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Abstract 

Background: Hepatocellular carcinoma (HCC) is a serious malignant disease with high incidence, high mortality and 
poor prognosis. This study aimed to establish a novel signature based on apoptosis-related genes (ARGs) to predict 
the prognosis of HCC.

Methods: Expression data of HCC from TCGA database and the list of 160 ARGs from MSigDB were downloaded. 
The genes included in apoptosis-related signature were selected by univariate Cox regression analysis and lasso Cox 
regression analysis. Subsequently, a prognostic risk model for scoring patients was developed, and then separates 
patients into two groups. Kaplan–Meier and receiver operating characteristic analysis were performed to evaluate 
the prognostic value of the model in TCGA, GEO and ICGC databases. The characteristics of immune cell infiltration 
between two groups of HCC were investigated. Finally, a nomogram was plotted to visualize the prognosis prediction.

Results: Nine genes (CDC25B, DAP3, ETF1, GSR, LGALS3, MGMT, PPP2R5B, SQSTM1 and VDAC2) were included in the 
prognostic risk model. Survival was lower in the high-risk group. Surprisingly, the high-risk group was significantly 
more in immune cell infiltration and with higher immunoscore and stromalscore than in the low-risk group. In addi-
tion, the risk score was an independent prognostic factor for HCC.

Conclusions: Prognostic signature comprising nine ARGs could be used as a potential prognostic factor for HCC. It 
also provides an important idea for further understanding the immunotherapy of HCC.
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Introduction
Primary liver cancer is one of the six most common can-
cer and the third leading cause of cancer death [1]. In 
patients with primary liver cancer, hepatocellular carci-
noma (HCC) accounts for about 75–85% [1]. Hepatitis B 
virus (HBV) and hepatitis C virus (HCV) are major risk 

factors for HCC [2]. Despite multiple management strat-
egies are available for treatment HCC, the relapse rates 
of HCC remain high and the survival is poor [3]. In view 
of this, it is urgent to rely on reliable prognostic mark-
ers to build prognostic models to improve the accuracy 
of prognosis, which is conducive to the development of 
personalized treatment.

Apoptosis, also known as programmed cell death, is 
finely regulated at the gene level resulting in the orderly 
and efficient removal of damaged cells [4]. Apoptosis is 
regulated by many factors, receptors, genes and signaling 
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pathway elements [5]. Abnormal apoptosis plays an 
important role in the pathogenesis of many diseases [6]. 
There is a loss of balance between proliferation and cell 
death in HCC, which represents a protumorigenic prin-
ciple [5]. Notably, reduced apoptosis is associated not 
only with the progression of HCC, but also with tumor 
resistance to treatment [7]. In this study, based on mRNA 
profiling data collected from the cancer genome atlas 
(TCGA) database, this study aimed to establish a signa-
ture based on apoptosis-related genes (ARGs) to predict 
the prognosis of HCC patients.

Materials and methods
Datasets collection and data preprocessing
TCGA mRNA-seq data and corresponding clinical data 
of 368 HCC patients were accessed from the UCSC 
Xena (https:// gdc. xenah ubs. net) [8] and selected as the 
discovery cohort. Then FPKM values were transformed 
into transcripts per kilobase million (TPM) values. The 
GSE76427 dataset was obtained from the gene expres-
sion omnibus (GEO) database [9] and used as the valida-
tion cohort. When multiple probes mapped to the same 
gene, we used the median values to represent the expres-
sion of that gene. Samples with missing or 0 days of OS 
were excluded. Meanwhile, the 160 ARGs list in “HALL-
MARK_APOPTOSIS”  was downloaded from MSigDB.

Unsupervised clustering and differentially expressed gene 
(DEG) analysis
Based on the similarity displayed by the expression lev-
els of ARGs, the “ConsensusClusterPlus” package was 
used to classify patients with HCC into different subtypes 
(1,000 iterations and resample rate of 80%) [10]. Princi-
ple component analysis (PCA) was performed to evaluate 
gene expression patterns among different HCC subtypes. 
The Kaplan–Meier curve was used to illustrate the dif-
ference in survival among different HCC subtypes. The 
“limma” package [11] was applied to acquire the DEGs 
among different HCC subtypes with adj_p < 0.01 & |log2 
(Fold Change)|> 1. David was employed to perform Gene 
Ontology (GO) classification and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
sis (p < 0.05) [12].

Build and validate of prognostic model of ARGs signature
In the discovery cohort, the univariate Cox regression 
analysis was used to screen for prognostic ARGs. Then, 
the LASSO Cox regression using “glmnet” package in R 
was applied to develop the ARGs prognostic signature 
for the HCC patients. The optimal value of the lambda 
penalty parameter was defined by performing 10 cross-
validations. The risk score calculating formula is:

The  expi means the expression levels of each ARGs, 
βi is the corresponding regression coefficients [13]. The 
patients were divided into high-risk and low-risk groups 
based to median score. The Kaplan–Meier curve was 
used to compare the OS of high- and low-risk groups. In 
addition, validation is performed in the validation cohort 
[14]. Univariate and multivariate Cox regression analyses 
were conducted to determine whether risk score was an 
independent prognostic factor. Moreover, receiver oper-
ating characteristic (ROC) curve was performed using 
“timeROC” package in R to verify the accuracy of the 
prognosis [15]. Furthermore, the accuracy of risk score, 
cluster and alpha fetoprotein (AFP) in predicting patient 
prognosis at 1-, 3- and 5-year was analyzed in the discov-
ery cohort.

Tumor immune microenvironment (TIME) and gene set 
variation analysis (GSVA)
The ssGSEA algorithm was applied to quantify the rela-
tive infiltration levels of various immune cells in the 
TIME of HCC. The gene set for marking each TME infil-
tration immune cell type was obtained from the study of 
Charoentong [16]. The immunoscore and stromalscore 
for each patient were calculated with the ESTIMATE 
algorithm through the R “estimate” package. GSVA 
enrichment analysis using “GSVA” R packages was per-
formed to investigate the difference on biological process 
between high and low risk groups. The gene set of “c2.
cp.kegg.v7.2.-symbols” was downloaded from MSigDB 
database for running GSVA analysis. Differentially 
expressed pathways were identified using the “limma” 
package in R, and FDR < 0.01 & |log2 (Fold Change)|> 0.1 
was considered as statistically significance.

Construction of the nomogram
Nomograms were widely used for cancer prognosis. 
Based on age, gender, tumor (T), node (N), metastasis 
(M) and risk score, a nomogram was constructed using 
“RMS” package in R. Calibration curves was used to visu-
ally predict deviations between actual and predicted sur-
vival [17].

Statistical analysis
All statistics were carried out using the R software (ver-
sion 3.6.3). Wilcox test was used to screen for statistically 
differentially genes and immune cells [18]. In Kaplan–
Meier curves, log-rank test was used to check the signifi-
cant difference in OS between groups. A p value < 0.05 
was set as statistically significant for all the analyses.

RiskScore =

n

i=1

expi ∗ βi

https://gdc.xenahubs.net
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Results
Identification of two different subtypes in TCGA cohort
The k = 2 had higher intra-group correlation and lower 
inter-group correlation (Fig.  1A–B). Then, 368 patients 
with HCC were divided into two subtypes, cluster A 
(n = 152) and cluster B (n = 216) (Fig. 1C). Among them, 
cluster B has better OS (Fig. 1D). In addition, PCA anal-
ysis found that the gene expression profiles between 

cluster A and cluster B were well differentiated (Fig. 2A). 
A total of 643 DEGs between the two subtypes were 
identified (Fig.  2B). Among them, 569 DEGs were up-
regulated in cluster A and 74 DEGs were up-regulated in 
cluster B. Functional annotation analysis indicated that 
these DEGs were mainly associated with biological pro-
cesses such as cell adhesion, immune response, inflam-
matory response and cell proliferation (Fig. 2C–D).

Fig. 1 Consensus clusters by ARGs in TCGA cohort. A Consensus clustering cumulative distribution function (CDF) for k = 2–5. B Relative change in 
area under the CDF curve for k = 2–5. C Consensus clustering matrix for k = 2. (D) Kaplan–Meier curves of OS for patients with HCC in two clusters 
(cluster A/B)
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Construction of prognostic signature
All 160 ARGs were subjected to univariate Cox regres-
sion analysis. Then, 18 ARGs significantly associated 
with the prognosis of HCC were identified (Fig.  3A). 
LASSO Cox regression analysis was performed for 
these significant ARGs (Fig.  3B). Subsequently, nine 
genes (CDC25B, DAP3, ETF1, GSR, LGALS3, MGMT, 
PPP2R5B, SQSTM1 and VDAC2) were screened to 
construct a prognostic model (Fig.  3C). Patients were 
divided into high- and low-risk groups based on the 
median risk score. The distributions of risk score of 
HCC patients and the relationships between risk score 
and survival time were visualized in Fig.  3D. Kaplan–
Meier curves indicated that patients with low-risk score 
had significantly longer survival (Fig.  3E). The ROC 

curve analysis indicated that the 1-, 3- and 5-year AUC 
values were 0.78, 0.68 and 0.71, respectively (Fig.  3F). 
Consistent with TCGA analysis, the validation in GEO 
cohort displayed the similar results (Fig.  3G–H). Fur-
thermore, we also perform validation on the interna-
tional cancer genome consortium (ICGC) database. 
The results also showed that the survival of patients 
with low-risk score was significantly better than that 
of patients with high-risk score (Additional file  1: Fig-
ure S1A). The accuracy of risk score, cluster and AFP 
in predicting patient prognosis at 1-, 3- and 5-year was 
analyzed in the discovery cohort. ROC curve analysis 
and decision curve analysis (DCA) showed that the pre-
diction accuracy of risk score at 1-, 3- and 5-year was 
higher than cluster and AFP (Additional file  1: Figure 

Fig. 2 Differentially expression analysis between two different subtypes. A Principal component analysis of the total mRNA expression profile in 
patients with HCC. B The volcano plot of DEGs between cluster A and cluster B in HCC. C Significantly enriched GO terms of DEGs between cluster A 
and cluster B in HCC. D Significantly enriched KEGG pathways of DEGs between cluster A and cluster B in HCC
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S1B-E). These findings suggested that the risk score 
model had good performance.

Estimation of TIME cell infiltration
To explore the biological behavior between high- and 
low-risk groups, we conducted ssGSEA analysis. The 
results indicated that high-risk group was remarkably 
rich in immune cell infiltration including activated CD4 
T cell, activated dendritic cell and natural killer cell 
(Fig.  4A). The similar results were observed in ESTI-
MATE analysis, with significantly higher immunoscore 

and stromalscore in the high-risk group than in the low-
risk group (Fig.  4B–C). However, patients in the high-
risk group did not show a matched survival advantage 
(Fig. 3E). We hypothesized that stromal activation in high 
risk group suppressed the antitumor effect of immune 
cells.

Then, we investigated the expression of chemokine 
and cytokine in both two groups. TGRB1, SMAD9, 
TWIST1, CLDN3, TGFBR2, ACTA2, COL4A1, ZEB1 
and VIM were considered to be associated with the tran-
scripts of transforming growth factor (TGF)-β/epithelial 

Fig. 3 Construction of prognostic risk model in TCGA cohort. A Forest plot of ARGs associated with HCC survival. B LASSO coefficient profiles 
of the 18 ARGs in TCGA cohort. C Selection of the optimal parameter (lambda) in the LASSO model. D Distribution of risk score and OS status, 
and heatmap for nine model genes in the TCGA cohort. E Kaplan–Meier curves of OS for patients with HCC based on the risk score in the TCGA 
cohort. F ROC curves showing the predictive efficiency of the prognostic risk model on the 1-, 3-, and 5-years survival rate in the TCGA cohort. G 
Kaplan–Meier curves of OS for patients with HCC based on the risk score in the GEO cohort. H ROC curves showing the predictive efficiency of the 
prognostic risk model on the 1-, 3-, and 5-years survival rate in the GEO cohort
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mesenchymal transformation (EMT) pathway. The 
results indicated that these cytokine and chemokine were 
significantly up-regulated in high-risk group (Fig.  4D). 
Subsequent analyses implied that EMT pathway was sig-
nificantly activated in high-risk group (Fig.  4E). GSVA 
was performed to explore the difference on biological 
process between high- and low-risk groups. As showed 
in Fig. 4F, high risk group was markedly enriched in path-
ways associated with cell proliferation, such as cell cycle, 
mismatch repair and homologous recombination. All 
these findings confirmed our speculation.

In addition, the expression of commonly immune 
checkpoints, including PD-L1, CTLA-4, IDO1, LAG3, 
HAVCR2, PD-1, PD-L2, CD80, CD86, TIGIT and 
TNFRSF9, was investigated in high- and low-risk groups. 
The results showed that the expression levels of these 
molecules in the high-risk group were significantly 
higher than the low-risk group (Additional file 2: Figure 
S2A). Pearson correlation analysis between risk score and 
immune cells was performed and implied that the risk 
score was positively correlated with most immune cells 
(Additional file 2: Figure S2B).

The risk score was an independent prognostic factor
Univariate and multivariate Cox regression analyses were 
conducted to evaluate the prognostic value of the risk 
score. Univariate analysis indicated that T (p < 0.001), 
M (p = 0.025), stage (p < 0.001) and risk score (p < 0.001) 
were considerably associated with the OS (Fig. 5A). These 
factors were then included into multivariate Cox regres-
sion analysis, thereby showing that M (p = 0.022) and risk 
score (p < 0.001) remained closely correlated with the OS 
(Fig. 5B). In addition, univariate and multivariate analy-
ses were performed in the ICGC database. The results 
also showed that the risk score was considerably associ-
ated with the OS (Additional file  3: Figure S3A and B). 
These findings demonstrated that the risk score gener-
ated from 9 ARGs was an independent prognostic factor 
for HCC patients.

Construction of the nomogram
A nomogram was generated to predict the probability 
of 1-, 3- and 5-year OS, by incorporating age, gender, T, 
N, M and risk score (Fig. 6A). The 45° dotted lines rep-
resented an ideal model, and the calibration curves 

indicated that actual and predicted survival matched 
well (Fig. 6B). Subsequently, we also constructed nomo-
gram based on ICGC database (Additional file 3: Figure 
S3C). Since the calibration curve of 5-years could not be 
obtained, we constructed the calibration curve for 1-, 
2- and 3- year OS probabilities (Additional file  3: Fig-
ure S3D). Results showed that the nomogram-predicted 
probabilities (solid line) of 1-, 2-, and 3-year survival 
matched well with the idea reference line (dotted line).

Discussion
Abnormal apoptosis of hepatocytes or accelerated pro-
liferation activity of hepatocytes have been reported as 
important factors in the development of HCC or tumor 
progression [19]. Most studies have focused on the role 
of a single molecule in the diagnosis and prognosis of 
HCC [20–22]. In addition, some studies have estab-
lished a risk model for predicting HCC prognosis based 
on the differential expression of ARG [23–25]. Although 
these risk models of ARG have the potential to predict 
the prognosis of HCC, few studies have linked them to 
the immune mediation of HCC. In recent years, the 
role of immunotherapy in the progression of HCC has 
become a research hotspot [26, 27]. In this study, using 
the expression data of HCC from TCGA database and 
the list of 161 ARGs from GSEA, a novel apoptosis-
related signature prognostic-predictive model composed 
of nine genes (CDC25B, DAP3, ETF1, GSR, LGALS3, 
MGMT, PPP2R5B, SQSTM1 and VDAC2) was identified 
in HCC. The genes included in the signature were cho-
sen by univariate Cox regression analysis and lasso Cox 
regression analysis. The Kaplan–Meier curve and ROC 
curve indicated that the risk score model based on nine 
ARGs had good prognostic performance. The prognostic 
power of risk score model was validated in GEO cohort. 
We also demonstrated that the risk score was an inde-
pendent prognostic factor for HCC. A nomogram was 
constructed to help making individualized therapeutic 
strategy for patients as well. The characteristics of TIME 
cell infiltration, the expression of immune checkpoint 
expression, and the relationship between immune cells 
and risk score were also analyzed, which provided impor-
tant ideas for further understanding the immunotherapy 
for HCC.

Fig. 4 Characteristics of TIME cell infiltration between low and high risk group. A The abundance of each TME infiltrating cell in low and high risk 
group. The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median value, and black 
dots showed outliers. The asterisks represented the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001). B Difference in immunescore between low 
and high risk group. C Difference in stromalscore between low and high risk group. D Difference in the TGF β-EMT pathway-related gene expression 
between low and high risk group. E Differences in stroma-activated pathways (EMT) between low and high risk group. F GSVA enrichment analysis 
showing the activation states of biological pathways in low and high risk group. The heatmap was used to visualize these biological processes, and 
yellow represented activated pathways and blue represented inhibited pathways

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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Cell division cycle 25B (CDC25B) is associated with 
mitosis and necessary for G2/M checkpoint initiation 
[28]. A case–control study in a HBV-related Chinese pop-
ulation indicated that CDC25B rs2295348 conferred a 
protective effect on HCC risk [28]. Mo et al. identified an 
mTORC1-associated gene signature containing six genes, 
including ETF1 and GSR, which can predict the progno-
sis of HCC [29]. Galectin-3, encoded by LGALS3, was 
identified to be a novel prognostic marker for HCC [30]. 
Several studies suggested that Galectin-3 was involved 
in metastasis-related processes in HCC [31, 32]. In addi-
tion, Zhang et  al. identified a gene signature, including 
LGALS3, associated with the HCC microenvironment 

[33]. Liu et  al. indicated a 5-gene signature, including 
PPP2R5B, based on ERS-related independent prognos-
tic significance as a prognostic biomarker for HCC [34]. 
P62, encoded by SQSTM1, is an oncogenic protein aber-
rantly accumulated in HCC [35]. In mice, p62 is neces-
sary and sufficient for HCC induction [36]. Saito et  al. 
revealed that molecular targeting p62/SQSTM1 is a 
potential chemotherapy approach for HCC [37]. Li et al. 
established a six-gene signature, including SQSTM1, to 
predict OS in HCC [38].

The ssGSEA algorithm was applied to quantify the 
relative infiltration levels of various immune cells in 
the TIME of HCC. The results indicated that high-risk 

Fig. 5 Univariate (A) and multivariate (B) Cox analyses

Fig. 6 Nomogram (A) and calibration curve (B) in HCC
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group was remarkably rich in immune cell infiltra-
tion. Significantly higher immunescore and stromals-
core were observed in the high-risk group than in the 
low-risk group in the ESTIMATE analysis. However, 
patients in the high-risk group did not show a matched 
survival advantage. Tumors with an immune rejection 
phenotype also displayed a large number of immune 
cells, and these immune cells stay in the stroma sur-
rounding tumor cell nests rather than penetrating the 
parenchyma [39]. The activation of stroma in tumor 
microenvironment is considered T-cell suppressive 
[40]. Moreover, we also found that the stroma activ-
ity was significantly increased in the high-risk group. 
Therefore, we hypothesized that stromal activation 
in high risk group suppressed the antitumor effect of 
immune cells. This suggests that ARG has a broad regu-
latory mechanism on the anti-tumor effect of immune 
cells. Cancer cells have the ability to activate different 
immune checkpoint pathways that harbor immuno-
suppressive functions [41]. Cancer immunotherapy 
targeting immune checkpoints is increasingly applied 
to multiple cancer treatment [42]. Co-inhibitory mole-
cules (PD-1/PD-L1, etc.) can block the signal transduc-
tion process of T cells, thus inhibiting T-cell functions 
[42]. Recent years, PD-1/PD-L1 and CTLA-4 inhibitors 
have shown good therapeutic effects [41]. In our study, 
the expression of commonly immune checkpoints in 
the high-risk group was significantly higher than the 
low-risk group. These results may indicate that the 
immunosuppressive microenvironment in high-risk 
group may account for the poor prognosis.

In order to explore the differences in biological pro-
cesses between high and low risk groups, GSVA enrich-
ment analysis was performed using “GSVA” R packages. 
The results showed that the activities of pathways associ-
ated with cell proliferation, such as cell cycle, mismatch 
repair and homologous recombination, etc., were signifi-
cantly increased in the high-risk group. During cell cycle 
progression, many regulators may be closely related to 
the early steps of carcinogenesis [43]. Radiation-resistant 
cancer cells can protect themselves by boosting their 
DNA-repair response [44, 45]. This further suggests 
that ARG has a broad regulatory mechanism on HCC 
progression.

Nomogram can be used to predict disease risk or 
prognosis by combining multiple indicators [14, 46]. 
A study showed that a nomogram combining clini-
cal radiological risk factors and radiological features 
from hepatobiliary phase images could better predict 
the individualized risk of microvascular invasion of 
HCC patients [47]. Patients with high nomogram score 
were indicated for more aggressive treatment [48]. In 

this study, a nomogram that included risk score and 
other clinical features was constructed. The calibration 
curves showed good agreement between actual and 
predicted survival.

However, this experiment also has some limitations. 
First, the results of this experiment are obtained based 
on public datasets. Therefore, a large number of clini-
cal samples need to be collected for validation. Second, 
the underlying molecular mechanisms revealed by this 
experiment need further study.

In conclusion, we constructed a prognostic signature 
comprising nine ARGs that could be used as a potential 
prognostic factor for HCC and help in clinical decision 
making for individualized treatment. The characteris-
tics of TIME cell infiltration, the expression of immune 
checkpoint expression, and the relationship between 
immune cells and risk score were also analyzed, which 
provided important ideas for further understanding the 
immunotherapy for HCC.
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