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Abstract 

Background  Increasing research indicates that circular RNAs (circRNAs) play critical roles in the development of 
ulcerative colitis (UC). This study aimed to determine the role of circRNA CCND1 in UC bio-progression, which has 
been shown to be downregulated in UC tissues.

Methods  Reverse transcription quantitative polymerase chain reaction was used to determine the levels of circRNA 
CCND1, miR-142-5p, and nuclear receptor coactivator-3 (NCOA3) in UC tissues and in lipopolysaccharide (LPS)-induced 
Caco-2 cells. Target sites of circRNA CCND1 and miR-142-5p were predicted using StarBase, and TargetScan to forecast 
potential linkage points of NCOA3 and miR-142-5p, which were confirmed by a double luciferase reporter-gene assay. 
Cell Counting Kit 8 and flow cytometry assays were performed to assess Caco-2 cell viability and apoptosis. TNF-α, 
IL-1β, IL-6, and IL-8 were detected using Enzyme-Linked Immunosorbent Assay kits.

Results  CircRNA CCND1 was downregulated in UC clinical samples and LPS-induced Caco-2 cells. In addition, cir-
cRNA CCND1 overexpression suppressed LPS-induced apoptosis and inflammatory responses in Caco-2 cells. Dual-
luciferase reporter-gene assays showed that miR-142-5p could be linked to circRNA CCND1. Moreover, miR-142-5p 
was found to be highly expressed in UC, and its silencing inhibited LPS-stimulated Caco-2 cell apoptosis and inflam-
matory responses. Importantly, NCOA3 was found downstream of miR-142-5p. Overexpression of miR-142-5p reversed 
the inhibitory effect of circRNA CCND1-plasmid on LPS-stimulated Caco-2 cells, and the effects of miR-142-5p inhibitor 
were reversed by si-NCOA3.

Conclusion  CircRNA CCND1 is involved in UC development by dampening miR-142-5p function, and may represent 
a novel approach for treating UC patients.
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Introduction
As a chronic disabling inflammatory bowel disease 
(IBD), ulcerative colitis (UC) generally begins in young 
adulthood and continues throughout life [1]. The typical 
symptoms of UC include abdominal pain and diarrhea 
mixed with mucus and blood. Despite treatment efforts, 

the etiology and pathogenesis of UC remain unclear [2, 
3]. Although diagnostic and treatment methods for UC 
have improved, the prognosis remains poor. In recent 
years, biomarker-based diagnoses and treatments have 
received extensive attention [4]. Thus, there is an urgent 
need to clearly determine the mechanisms of pathogen-
esis and identify effective biomarkers for UC patients.

Circular RNAs (circRNAs) are a class of non-coding 
RNA molecules that do not have a 5′  end cap and a 3′ 
terminal poly(A) tail and form a circular structure via 
covalent bonds. CircRNAs are formed by back splic-
ing via non-canonical splicing [5]. CircRNAs are a type 
of RNA molecule without translation ability and have 
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been confirmed to control tumor bio-functions, such as 
chemotherapeutic resistance, epithelial-mesenchymal 
transition (EMT), and cell proliferation [6–8]. A num-
ber of reports have indicated that certain circRNAs are 
related to the pathogenesis of UC; for instance, circRNA 
0001021 regulates UC by sponging miR-224-5p [9]. IL-3 
is involved in UC through circular RNA circPan3 [10]. 
In ulcerative colitis, circRNA Atp9b is overexpressed 
[11]. CircRNA CCND1 is a new circRNA that has been 
shown to expedite cell metastasis and proliferation in 
hepatocellular carcinoma tumorigenesis by regulating 
the miR-497-5p/HMGA2 axis [12]. In addition, circRNA 
CCND1 has been reported to be involved in laryngeal 
squamous cell carcinoma [13]. Although the role of cir-
cRNA CCND1 in human cancer has been reported, the 
underlying mechanism of its regulation in UC is unclear.

MicroRNAs (miRNAs) are conserved small RNAs with 
lengths of approximately 18–20  bp [14]. Studies have 
found that many miRNAs are involved in the develop-
ment of many diseases by post-translational regulation 
[15, 16]. Recently, a number of studies regarding miRNAs 
in UC have reported a critical role of miRNAs during the 
development of UC, such as miR-182-5p [17] and miR-
29c-3p [18]. Additionally, miRNA-142-5p is involved 
in cervical cancer [19]. However, the function of miR-
142-5p and its related mechanisms in UC have not yet 
been clarified.

NCOA3 belongs to the SRC/p160 family of nuclear 
receptor coactivators. NCOA3 directly binds to nuclear 
receptors and stimulates transcriptional activity in a 
hormone-dependent manner [20]. Previous research 
has shown that NCOA3 is associated with the biologi-
cal functions of several types of human diseases, such as 
hepatocellular carcinoma [21] and chronic kidney disease 
[22]; however, a correlation between NCOA3 and UC has 
not been detected.

Therefore, further exploration of the pathogenesis of 
UC is necessary for the development of novel treatment 
strategies with important practical significance. In sum-
mary, this study aimed to determine whether circRNA 
CCND1 regulates the UC process via the miR-142-5p/
NCOA3 axis. Our study identified novel biomarkers for 
UC treatment.

Methods and reagents
All methods were carried out in accordance with relevant 
guidelines.

Clinical sample collection
Twenty colonic mucosa samples from patients and 
healthy individuals were obtained from The First Peo-
ple’s Hospital of Lianyungang. Study inclusion criteria 
were as follows: (1) none of the patients received anti-UC 

therapy before surgery, and (2) final diagnosis was iden-
tified by pathological determination. Exclusion criteria: 
(1) patients who underwent prior therapy. This study was 
approved by the Ethics Committee of the First People’s 
Hospital of Lianyungang, and each patient provided writ-
ten informed consent. The tissues were stored at − 80  ° 
before use.

Cell cultured
The human colorectal adenocarcinoma cell lines Caco-2 
and 293T used for the dual-luciferase reporter-gene assay 
were obtained from American Type Culture Collection 
(ATCC; Manassas, VA, USA). The cells were cultured in 
Ham’s F-12 kmedium (Gibco, NY) supplemented with 1% 
penicillin and streptomycin (Thermo Fisher, USA) and 
10% fetal bovine serum (Gibco, NY) in an atmosphere of 
5% CO2 at 37 °C.

Caco-2 cells were treated with LPS (L8880, Solarbio) 
to establish the UC model in vitro. In brief, Caco-2 cells 
were incubated with 10 ng/mL LPS for 24  h, and then 
Caco-2 cells were harvested for subsequent experiments.

Bioinformatic analysis
Binding sites of miR-142-5p on circRNA CCND1 were 
predicted using StarBase (https://​starb​ase.​sysu.​edu.​cn/), 
and NCOA3 fragments containing miR-142-5p binding 
sites were predicted using TargetScan 7.2 (https://​www.​
targe​tscan.​org/​vert_​80/).

Dual‑luciferase reporter‑gene assay
Wild-type (WT) or mutant type (MUT) sequences of 
circRNA CCND1 containing putative target sites for 
miR-142-5p and NCOA3 were also synthesized into the 
pMirTarget vector (cat. no. PS100062; OriGene Technol-
ogies, Inc.) using a luciferase activity assay. Subsequently, 
293T cells were co-transfected with circRNA CCND1-
WT (or NCOA3-WT) or circRNA CCND1-MUT (or 
NCOA3-MUT) with mimic control and mimic of miR-
142-5p using JETprime, according to the manufactur-
ers instructions (Polyplus, France). Relative luciferase 
activity was measured using a reporter-gene system 24 h 
after infection (Promega). The results were normalized to 
those of Renilla luciferase.

Cell transfection
To control the expression of miR-142-5p, inhibitors of 
miR-142-5p and inhibitor control (miR-142-5p inhibitor: 
5′-UAA​AGU​AGG​AAA​CAC​UAC​A-3′ and inhibitor con-
trol: 5′-CAA​UAC​ACC​UUG​UGU​AGA​ACUU-3′), mimic 
of miR-142-5p (5′-CAU​AAA​GUA​GAA​AGC​ACU​ACU-
3′), and mimic control (5′-UAC​UGA​GAG​ACA​UAA​
GUU​GGUC-3′) were purchased from Genscript (Nan-
jing, China). To knock-down the expression of NCOA3, 
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siRNA for NCOA3 (NCOA3-siRNA: 5′-CTG​CTT​GAA​
CAT​CCT​TTG​ACTGG-3′) was used and non-specific 
control (control-siRNA: 5′-CAC​GAT​AAG​ACA​ATG​TAT​
TT-3′) was purchased from Thermo Fisher (Ferman-
tas, USA). All sequences were transfected into cells that 
had grown to 60% confluence with JETprime (Polyplus, 
France). After 48 h of culture at 37 °C and 5% CO2, cells 
were collected after transfection.

RT‑qPCR assay
Following the supplier’s instructions, total RNA was 
recovered from cells using TRIzol® (Aladdin, Shanghai, 
China), and cDNA was generated after reverse tran-
scription of RNA with the Titan One Tube RT-PCR Kit 
(Merck, USA). The expression levels of miRNAs were 
detected using TransScript® II Multiplex Probe One-Step 
RT-qPCR SuperMix UDG (Transgene, China), and RT-
qPCR was performed using PerfectStart® Green qPCR 
SuperMix (Transgene, Nanjing). Relative expression lev-
els were calculated using the 2−ΔΔCt method.

Cell counting kit‑8 (CCK‑8) assay
Cell proliferation was assessed using CCK-8 kits (Solar-
bio, Beijing, China). After transfection and LPS stimula-
tion, Caco-2 cells were resuspended and split into 96-well 
plates at 5 × 103 cells/well and incubated with 10 µL of 
CCK-8 reagent for 2–3 h at 37 °C and 5% CO2 in the dark. 
Optical density (OD) values were detected at 490  nm 
using an ultraviolet spectrophotometer (Bio-Rad, USA).

Cell apoptosis assay
2 × 105 LPS-stimulated Caco-2 cells were collected and 
cultured with 500 µL of a buffering agent containing 5 µL 
Annexin V-FITC and 5 µL Propidium Iodide (PI; Beyo-
time, Shanghai, China) at room temperature in the dark 
for 30 min. The cell apoptosis rate was analyzed by flow 
cytometry (Beckman Coulter, USA) and calculated using 
Kaluza analysis software (v.2.1.1.20653; Beckman Coul-
ter, Inc.).

Enzyme‑linked immunosorbent assay (ELISA)
Supernatant from the cells was harvested and used for 
the detection of expression of inflammatory cytokines 
(TNF-α, IL-1β, IL-6, and IL-8). The ELISA kits were 
obtained from Beyotime Biotechnology (Shanghai, 
China). All operations were performed according to the 
supplier’s instructions.

Western blot assay
To collect total protein from cells, radioimmunoprecipi-
tation assay (RIPA) buffer (Beyotime Institute of Biotech-
nology, China) was used. The proteins were loaded in 10% 
SDS-PAGE gel and then transferred onto polyvinylidene 

fluoride (PVDF) membranes. After blocking with 5% skim 
milk in PBS-Tween 20 (PBST) solution at room tempera-
ture for 1 h, the membranes were incubated with primary 
antibodies (NCOA3, 1:1000, ab133611, abcam, Cam-
bridge, MA, USA; GAPDH, 1:10000, EA015, ELK Biotech-
nology, Wuhan, China) overnight at 4 ℃. The membranes 
were subsequently incubated with the secondary antibody 
at room temperature for 2  h. Finally, to visualize protein 
bands, an enhanced chemiluminescence (ECL) substrate 
(Cytiva, USA) was performed according to the manufac-
turer’s protocol. The original blots were presented in the 
additional file 1. It should be noted that during the western 
blot assay, we first cut out the corresponding membrane 
according to the molecular weight of the target protein 
prior to hybridisation with antibody, and then the corre-
sponding membrane was incubated the primary antibody. 
Therefore the original blots is not a full length membranes.

Statistical analysis
The mean ± standard deviation (SD) represents the data 
from triplicate experiments. Statistical comparisons 
among groups were performed using Student’s t-test or 
one-way ANOVA followed by Tukey’s post hoc test. Sta-
tistical significance was set at P < 0.05.

Results
CircRNA CCND1 is down‑regulated in UC
Owing to the significant function of circRNA CCND1 in 
different diseases, this study explored the effect of cir-
cRNA CCND1 on UC. We performed RT-qPCR analysis 
of circRNA CCND1 expression levels in UC. The results 
revealed that circRNA CCND1 was at a low level in UC 
samples in contrast to normal tissues (Fig. 1A). CircRNA 
CCND1 expression was down-regulated in 10 ng/mL 
LPS-treated Caco-2 cells (Fig. 1B). Collectively, circRNA 
CCND1 is down-regulated in UC, thus it is involved in 
the UC process.

MiR‑142‑5p binds circRNA CCND1
To investigate the potential binding sites of circRNA 
CCND1 and miR-142-5p, bioinformatic prediction 
tools (StarBase) were used, and we discovered that miR-
142-5p possibly contained circRNA CCND1 binding sites 
(Fig. 2A). To confirm the link between circRNA CCND1 
and miR-142-5p, a dual-luciferase reporter-gene assay 
was performed using 293T cells. As shown in Fig.  2B, 
the relative luciferase level of circRNA CCND1 3ʹ-UTR 
was notably reduced when cells were co-cultured with 
a mimic of miR-142-5p. When potential binding sites 
were mutated, the miR-142-5p mimic exhibited no effect. 
These results confirmed that miRNA-142-5p is sponged 
by circRNA CCND1.
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MiR‑142‑5p is up‑regulated in UC
The expression level of miR-142-5p was measured by 
RT-qPCR and found to be upregulated in UC tissues 
(Fig. 3A). Consistently, miR-142-5p was highly expressed 
in LPS-induced Caco-2 cells (Fig. 3B).

Overexpression of circRNA CCND1 disturbs miR‑142‑5p 
in Caco‑2 cells
To investigate the relationship between circRNA CCND1 
and miR-142-5p, RT-qPCR was performed to meas-
ure circRNA CCND1 and miR-142-5p expression lev-
els. Compared to the control plasmid group, circRNA 
CCND1 was up-regulated in Caco-2 cells transfected 
with circRNA CCND1-plasmid (Fig.  4A). miR-142-5p 
was upregulated when miR-142-5p mimic was trans-
fected, in contrast to that in the mimic control group 
(Fig.  4B). RT-qPCR results revealed that miR-142-5p 
expression was inhibited in Caco-2 cells transfected with 
circRNA CCND1-plasmid, while co-transfection with a 
mimic of miR-142-5p reduced its levels (Fig. 4C). These 
results indicated that circRNA CCND1 regulates miR-
142-5p expression in Caco-2 cells.

Fig. 1  CircRNA CCND1 levels were diminished in UC. A CircRNA CCND1 levels in colonic mucosa samples and normalized to control. B CircRNA 
CCND1 levels in LPS-treated Caco-2 and control cells. Data are shown as means ± SD of three replicate experiments. **p < 0.01 versus healthy 
control; ##p < 0.01 versus control

Fig. 2  CircRNA CCND1 targets miRNA-142-5p. A The conjunction 
points of miRNA-142-5p on circRNA CCND1. B Luciferase 
reporter-gene activity of miR-142-5p co-transfection with circRNA 
CCND1 WT and MUT. Data are shown as means ± SD of three replicate 
experiments. **p < 0.01 versus mimic control

Fig. 3  MiR-142-5p levels elevated in UC. A miR-142-5p levels in colonic mucosa samples and normalized to control. B miR-142-5p level in 
LPS-treated Caco-2 and control cells. Data are shown as means ± SD of three replicate experiments. **p < 0.01 versus Healthy control; ##p < 0.01 
versus control
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Fig. 4  miR-142-5p was negatively regulated by circRNA CCND1. A Efficiency of circRNA CCND1-plasmid transfection. B Efficiency of miR-142-5p 
mimic transfection. C Levels of miR-142-5p with circRNA CCND1-plasmid and miR-142-5p mimic co-transfection as determined by RT-qPCR. Data 
are shown as means ± SD of three replicate experiments. **p < 0.01 versus control-plasmid; ##p < 0.01 versus mimic control; &&p < 0.01 versus circRNA 
CCND1-plasmid + mimic control

Fig. 5  CircRNA CCND1 inhibits LPS-induced Caco-2 cell injury by downregulating miR-142-5p expression. A, B RT-qPCR uncovered the levels 
of miRNA-142-5p and circRNA CCND1 in different cells. C Cell viability was determined by CCK-8 assays. D, E Apoptosis ratio of LPS-induced cells 
was detected by flow cytometry. F–I Inflammatory cytokine levels were measured by ELISA. Data are shown as means ± SD of three replicate 
experiments. **p < 0.01 versus Control; ##p < 0.01 versus LPS + control-plasmid; &&p < 0.01 versus LPS + circRNA CCND1-plasmid + mimic control
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Overexpression of circRNA CCND1 repressed cell apoptosis 
and inflammatory responses via miR‑142‑5p in LPS‑treated 
Caco‑2 cells
To investigate whether circRNA CCND1 functions 
by inhibiting miR-142-5p expression, Caco-2 cells 
were co-transfected with circRNA CCND1-plasmid 
and miR-142-5p mimic. RT-qPCR analysis confirmed 
that circRNA CCND1 was downregulated in LPS-
induced cells and miR-142-5p was significantly upreg-
ulated, compared with the control group. In the LPS 
plus circRNA CCND1-plasmid group, the circRNA 
CCND1-plasmid enhanced its expression level and 
knocked-down miR-142-5p levels in contrast with the 
LPS + control-plasmid group, and miR-142-5p expres-
sion levels were restored when the miR-142-5p mimic 
was co-transfected (Fig. 5A, B). CCK-8 results indicated 
that the viability of LPS-treated Caco-2 cells was lower 
than that of the control; however, overexpression of 
circRNA CCND1 rescued the inhibitory effect of LPS 
treatment, while co-transfection of the miR-142-5p 
mimic diminished the phenomenon (Fig. 5C). The flow 
cytometry assay revealed that LPS led to cell apoptosis, 
the circRNA CCND1-plasmid transfected into LPS-
treated Caco-2 cells decreased apoptosis, and co-trans-
fection of miR-142-5p mimic increased the percentage 
of apoptosis (Fig.  5D, E). The concentrations of TNF-
α, IL-6, IL-8, and IL-1β were all strongly enhanced by 

LPS and impaired by circRNA CCND1-plasmid trans-
fection, which was reversed by the miR-142-5p mimic 
(Fig. 5F–I).

NCOA3 acts downstream of miR‑142‑5p
We then tested the downstream mRNA of miR-142-5p 
using Targetscan 7.0, and found that NCOA3 contained 
potential miR-142-5p binding sites (Fig.  6A). We used 
the dual-relative luciferase method to address this bind-
ing. We demonstrated that overexpression of miR-142-5p 
downregulated the luciferase level of the NCOA3-WT 
reporter gene (Fig. 6B).

MiRNA‑142‑5p modulates NCOA3 expression in UC cells
To understand the relationship between NCOA3 and 
miR-142-5p, RT-qPCR was used to count NCOA3 and 
miR-142-5p expression levels. miR-142-5p expression 
was downregulated by miR-142-5p inhibitor transfec-
tion compared to the inhibitor control group (Fig.  7A). 
NCOA3 was downregulated when NCOA3-siRNA was 
transfected, in contrast to that in the control siRNA 
group (Fig.  7B). Furthermore, we found that the inhibi-
tion of miR-142-5p increased the mRNA and protein 
levels of NCOA3 in Caco-2 cells, but NCOA3-siRNA co-
transfection reversed this outcome (Fig.  7C, D). These 
results indicated that NCOA3 is a target of miR-142-5p 
and that the level of NCOA3 is negatively associated with 
miR-142-5p.

NCOA3 participated in impact of mir‑142‑5p silencing 
in LPS‑induced Caco‑2 cells
To determine whether miR-142-5p functions by inhib-
iting NCOA3 expression, Caco-2 cells were co-infected 
with a miR-142-5p inhibitor and NCOA3-siRNA. RT-
qPCR and western blot analysis indicated that miR-
142-5p was highly expressed in the LPS-treated model 
and NCOA3 was down-regulated compared with 
the control group. In the LPS + miR-142-5p inhibi-
tor group, miR-142-5p inhibitor abolished its expres-
sion and restored NCOA3 levels in contrast with 
LPS + inhibitor control, whereas NCOA3 expression 
was absent when NCOA3-siRNA was co-transfected 
(Fig.  8A–C). CCK-8 results showed that the viability 
of LPS-induced Caco-2 cells was lower than that of 
the control group; however, inhibition of miR-142-5p 
restored the viability of LPS-stimulated Caco-2 cells, 
whereas co-transfection of NCOA3-siRNA reversed 
this effect (Fig.  8D). FCS revealed that LPS exposure 
accelerated the cell apoptotic rate, and miR-142-5p 

Fig. 6  NCOA3 is a downstream mRNA of miRNA-142-5p. A The 
predicted binding sites between miRNA-142-5p and NCOA3 were 
predicted using TargetScan 7.0. B A dual relative luciferase assay was 
used to confirm the linkage between miRNA-142-5p and NCOA3. 
Data are shown as means ± SD of three replicate experiments. 
**p < 0.01 versus mimic control
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inhibitor transfection of LPS-treated Caco-2 cells 
could reduce apoptosis, whereas co-transfection with 
NCOA3-siRNA increased the percentage of apop-
totic cells (Fig.  8E, F). The concentrations of TNF-α, 
IL-6, IL-8, and IL-1β were all notably elevated by LPS 
treatment and diminished by the miR-142-5p inhibi-
tor, which was reversed by NCOA3 downregulation 
(Fig. 9A–D).

Discussion
UC is a chronic non-specific IBD characterized by 
chronic inflammation and ulcerative changes to the 
intestinal mucosa. UC lesions are primarily located in 
the mucosa, colonic submucosa, and rectum. However, 
its pathogenesis remains unclear. Some studies suggest 

that dysfunction of the immune system is an important 
factor in UC-induced intestinal inflammation and tis-
sue damage, and others suggest that it may be related to 
environmental, genetic, infectious, and immune factors. 
The clinical treatment of UC is usually based on the use 
of corticosteroids, immunosuppressants, and aminosal-
icylates [23–25].

In this study, we elaborated on the molecular mecha-
nism by which circRNA CCND1 relieved UC induced by 
LPS-stimulation. This examination confirmed that cir-
cRNA CCND1 relieved UC progression via miR-142-5p, 
indicating that circRNA CCND1 may serve as a novel 
biomarker for UC.

Accumulating evidence has shown that circRNAs play a 
critical role in UC. In UC, circRNAs have been described 

Fig. 7  NCOA3 was negatively controlled by miR-142-5p. A Efficiency of miR-142-5p inhibitor transfection. B Efficiency of NCOA3-siRNA transfection. 
C, D Levels of NCOA3 with miR-142-5p inhibitor and NCOA3-siRNA co-transfection as determined by RT-qPCR and western blot analysis. Data 
are shown as means ± SD of three replicate experiments. **p < 0.01 versus inhibitor control; ##p < 0.01 versus control-siRNA; &&p < 0.01 versus 
miR-142-5p inhibitor + control-siRNA.
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as biomarkers. circRNA-SOD2 is involved in UC [26]. Xu 
et al. found that circRNA-HECTD1 promotes autophagy 
and affects UC [27]. In contrast, circRNA-102,610 is 
upregulated in UC and promotes EMT via miR-130a-3p 
[28]. However, few studies have investigated the role of 
the circRNA CCND1 in UC. In our study, we found that 
circRNA CCND1 was disturbed in UC. These findings 
increase the recent understanding of the role of circRNA 
CCND1 in the modulation of UC, which may be helpful 
in better understanding the pathological mechanisms 
underpinning UC.

Many researchers have illustrated that circRNAs regu-
late disease processes via miRNAs [29, 30]. Zhou found 
that many miRNAs are involved in UC [31]. Li Z indi-
cated that miR-146a and miR-196 are associated with 
UC [32]. Wu et  al. showed that miR-223-3p amelio-
rates UC via pyroptosis [33]. In contrast, miR-21 and 
miR-155 repress UC [34]. Here, experimental evidence 
identified miRNA-142-5p as a downstream target of cir-
cRNA CCND1, with confirmed binding sites. We found 
that the level of miRNA-142-5p was clearly upregulated 
and was controlled by the level of circRNA CCND1 
in UC. Moreover, the data of current study indicated 
that overexpression of circRNA CCND1 repressed cell 
apoptosis and inflammatory responses in LPS-treated 
Caco-2 cells through down-regulating the expression of 
miRNA-142-5p.

Previously, NCOA3 was reported to play a critical role 
in human diseases such as breast cancer [35], osteoar-
thritis [36], hepatic injury, and fibrosis [37]. In this study, 
we confirmed that NCOA3 was a direct target of miR-
142-5p, and it was negatively regulated by miR-142-5p 
in Caco-2 cells. In addition, the findings revealed that 
miR-142-5p silencing relieved LPS-induced Caco-2 cells 
injury through targeting NCOA3, suggesting the impor-
tant role of NCOA3 in UC development.

This study is the first to clarify the expression of cir-
cRNA CCND1 in UC, and clarify the possible molecu-
lar mechanism of its involvement in the occurrence and 
development of UC. It provides more theoretical basis 
for the pathogenesis of UC, and provides potential tar-
gets for clinical treatment of UC. However, our study still 
has some limitations. For example, this study was mainly 
conducted on UC cell model, and no in vivo experimen-
tal study was conducted. In addition, circRNA CCND1 
may also play a role in UC by regulating other signal path-
ways, so it is also necessary to explore the signal pathways 
regulated by circRNA CCND1 in UC. We will conduct in-
depth research on these issues in the next step of research.

In conclusion, our study demonstrated that circRNA 
CCND1 modulates miRNA-142-5p/NCOA3 to repress 
the UC process. Our data demonstrate that circRNA 
CCND1/miRNA-142-5p/NCOA3 provides a new thera-
peutic strategy for UC patients.

Fig. 8  Inhibition of miR-142-5p suppressed LPS-induced cell apoptosis in Caco-2 cells through NCOA3. A, B RT-qPCR revealed the levels of 
miRNA-142-5p and NCOA3 in different cells. C Western blot assay to analyze NCOA3 protein levels in different cells. D Cell viability was counted 
using CCK-8 kits. E, F Apoptosis ratio of LPS-induced cells was detected by flow cytometry. Data are shown as means ± SD of three replicate 
experiments. **p < 0.01 versus Control; ##p < 0.01 versus LPS + inhibitor control; &&p < 0.01 versus LPS + miR-142-5p inhibitor + control-siRNA
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