm 
Bonferroni or Benjamin-Hochberg pair) was helpful to 
reduce class I errors [6].

According to the review of 188 studies, the lack of 
repeatability was the key problem in radiomics studies, 
and the standardization of radiomics processes helped 
comparing the existing studies [37]. It is difficult to form 
global standardization at present [37], but the repeatabil-
ity of studies might be improved through open science 
data [4], retest-test research [66] and post-processing. 
The radiomics was used to predict the sequencing results 
by the DNA microarray in some studies [80–86]. Nota-
ble was that there were no studies on the combination 
of liquid biopsy and radiomics. Studies have shown that 
the combination of liquid biopsy and imaging could play 
an early warning role in patients prone to recurrence 
and metastasis [87]. In the future, it may be possible to 
add biomarkers from other disciplines to the radiomics 
model. T Cheng, et al. [88] proposed that a pattern con-
sisting of three or more biomarkers could improve the 
accuracy and specificity of tumor prediction, diagnosis 
and prognosis, that is, pattern recognition [88]. Delta 
radiomics is to quote the time component in the study, 
that is, to use the image data of multiple time points for 
radiomics analysis. This method is expected to improve 
the diagnosis, prognosis prediction and treatment 
response evaluation [4]. Since most radiomics of colo-
rectal cancer were based on retrospective data sets (177, 
94.15%), more prospective studies with large samples 
and multiple centers are needed to promote the develop-
ment of radiomics in the field of colorectal cancer. Cost-
effectiveness analysis from an economic point of view is 
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necessary for the clinical application of colorectal cancer 
imaging in the future [4].

The main limitations of this review are shown below. 
First, the meta-analysis was not conducted due to there 
being great differences in the methods of the included 
studies. Second, some related studies might not be 
retrieved, such as some grey literature. In this paper, only 
RQS is used to evaluate the quality of the article.

Conclusion
Although existing studies showed that radiomics is help-
ful to the personalized treatment of patients in the field 
of colorectal cancer, there are still many challenges that 
remain to be solved. According to the RQS score, the 
quality of included studies was moderately low. Moreo-
ver, the main reason for the low RQS score was the lack 
of repeatability, most studies did not eliminate the influ-
ence of scanners, imaging parameters, and other fac-
tors. Therefore, these studies of lower quality and lack of 
repeatability mean that the results are not universal. In 
the future, larger samples and multicenter prospective 
high-quality studies are needed, and researches should 
focus on building a more stable and repeatable model.
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