RESEARCH ARTICLE

Epidemiology of gastroesophageal reflux disease in Iran: a systematic review and meta-analysis

Mohammad Karimian¹, Hassan Nourmohammadi², Majid Salamati¹, Mohammad Reza Hafezi Ahmadi³, Fatemeh Kazemi⁴ and Milad Azami^{5*}

Abstract

Background: Gastroesophageal reflux disease (GERD), which leads to acid reflux into the esophagus, is a common gastrointestinal disorder. Several studies have shown the prevalence of GERD in Iranian population, but their evidence is contradictory. Therefore, the present study was conducted to investigate the epidemiology of GERD in Iran.

Methods: The entire steps of this systematic review and meta-analysis were based on the MOOSE protocol, and the results were reported accordance with the PRISMA guideline. This review is registered on PROSPERO (registration number: CRD42020142861). To find potentially relevant published articles, comprehensive search was done on international online databases Scopus, Science Direct, EMBASE, PubMed/Medline, CINAHL, EBSCO, Cochrane Library, Web of Science, Iranian online databases and the Google Scholar search engine in June 2019. Cochran test and I^2 index were used to assess the heterogeneity of the studies. Data were analyzed using Comprehensive Meta-Analysis software ver. 2. The significance level of the test was considered to be P < 0.05.

Results: The daily, weekly, monthly, and overall prevalence of GERD symptoms in Iranian population was 5.64% (95%CI [confidence interval]: 3.77-8.35%; N = 66,398), 12.50% (95%CI: 9.63-16.08%; N = 110,388), 18.62% (95%CI: 12.90-26.12%; N = 70,749) and 43.07% (95%CI: 35.00-51.53%; N = 73,189), respectively. The daily, weekly, monthly, and overall prevalence of heartburn in Iranian population was 2.46% (95%CI: 0.93-6.39%; N = 18,774), 9.52% (95%CI: 6.16-14.41%; N = 54,125), 8.19% (95%CI: 2.42-24.30%; N = 19,363) and 23.20% (95%CI: 13.56-36.79%; N = 26,543), respectively. The daily, weekly, monthly, and overall prevalence of regurgitation in Iranian population was 4.00% (95%CI: 1.88-8.32%; N = 18,774), 9.79% (95%CI: 5.99-15.60%; N = 41,140), 13.76% (95%CI: 6.18-44.31%; N = 19,363) and 36.53% (95%CI: 19.30-58.08%; N = 21,174), respectively. The sensitivity analysis for prevalence of all types GERD, heartburn and regurgitation symptoms by removing a study showed that the overall estimate is still robust.

Conclusion: The present meta-analysis provides comprehensive and useful information on the epidemiology of GERD in Iran for policy-makers and health care providers. This study showed a high prevalence of GERD in Iran. Therefore, effective measures on GERD-related factors such as lifestyle can be among the health policies of Iran.

Keywords: Epidemiology, Gastroesophageal reflux disease, Iran, Meta-analysis

* Correspondence: milad98azami@gmail.com ⁵Faculty of Medicine, llam University of Medical Sciences, llam, Iran Full list of author information is available at the end of the article

BMC

Open Access

[©] The Author(s). 2020 **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, wish http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background

Gastroesophageal reflux disease (GERD), which leads to acid reflux into the esophagus, is a common gastrointestinal disorder and results in typical painful symptoms such as heartburn and/or regurgitation [1]. However, it may also appear with atypical symptoms including cough, asthma, chest pain, and fatigue [2].

Permanent acid reflux may cause more severe complications, including erosive esophagitis, esophageal strictures, Barrett's esophagus, esophageal adenocarcinoma, hiatus hernia, delayed gastric emptying, and visceral hypersensitivity [1, 3-5].

Several risk factors are associated with GERD, including Nonsteroidal Anti-inflammatory Drugs (NSAIDs), type of food, beverages, smoking, family history, high body mass index (BMI), physical activity, salt, or consuming pickles with meals and fast food, which are more associated with the lifestyle of the patient [5–7]. It has also been shown that age, gender, pregnancy, and geographical variation are also related to GERD [7]. In addition, it has been suggested that vertebral fractures and/or spinal malalignment may affect the incidence of GERD [8, 9]. In Iranian studies, consumption of NASIDs and pickle consumption, and smoking is more harmful factors [10, 11].

A systematic review of longitudinal studies suggests that the incidence of GERD has increased in recent decades. If this trend continues, it may rapidly increase the serious complications of GERD, affect the patient's quality of life, and increase the cost of health care systems [12, 13].

Increasing the GERD awareness to improve Iranian people's health may be necessary. There is much information in Western cultures that can be generalized to an Iranian person but cannot match completely. Therefore, understanding the epidemiological effects of GERD in Iranian society can help healthcare professionals and policymakers take the next steps in creating the list of priorities for disease management.

Several studies have shown the prevalence of GERD in Iranian population, but their evidence is contradictory [10, 11, 14–39]. Therefore, a structured review of all the documentation and their combination can provide a more complete picture of the dimensions of this disease in Iranian society. One of the main goals of meta-analysis, which is a combination of different studies, is to reduce the difference between parameters due to the increased number of studies involved in the analysis process. Another important goal of meta-analysis is to address inconsistencies in the results and their causes [40–42]. Therefore, the present study was conducted to investigate the epidemiology of GERD in Iran.

Methods

Study protocol

The entire steps of this systematic review and metaanalysis were based on the Meta-analyses Of Observational Studies in Epidemiology (MOOSE) protocol [42], and the results were reported accordance with the Preferred Reporting Items for Systematic Reviews and Metaanalysis (PRISMA) guideline [43]. Two authors independently preformed all study steps. In the case of dispute, a third author was involved. We registered this review at PROSPERO (registration number: CRD42020142861), Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020142861.

Search strategy

To find potentially relevant published articles, comprehensive search was done on international online databases Scopus, Science Direct, EMBASE, PubMed/Medline, CINAHL, EBSCO, Cochrane Library (Cochrane Database of Systematic Reviews - CDSR), Web of Science and national online databases Iranian Research Institute for Information Science and Technology (IranDoc) (https:// irandoc.ac.ir), Scientific Information Database (SID) (http://www.sid.ir/), Magiran (http://www.magiran.com/), Regional Information Center for Science and Technology (RICST) (http://en.ricest.ac.ir/), Iranian National Library (http://www.nlai.ir/), and Barakat Knowledge Network System (http://health.barakatkns.com) and the Google Scholar search engine in June 2019. Our search was done to retrieve all literature related to GERD in Iran. The reference list of articles was reviewed to find the gray literature. The studies identified by our search strategies were entered into Endnote X7 (Thomson Reuters, Philadelphia, PA, USA) software.

The related articles were searched in PubMed using a combination of expressions and terms Medical Subject Heading (MeSH): "gastroesophageal reflux"[MeSH Terms] OR "gastroesophageal reflux disease" [Text Word] OR "heartburn"[MeSH Terms] AND "Iran"[MeSH Terms]. Search terms were combined using Boolean operators of "OR" or "AND".

Study selection

The two researchers independently reviewed the articles on the abovementioned databases. The third researcher examined the consistency between the data extracted by the two researchers, and the contradictory results were discussed and resolved. After collecting literature from the databases, the next step was to assess whether the articles corresponded to the content of the title and abstract. The second and third stages were the review of the remaining articles with full text.

Inclusion and exclusion criteria

We included the studies that were: (1) written in English or Persian; (2) cross-sectional studies; (3) with the primary aim of reporting the prevalence of GERD, heartburn and regurgitation; and (4) preformed among adults.

We excluded studies that: (1) had non-random sample size; (2) were non-relevant; (3) GERD diagnosis was not defined by heartburn and regurgitation; (4) were non-Iranian; (5) were case reports, review articles, congresses, letters to the editor without quantitative data, and theses.

Data extraction and management

In case of duplicate publication, we contacted the researchers to clarify the original publication, and if we did not get an answer, we chose the study with the largest number of participants for cases with overlapping data, if necessary, additional details were extracted from the secondary articles.

We extracted the following data from each study: First author, year of publication, year of study, place of study, study design, method of diagnosis, data collection, characteristics of participants and estimation of prevalence.

Qualitative assessment

The modified Newcastle Ottawa Scale (NOS) was used to assess the quality of studies [44]. The studies were divided into three categories based on the scores: high risk studies (scores ranging from 1 to 4), moderate risk (scores ranging from 5 to 7), and low risk (scores ranging from 8 to 10). Low and medium risk studies were included in the meta-analysis.

Statistical analysis

The prevalence of the GERD is shown using the event rate. The 95% confidence intervals (CI) were calculated using Comprehensive Meta-Analysis (CMA) software ver 2 using sample size (N) and standard error (SE). To determine women to men ratio, we calculated the odds ratio (OR). Cochran Q test and I² index were used to assess the heterogeneity of the studies. There are three categories for I² index: I² index below 25% is low heterogeneity, 25-75% is medium, and above 75% is high heterogeneity [45, 46]. For cases with low heterogeneity, the fixed effects model was used and for cases with medium and high heterogeneity, the random effects model was used. Subgroup analysis was used to find the cause of heterogeneity in the studies. Sensitivity analysis was performed by removing a study at a time to assess the predictive power. Mixed-effects meta-regression was used to investigate the relationship between continuous variables such as the time of study and the prevalence [47]. Finally, distribution bias was evaluated using funnel plot, and Egger and Begg's tests. Statistical analysis and graph diagrams were performed using CMA version 2. The significance level of the test was considered to be P < 0.05.

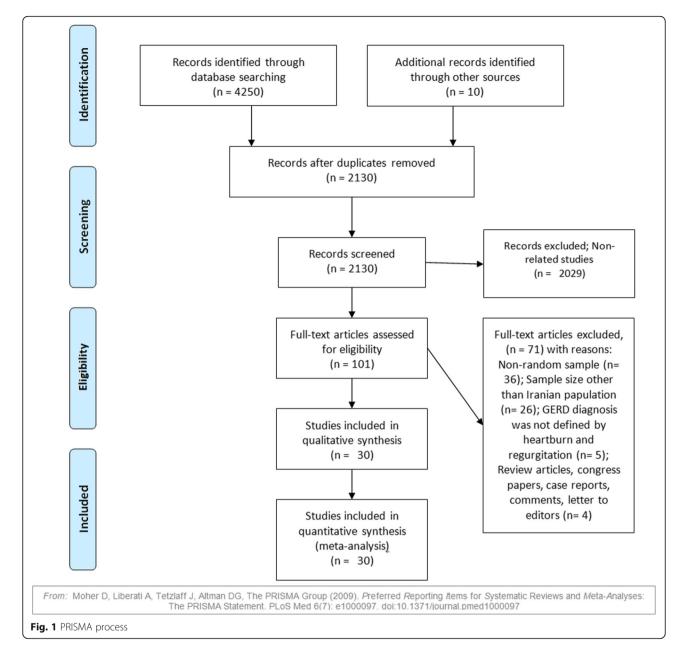
Results

Search results and characteristics

Our initial search found 4260 records. After removing 2130 duplicates, 2130 unique documents were reviewed for relating the titles and abstract. Then, we reviewed the full text of 101 articles. Finally, 30 articles (23 studies for GERD, 20 studies for heartburn, and 13 studies for regurgitation) were included in the study (Fig. 1). The mean age of the participants (in 14 reported studies) was 39.35 years (95% CI: 34.98–43.71). Table 1 shows the characteristics of each study.

GERD prevalence and sensitivity analysis

The daily, weekly, monthly, and overall prevalence of GERD symptoms in Iranian population was 5.64% (95% CI: 3.77–8.35%; heterogeneity: $I^2 = 98.76\%$, P < 0.001; N = 66,398), 12.50% (95% CI: 9.63–16.08%; heterogeneity: $I^2 = 99.50\%$, P < 0.001; N = 110,388), 18.62% (95% CI: 12.90–26.12%; heterogeneity: $I^2 = 99.66\%$, P < 0.001; N = 70,749) and 43.07% (95% CI: 35.00–51.53%; heterogeneity: $I^2 = 99.66\%$, P < 0.001; N = 73,189), respectively (Fig. 2).


The sensitivity analysis for prevalence of all types GERD symptoms by removing a study showed that the overall estimate is still robust (Figure 1- supplementary).

Subgroup analysis of GERD

The subgroup analysis for the daily, weekly, monthly, and overall prevalence of GERD symptoms is shown in Table 2. For the daily prevalence of GERD, the subgroup analysis of the study population (P < 0.001) and the data collection method (P = 0.019) were significant. For the weekly prevalence of GERD, subgroup analysis of the area (P = 0.001) and study population (P < 0.001) were significant. For the monthly prevalence of GERD, the subgroup analysis of the study population was significant (P = 0.001). For the overall prevalence of GERD, the subgroup analysis of the area (P < 0.001), the study population (P < 0.001) and the quality of studies (P = 0.005) were significant. Other variables were not significant.

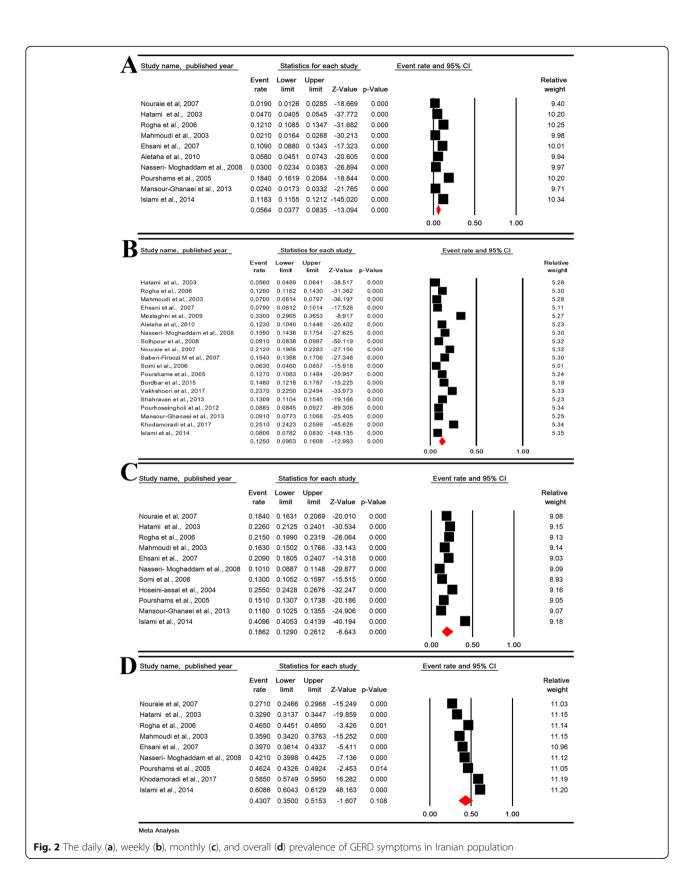
The prevalence of GERD by gender

The daily, weekly, monthly, and overall prevalence of GERD symptoms in Iranian males was 5.72% (95% CI: 3.41–9.46%; heterogeneity: $I^2 = 97.44\%$, P < 0.001; N = 26,004), 11.38% (95% CI: 8.10–15.75%; heterogeneity: $I^2 = 97.80\%$, P < 0.001; N = 19,453), 15.68% (95% CI: 10.67–22.45%; heterogeneity: $I^2 = 98.15\%$, P < 0.001; N = 8865) and 39.26% (95% CI: 32.35–46.62%; heterogeneity: $I^2 = 99.04\%$, P < 0.001; N = 31,704) (Figure 2-supplementary).

The daily, weekly, monthly, and overall prevalence of GERD symptoms in Iranian females was 7.88% (95% CI: 3.67–16.11%; heterogeneity: $I^2 = 98.56\%$, P < 0.001; N = 31,588), 12.81% (95% CI: 9.47–17.10%; heterogeneity: $I^2 = 98.04\%$, P < 0.001; N = 19,380), 16.96% (95% CI: 13.17–21.56%; heterogeneity: $I^2 = 98.17\%$, P < 0.001; N = 21,567), and 45.51% (95% CI: 38.22–52.99%; heterogeneity: $I^2 = 98.99\%$, P < 0.001; N = 38,252) (Figure 3-supplementary).

Odds ratio (OR) for the prevalence of daily, weekly, monthly, and overall prevalence of GERD in women compared to men in Table 2 shows that there is a significant difference only in the daily prevalence of GERD (P = 0.003).

Meta-regression and publication bias for prevalence of GERD


The meta-regression model based on years of study for GERD prevalence revealed that the meta-regression coefficient for daily, weekly, monthly, and overall prevalence of GERD was (-0.022, 95% CI: -0.132 to 0.087, P= 0.688), (0.025, 95% CI: -0.410 to 0.092, P= 0.450), (0.0140, 95% CI: -0.057 to 0.085, P = 0.700) and (0.038, 95% CI: -0.081 to 0.085, P= 0.104), respectively (Fig. 3).

Regarding publication bias, the significance level of Egger and Begg's tests was (Egger = 0.024 and Begg's = 0.152), (Egger = 0.628 and Begg's = 0.624), (Egger < 0.001 and Begg's = 0.533) and (Egger = 0.002 and Begg's = 0.754) for the daily, weekly, monthly,

Ref.	First author,	Year	Place		Mean Age	Method	Duration	Sample size			Quality
	Published Year				(±SD)			All Male Female		Female	<u>.</u>
[15]	Nouraie et al., 2007	2005	Tehran	General population	36.1 ± 12.4	Questionnaire + Interview	NR	1202	505	697	Medium risk
[16]	Hatami et al., 2003	2001	Tehran	Blood Donors	37.22 ± 0.19	Questionnaire + Interview	12 M	3517	3115	402	Medium risk
[17]	Rogha et al., 2006	2004	lsfahan	General population	38.8 ± 12.9	Interview	12 M	2400	1074	1326	Medium risk
[18]	Mahmoudi et al., 2012	2001	Tehran	Medical students		Questionnaire + Interview	12 M	3008	1223	1785	Medium risk
[48]	Ehsani et al., 2007	1991	Tehran	General population		Questionnaire + Interview	NR	700	350	350	Low risk
[10]	Mostaghni et al., 2009	2006	Fars	Qashqai migrating nomad	43.1 ± 14.2	Questionnaire + Interview	12 M	717	284	433	Low risk
[32]	Aletaha et al., 2010	2005–6	Gonbad Kavoos, Kalale	General population	27.35 ± 6.1	Interview	12 M	1000			Medium risk
[33]	Nasseri- Moghaddam et al., 2008	2006	Tehran	General population	34.8 ± 13.0	Questionnaire + Interview	12 M	2057		1132	Low risk
[34]	Solhpour et al., 2008	2006	Damavand, Firoozkouh	General population	37.9 ± 14.3	Questionnaire + Interview	3 M	5733	2935	2798	Medium risk
[15]	Nouraie et al., 2007	2005	Tehran	General population		Questionnaire + Interview	6 M	2561	1083	1478	Medium risk
[35]	Saberi et al., 2010	2008–9	Kashan	Shift working nurses		Questionnaire	4 W	160			Low risk
[31]	Saberi-Firoozi M et al., 2007	2004	Shiraz	General population	49.9 ± 11.14	Questionnaire + Interview	12 M	1978	582	1396	Low risk
[19]	Somi et al., 2006	2005	Tabriz	Medical sciences studen	22.48 ± 1.98	Questionnaire + Interview	12 M	589			Medium risk
[36]	Hoseini-assal et al., 2004	2002	Shahrekord	General population	37.9 ± 14.3	Interview	12 M	4762	2045	2717	Medium risk
[20]	Pourshams et al., 2005	2002	Gonabad	General population		Interview	12 M	1066	450	616	Low risk
[21]	Bordbar et al., 2015	2013	Bandar Abbas	medical sciences students		Questionnaire	12 M	600	220	380	Medium risk
[37]	Vakhshoori et al., 2018	2010– 12	lsfahan	Staff of Isfahan University of Medical Sciences	36.53	Questionnaire	3 M	4669			Low risk
[11]	Vossoughinia et al., 2014	2010	Mashhad	General population		Questionnaire	NR	1685			Low risk
[27]	Shahravan et al., 2013	2003	Sari	General population	38.4	Questionnaire	12 M	901	433	468	Medium risk
[22]	Pourhoseingholi et al., 2012	2006-7	Tehran	General population	38.7 ± 17.1	Questionnaire + Interview	3 M	18,180	9108	9072	Low risk
[38]	Mansour- Ghanaei et al., 2013	2010	Rasht	General population	38.31 ± 13.09	Questionnaire + Interview	NR	1473	453	1020	Low risk
[30]	Khodamoradi et al., 2017	2010	Fars	General population	52.6 ± 9.7	Questionnaire + Interview	12 M	9264	4276	4988	Low risk
[39]	Islami et al., 2014	2004–8	Golestan	General population	36.1 ± 12.4	Questionnaire + Interview	12 M	49,975	21,216	28,785	Low risk

 Table 1
 Summary of characteristics in studies into a meta-analysis

SD standard deviation, NR not reported

Table 2 Subgroup analysis of prevalence of GERD

Variable			Studies	Sample (N)		Heterogeneity		95% CI	Pooled			
			(N)	Total subjects	Event	²	P-Value		prevalence (%)			
Daily	Areas	Center	6	12,884	680	98.44	< 0.001	2.37-8.47	4.52			
		East	2	2066	254	98.54	< 0.001	3.21-29.70	10.58			
		North	2	51,448	5947	98.98	< 0.001	1.09–23.40	5.48			
		Test for subgroup difference	es: Q = 1.5	59, df(Q) = 2, P =	0.459							
	Population	Blood donors	1	3517	165	-	-	4.05-5.45	4.70			
		General population	8	59,873	6653	98.18	< 0.001	4.51–9.45	6.56			
		Health care worker	1	3008	63	-	-	1.64-2.68	2.10			
		Test for subgroup difference	es: Q = 38:	.389, df(Q) = 2, P	< 0.001							
	Year of studies	1991–2004	6	11,691	849	98.65	< 0.001	4.03-13.07	7.37			
		2005–2013	4	54,707	6032	99.01	< 0.001	1.20-10.51	3.64			
		Test for subgroup difference	es: Q = 1.2	56, df(Q) = 1, P =	0.263							
	Quality of studies	Low risk	5	55,271	6282	98.52	< 0.001	4.21-12.39	7.31			
		Moderate risk	5	11,127	600	98.46	< 0.001	2.08-8.54	4.26			
		Test for subgroup difference	es: Q = 1.3	80, df(Q) = 1, P =	0.240							
	Method of data collection	Questionnaire + Interview	7	61,932	6337	99.06	< 0.001	2.14-7.81	4.12			
		Interview	3	4466	545	98.91	< 0.001	6.53–18.38	11.14			
		Test for subgroup difference	es: Q = 5.4	88, df(Q) = 1, P =	0.019							
	Sex	The odds ratio of females t	o males: 1	.503 (95% CI: 1.1	53–1.59, <i>I</i>	P = 0.003	3); Heterog	eneity: I ² : 68.49	9%, <i>P</i> = 0.013			
Weekly	Areas	Center	9	42,825	4880	99.34	< 0.001	7.92–15.92	11.31			
		East	2	2066	258	0	0.784	11.15–14.01	12.51			
		North	4	52,938	4317	91.08	< 0.001	7.04–11.38	8.98			
		South	4	12,559	2955	97.89	< 0.001	15.22–28.89	21.26			
		Test for subgroup differences: $Q = 17.025$, $df(Q) = 3$, $P = 0.001$										
	Population	Blood donors	1	3517	197	-	-	4.89–6.41	5.60			
		General population	14	98,005	10,770	99.69	< 0.001	10.07-17.91	13.52			
		Health care worker	4	8866	1443	99.20	< 0.001	5.17-7.39	11.44			
		Test for subgroup difference	es: Q = 29	.288, df(Q) = 2, P	< 0.001							
	Year of studies	1991–2004	8	14,570	1453	97.25	< 0.001	7.86–13.56	10.37			
		2005–2013	11	95,818	10,957	99.70	< 0.001	9.95-20.04	14.27			
		Test for subgroup difference	es: Q = 1.9	47, df(Q) = 1, $P =$	0.163							
	Quality of studies	Low risk	10	90,079	10,262	99.71	< 0.001	9.85–20.74	14.47			
		Moderate risk	9	20,309	2149	98.26	< 0.001	7.65–14.46	10.58			
		Test for subgroup difference	es: Q = 1.5	44, df(Q) = 1, $P =$	0.214							
	Method of data collection	Interview	3	4466	568	0	0.892	11.77–13.73	12.72			
		Questionnaire	3	6170	1313	96.95	< 0.001	10.71-25.45	16.83			
		Questionnaire + Interview	13	99,752	10,529	99.61	< 0.001	8.38–15.92	11.63			
		Test for subgroup difference	-	, , , ,				-				
	Sex	The odds ratio of females t $P < 0.001$	o males: 1	.174 (95% Cl: 0.9	74–1.414,	P = 0.09	92); Hetero	geneity: I ² : 91.6	53%,			
Monthly	Areas	Center	7	17,646	3591	97.55	< 0.001	15.36-22.91	18.84			
		East	1	1066	161	-	-	13.86–16.42	15.10			
		North	3	52,037	20,720	99.64	< 0.001	6.22-46.66	19.42			
		Test for subgroup difference	es: Q = 3.1	77, df(Q) = 2, P =	0.204							

Test for subgroup differences: Q = 3.177, df(Q) = 2, P = 0.204

Table 2 Subgroup analysis of prevalence of GERD (Continued)

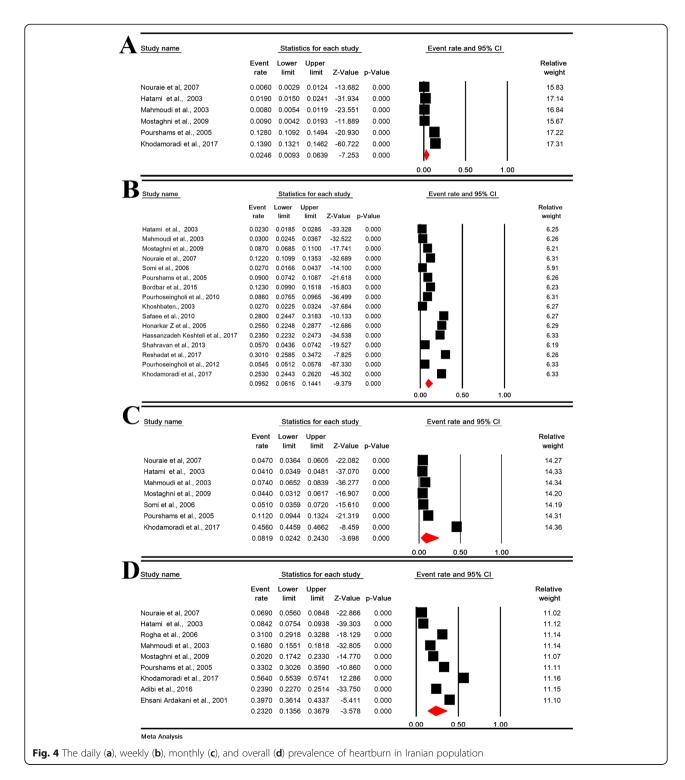
Variable			Studies (N) 1 8	Sample (N)		Heterogeneity		95% CI	Pooled			
			(N)	Total subjects	Event	l ²	P-Value		prevalence (%)			
	Population	Blood donors	1	3517	795	98.91	< 0.001	21.25-24.01	22.60			
		General population	8	63,635	23,110	99.71	< 0.001	12.44-28.62	19.27			
		Health care worker	2	3597	567	98.23	< 0.001	11.92–18.40	14.87			
		Test for subgroup difference	es: Q = 14.	531, df(Q) = 2, P	= 0.001							
	Year of studies	1991–2004	6	15,453	3323	95.89	< 0.001	17.14–23.54	20.15			
		2005-2013	5	55,296	21,149	99.70	< 0.001	7.27-34.71	16.95			
		Test for subgroup difference	es: Q = 0.1	81, df(Q) = 1, P =	0.671							
	Quality of studies	Low risk	5	55,271	21,159	99.70	< 0.001	7.82-35.92	17.90			
		Moderate risk	6	15,478	3313	96.03	< 0.001	16.42-22.85	19.43			
		Test for subgroup differences: $Q = 0.042$, $df(Q) = 1$, $P = 0.838$										
	Method of data collection	Interview	3	8228	1891	97.45	< 0.001	15.89–26.03	20.50			
		Questionnaire + Interview	8	62,521	22,581	99.70	< 0.001	10.79–28.45	17.99			
		Test for subgroup differences: $Q = 0.233$, $df(Q) = 1$, $P = 0.637$										
	Sex	The odds ratio of females t $P < 0.001$	o males: 1	.126 (95% Cl: 0.84	49–1.494,	<i>P</i> = 0.41	1); Hetero	geneity: I ² : 96.6	8%,			
verall	Areas	Center	6	12,884	4823	97.38	< 0.001	32.01-42.62	37.16			
		East	1	1066	493	-	-	43.26-49.24	46.24			
		North	1	49,975	30,415	-	-	60.43-61.26	60.86			
		South	1	9264	5419	-	-	57.49–59.50	58.50			
		Test for subgroup differences: $Q = 169.751$, $df(Q) = 3$, $P < 0.001$										
	Population	Blood donors	1	3517	1157	-	-	31.37-34.47	32.90			
		General population	7	66,664	38,913	99.43	< 0.001	38.49–53.12	45.71			
		Health care worker	1	3008	1080	99.09	< 0.001	34.20-37.63	35.90			
		Test for subgroup difference	t for subgroup differences: $Q = 16.155$, df(Q) = 2, $P < 0.001$									
	Year of studies	1991-2004	5	10,691	4124	97.26	< 0.001	34.36-46.09	40.09			
		2005-2013	4	62,498	37,026	99.59	< 0.001	37.71–56.28	46.89			
		Test for subgroup differences: $Q = 1.458$, df(Q) = 1, $P = 0.227$										
	Quality of studies	Low risk	5	63,062	37,471	99.15	< 0.001	43.12-56.23	49.67			
		Moderate risk	4	10,127	3679	98.20	< 0.001	28.59–42.77	35.36			
		Test for subgroup difference	es: Q = 8.0	08, df(Q) = 1, P =	0.005							
	Method of data collection	Questionnaire + Interview	7	69,723	39,541	99.73	< 0.001	32.71-52.17	42.14			
		Interview	2	3466	1609	0	< 0.001	44.76–48.08	46.42			
		Test for subgroup differences: $Q = 0.692$, $df(Q) = 1$, $P = 0.406$										
	Sex	The odds ratio of females t $P < 0.001$				P = 0.35	8); Hetero	geneity: I ² : 97.9	96%,			

Cl Confidence intervals, N number

and overall prevalence of GERD, respectively (Figure 4-supplementary).

Heartburn prevalence and sensitivity analysis

The daily, weekly, monthly, and overall prevalence of heartburn in Iranian population was 2.46% (95% CI: 0.93–


6.39%; heterogeneity: $I^2 = 99.15\%$, P < 0.001; N = 18,774), 9.52% (95% CI: 6.16–14.41%; heterogeneity: $I^2 = 99.58\%$, P < 0.001; N = 54,125), 8.19% (95% CI: 2.42–24.30%; heterogeneity: $I^2 = 99.76\%$, P < 0.001; N = 19,363) and 23.20% (95% CI: 13.56–36.79%; heterogeneity: $I^2 =$ 99.77%, P < 0.001; N = 26,543), respectively (Fig. 4).

The sensitivity analysis for prevalence of all types heartburn symptoms by removing a study showed that the overall estimate is still robust (Figure 5-Supplement).

Subgroup analysis of heartburn

For the daily prevalence of heartburn, the subgroup analysis of the area (P < 0.001), study population (P < 0.001), the quality of studies (P < 0.001) and method of data collection (P = 0.007) were significant (Table 3). For the weekly prevalence of heartburn,

Table 3 Subgroup analysis of prevalence of heartburn

/ariable			Studies	Sample (N) Total subjects Event		Hetero	geneity	95% CI	Pooled		
			(N)			I ² <i>P</i> -Value			prevalence (%)		
Daily	Areas	Center	3	7727	98	89.58	< 0.001	0.48-2.13	1.02		
		East	1	1066	136	_	-	10.92-14.94	12.80		
		South	2	9981	1294	98.10	< 0.001	0.23-39.75	3.78		
		Test for subgroup difference	es: Q = 46.	616, df(Q) = 2, P ·	< 0.001						
	Population	Blood donors	1	3517	67	-	-	1.50-2.41	1.90		
		General population	4	12,249	1438	97.67	< 0.001	1.86-7.92	3.88		
		Health care worker	1	3008	24	-	-	0.54-1.19	0.80		
		Test for subgroup difference	es: Q = 19.	304, df(Q) = 2, P -	< 0.001						
	Year of studies	1998–2005	4	8793	235	98.02	< 0.001	0.42-8.35	1.93		
		2006-2015	2	9981	1294	98.10	< 0.001	0.23-39.75	3.78		
		Test for subgroup difference	es: Q = 0.6	72, df(Q) = 1, <i>P</i> =	0.672						
	Quality of studies	Low risk	3	11,047	1431	98.84	< 0.001	4.27-12.53	7.40		
		Moderate risk	3	7727	98	89.58	< 0.001	0.48-2.13	1.02		
		Test for subgroup difference	es: Q = 17.	950, df(Q) = 1, P ·	< 0.001						
	Method of data collection	Questionnaire + Interview	5	17,708	1392	99.31	< 0.001	0.37-7.43	1.69		
		Interview	1	1066	136	_	_	10.92–14.94	12.80		
		Test for subgroup difference	est for subgroup differences: $Q = 7.342$, df(Q) = 1, $P = 0.007$								
	Sex	The odds ratio of females t				P = 0.18	30); Hetero	geneity: l ² : 0%,	P = 0.829		
Veekly	Areas	Center	7	35,634	3014	99.66	< 0.001	4.38–16.29	8.62		
		East	1	1066	96	_	_	7.42–10.87	9.00		
		North	3	5697	181	90.56	< 0.001	2.04–5.97	3.50		
		South	4	11,318	2668	97.75	< 0.001	10.64-25.31	16.37		
		West	1	410	123	_	_	25.85-34.72	30.10		
		Test for subgroup differences: $Q = 131.724$, $df(Q) = 4$, $P < 0.001$									
	Population	Blood donors	1	3517	81	_	_	1.85-2.85	2.30		
		General population	11	45,674	5633	99.65	< 0.001	7.14-18.48	11.66		
		Health care worker	3	4197	180	97.84	< 0.001	1.60-13.25	4.74		
		injured people of B	1	737	188	_	_	22.48-28.77	25.50		
		Test for subgroup difference						22.10 20.77	25.50		
	Year of studies	1991–2004	8 8	16,586	948	99.03	< 0.001	2.86-10.91	5.66		
		2005-2013	8	37,539	5133	99.70	< 0.001	8.94-25.47	15.48		
		Test for subgroup difference				JJ./0	< 0.001	0.74 25.47	15.40		
	Quality of studies	Low risk	6	32,832	3913	99.76	< 0.001	5.58–24.24	12.08		
	Quality of studies	Moderate risk	10	21,296	2169	99.39	< 0.001	4.36-14.88	8.19		
		Test for subgroup difference				99.39	< 0.001	4.50-14.00	0.19		
	Method of data collection	5 1	2 – 0.0	4100	357	0	0.690	7.88–9.61	8.71		
			4	7001							
		Questionnaire			1432	98.09	< 0.001	8.76-24.18	14.90		
		Questionnaire + Interview	10	43,024	4292	99.70	< 0.001	4.11–15.09	8.03		
	6	Test for subgroup difference				0 00			604		
	Sex	The odds ratio of females t $P < 0.001$	o males: 1.	678 (95% Cl: 1.10)5–2.548,	$P = 0.0^{-7}$	15); Hetero	geneity: l ² : 80.1	6%,		
lonthly	Areas	Center	3	7727	423	94.26	< 0.001	3.46-7.91	5.26		
		East	1	1066	119	_	_	9.44-13.24	11.20		

Table 3 Subgroup analysis of prevalence of heartburn (Continued)

Variable			Studies	lies Sample (N)			geneity	95% CI	Pooled		
			(N)	Total subjects	Event	²	<i>P</i> -Value		prevalence (%)		
		North	1	589	30	_	-	3.59–7.20	5.10		
		South	2	9981	4256	99.60	< 0.001	1.14–77.24	16.49		
		Test for subgroup difference	es: Q = 27.	0761, df(Q) = 3, P	°< 0.001						
	Population	Blood donors	1	3517	144	-	-	3.49-4.81	4.10		
		General population	4	12,249	4432	99.69	< 0.001	2.40-38.88	11.11		
		Health care worker	2	3597	253	74.63	< 0.001	4.44–9.07	6.37		
		Test for subgroup difference	es: Q = 6.2	29, df(Q) = 2, <i>P</i> =	0.044						
	Year of studies	1991–2004	5	9382	573	95.15	< 0.001	4.16-8.93	6.12		
		2005–2013	2	9981	4256	99.60	< 0.001	1.14–77.24	16.49		
		Test for subgroup difference	es: Q = 0.5	71, df(Q) = 1, P =	0.450						
	Quality of studies	Low risk	3	11,047	4375	99.66	< 0.001	2.96-48.85	14.57		
		Moderate risk	4	8316	453	91.48	< 0.001	3.71-7.31	5.23		
		Test for subgroup difference	es: Q = 1.5	82, df(Q) = 1, P =	0.208						
	Method of data collection	Interview	1	1066	119	-	-	9.44-13.24	11.20		
		Questionnaire + Interview	6	18,297	4709	99.81	< 0.001	1.90–26.74	7.76		
		Test for subgroup difference	es: Q = 0.2	88, df(Q) = 1, <i>P</i> =	0.592						
	Sex	The odds ratio of females t 0.311	o males: 1.	.282 (95% Cl: 1.28	32–1.729,	P< 0.0	01); Hetero	ogeneity: l ² : 16	.13%, <i>P</i> =		
verall	Areas	Center	6	15,496	3022	99.35	< 0.001	11.70-27.69	18.38		
		East	1	1066	352	-	-	30.26-35.90	33.02		
		South	2	9981	5370	99.65	< 0.001	10.39–73.94	36.45		
		Test for subgroup difference	73, df(Q) = 2, P =	0.019							
	Population	Blood donors	1	3517	369	_	-	7.54–9.38	8.42		
		General population	6	15,349	6827	99.62	< 0.001	16.36-44.01	28.17		
		Health care worker	2	7677	1621	98.17	< 0.001	14.06-27.99	20.14		
		Test for subgroup difference	es: Q = 34.	143, df(Q) = 2, P <	143, df(Q) = 2, $P < 0.001$						
	Year of studies	1991-2004	6	11,893	2258	99.39	< 0.001	11.40-31.36	19.52		
		2005-2013	3	14,650	6486	99.85	< 0.001	13.15–59.27	31.94		
		Test for subgroup difference	es: Q = 0.9	96, df(Q) = 1, <i>P</i> =	0.318						
	Quality of studies	Low risk	4	15,716	6838	99.83	< 0.001	16.21-53.86	32.22		
		Moderate risk	5	10,827	1906	99.45	< 0.001	9.22-30.35	17.38		
		Test for subgroup differences: $Q = 1.908$, $df(Q) = 1$, $P = 0.167$									
	Method of data collection	Interview	2	3466	1096	99.44	< 0.001	29.86-33.66	31.73		
		Questionnaire	2	5369	1394	98.69	< 0.001	18.00–48.35	31.19		
		Questionnaire + Interview	5	17,708	6254	99.87	< 0.001	5.54-49.93	17.66		
		Test for subgroup difference									
	Sex	The odds ratio of females t				P = 0.00)8). Hotoro	appoity: 12, 70 0	2106 P - 00		

CI Confidence intervals, N number

subgroup analysis of the area (P = 0.001), study population (P < 0.001) and year of study (P = 0.021) were significant (Table 3). For the monthly prevalence of heartburn, the subgroup analysis of the area (P < 0.001) and population (P = 0.044) was significant (Table 3). For the overall prevalence of heartburn, the subgroup analysis of the area (P = 0.044) was significant (Table 3).

0.019), and the study population (P < 0.001) were significant (Table 3). Other variables were not significant.

The prevalence of heartburn by gender

The daily, weekly, monthly, and overall prevalence of heartburn in Iranian males was 2.61% (95% CI: 0.59-

10.75%; heterogeneity: $I^2 = 98.19\%$, P < 0.001; N = 4778), 5.68% (95% CI: 1.81–16.44%; heterogeneity: $I^2 = 98.69\%$, P < 0.001; N = 7257), 5.93% (95% CI: 3.93–8.84%; heterogeneity: $I^2 = 89.65\%$, P < 0.001; N = 4788) and 16.54% (95% CI: 10.9–24.28%; heterogeneity: $I^2 = 96.43\%$, P < 0.001; N = 1788) (Figure 6-supplementary).

The daily, weekly, monthly, and overall prevalence of heartburn in Iranian females was 2.90% (95% CI: 0.36–19.95%; heterogeneity: $I^2 = 98.45\%$, P < 0.001; N = 2803), 6.89% (95% CI: 2.96–15.21%; heterogeneity: $I^2 = 98.02\%$, P < 0.001; N = 5171), 9.90% (95% CI: 6.45–14.90%; heterogeneity: $I^2 = 92.19\%$, P < 0.001; N = 3183), 19.71% (95% CI: 11.89–30.89%; heterogeneity: $I^2 = 98.02\%$, P < 0.001; N = 2803) (Figure 7-supplementary).

OR for the prevalence of daily, weekly, monthly, and overall prevalence of heartburn in women compared to men in Table 3 shows that there is a significant difference in the weekly (P = 0.015), monthly (P < 0.001) and overall (P = 0.008) prevalence of heartburn.

Meta-regression and publication bias for prevalence of heartburn

The meta-regression model based on years of study for heartburn prevalence revealed that the meta-regression coefficient for daily, weekly, monthly, and overall prevalence of heartburn was (0.136, 95% CI: – 0.241 to 0.514, P= 0.478), (0.109, 95% CI: 0.013 to 0.205, P= 0.025), (0.205, 95% CI: 0.004 to 0.405, P = 0.044) and (0.047, 95% CI: – 0.103 to 0.198, P= 0.539), respectively (Fig. 5).

Regarding publication bias, the significance level of Egger and Begg's tests was (Egger = 0.028 and Begg's = 0.707), (Egger = 0.118 and Begg's = 0.392), (Egger = 0.005 and Begg's = 0.548) and (Egger = 0.025 and Begg's = 0.754) for the daily, weekly, monthly, and overall prevalence of heartburn, respectively (Figure 8-supplementary).

Regurgitation prevalence and sensitivity analysis

The daily, weekly, monthly, and overall prevalence of regurgitation in Iranian population was 4.00% (95% CI: 1.88–8.32%; heterogeneity: $I^2 = 99.03\%$, P < 0.001; N = 18,774), 9.79% (95% CI: 5.99–15.60%; heterogeneity: $I^2 = 99.55\%$, P < 0.001; N = 41,140), 13.76% (95% CI: 6.18–27.88%; heterogeneity: $I^2 = 99.73\%$, P < 0.001; N = 19, 363) and 36.53% (95% CI: 19.30–58.08%; heterogeneity: $I^2 = 99.86\%$, P < 0.001; N = 21,174), respectively (Fig. 6).

The sensitivity analysis for prevalence of all types regurgitation symptoms by removing a study showed that the overall estimate is still robust (Figure 9-Supplement).

Subgroup analysis of regurgitation

For the daily prevalence of regurgitation, the subgroup analysis of the area (P < 0.001), study population (P < 0.001), the quality of studies (P < 0.001) and the

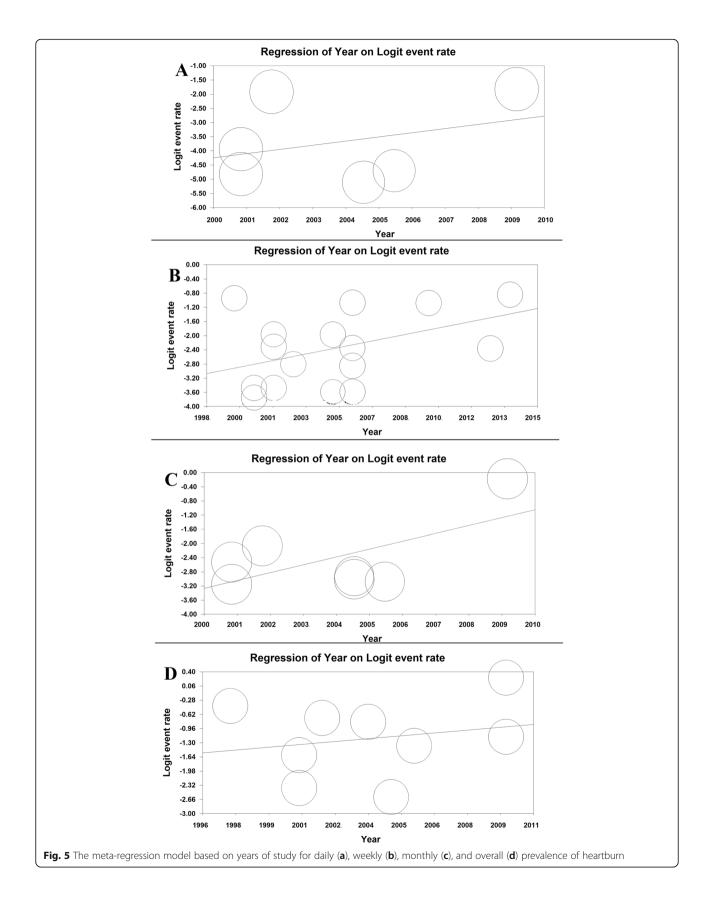
data collection method (P = 0.001) were significant (Table 4). For the weekly prevalence of regurgitation, subgroup analysis of the study population (P = 0.001) was significant (Table 4). For the monthly regurgitation of heartburn, the subgroup analysis of the population was significant (P < 0.001) (Table 4). For the overall prevalence of regurgitation, the subgroup analysis of the area (P < 0.001) was significant (Table 4). Other variables were not significant.

The prevalence of regurgitation by gender

The daily, weekly, monthly, and overall prevalence of regurgitation in Iranian males was 3.59% (95% CI: 1.17–10.47%; heterogeneity: $I^2 = 97.58\%$, P < 0.001; N = 4788), 7.93% (95% CI: 4.55–13.46%; heterogeneity: $I^2 = 95.25\%$, P < 0.001; N = 5008), 10.15% (95% CI: 5.61–17.70%; heterogeneity: $I^2 = 97.28\%$, P < 0.001; N = 4788) and 28.00% (95% CI: 24.66–31.60%; heterogeneity: $I^2 = 81.76\%$, P < 0.001; N = 4788) (Figure 10-supplementary).

The daily, weekly, monthly, and overall prevalence of regurgitation in Iranian females was 4.63% (95% CI: 0.78–23.11%; heterogeneity: $I^2 = 98.76\%$, P < 0.001; N = 2803), 6.81% (95% CI: 3.64–12.41%; heterogeneity: $I^2 = 94.86\%$, P < 0.001; N = 3183), 5.23% (95% CI: 1.11–21.34%; heterogeneity: $I^2 = 98.49\%$, P < 0.001; N = 2803) and 30.59% (95% CI: 17.89–47.14%; heterogeneity: $I^2 = 98.29\%$, P < 0.001; N = 2803) (Figure 11-supplementary).

OR for the prevalence of daily, weekly, monthly, and overall prevalence of regurgitation in women compared to men in Table 4 shows that there is no significant difference in the prevalence of regurgitation.


Meta-regression and publication bias for prevalence of regurgitation

The meta-regression model based on years of study for regurgitation prevalence revealed that the meta-regression coefficient for daily, weekly, monthly, and overall prevalence of regurgitation was (0.091, 95% CI: – 0.206 to 0.390, P= 0.546), (0.081, 95% CI: – 0.029 to 0.192, P= 0.149), (0.162, 95% CI: 0.027 to 0.297, P= 0.018) and (0.002, 95% CI: – 0.001 to 0.002, P < 0.001), respectively (Fig. 7).

Regarding publication bias, the significance level of Egger and Begg's tests was (Egger = 0.060 and Begg's = 0.452), (Egger = 0.221 and Begg's = 0.999), (Egger = 0.011 and Begg's = 0.999) and (Egger = 0.074 and Begg's = 0.763) for the daily, weekly, monthly, and overall prevalence of heartburn, respectively (Figure 12-supplementary).

Discussion

The present study is the first systematic review and meta-analysis on the prevalence of GERD in Iran. In this study, the prevalence of daily, weekly, monthly, and

	Event	Lower	Upper							Relative
	rate	limit	limit	Z-Value	p-Value					weight
Nouraie et al, 2007	7 0.0150	0.0095	0.0237	-17.635	0.000					16.15
Hatami et al., 200	0.0364	0.0307	0.0431	-36.387	0.000					16.99
Mahmoudi et al., 2	0.0140	0.0104	0.0189	-27.416	0.000					16.71
Mostaghni et al., 2	009 0.0220	0.0135	0.0357	-14.904	0.000	—				16.01
Pourshams et al., 2	2005 0.1530	0.1326	0.1759	-20.113	0.000					17.01
Khodamoradi et al	., 2017 0.1240	0.1174	0.1309	-62.019	0.000					17.13
	0.0400	0.0188	0.0832	-8.010	0.000	•				
						0.00	0.50	1.	00	
R										
Study name	Event			ach study	-	<u> </u>	vent rate a	nd 95% C	<u> </u>	Polotivo
	Event rate	Lower limit	Upper limit	Z-Value	p-Value					Relative weight
Hatami et al., 20	03 0.0460	0.0396	0.0534	-37.668	0.000					9.13
Mahmoudi et al., 2	2003 0.0510	0.0437	0.0595	-35.275	0.000		.			9.13
Mostaghni et al., 2			0.1242		0.000					9.03
Nouraie et al., 200					0.000					9.17
Somi et al., 2006	0.0630				0.000		.			8.89
Pourshams et al.,					0.000					9.10
Bordbar et al., 20 [.] Honarkar et al., 20					0.000					9.02 9.04
Shahravan et al., 2		0.1050			0.000					9.04
Pourhoseingholi e					0.000		•			9.20
Khodamoradi et a			0.2650		0.000					9.20
	0.0979	0.0599	0.1560	-8.177	0.000		-			
						0.00	0.50	· c	.00	
<u>Study name</u>	Event	Lower	Upper	ach study		Eve	nt rate and	195% CI		Relative
	rate	limit	limit	Z-Value	p-Value					weight
	7 0.4500	0.1366	0.1776	-21.239	0.000				L	14.31
Nouraie et al. 200							-			14.33
Nouraie et al, 200 Hatami et al., 200			0.0768	-39.083	0.000					
Hatami et al., 200	03 0.0680	0.0601	0.0768 0.1508	-39.083 -34.654	0.000 0.000					
	03 0.0680 2003 0.1380	0.0601 0.1261	0.1508							14.33 14.34 14.14
Hatami et al., 200 Mahmoudi et al., 2	03 0.0680 2003 0.1380	0.0601 0.1261 0.0474	0.1508	-34.654	0.000					14.34
Hatami et al., 200 Mahmoudi et al., 2 Mostaghni et al., 2	03 0.0680 2003 0.1380 2009 0.0630 0.1300	0.0601 0.1261 0.0474	0.1508 0.0833	-34.654 -17.563	0.000 0.000					14.34 14.14
Hatami et al., 200 Mahmoudi et al., 2 Mostaghni et al., 2 Somi et al., 2006	03 0.0680 2003 0.1380 2009 0.0630 0.1300 2005 0.1350	0.0601 0.1261 0.0474 0.1052	0.1508 0.0833 0.1597 0.1569	-34.654 -17.563 -15.515	0.000 0.000 0.000					14.34 14.14 14.22
Hatami et al., 20 Mahmoudi et al., 2 Mostaghni et al., 2 Somi et al., 2006 Pourshams et al.,	03 0.0680 2003 0.1380 2009 0.0630 0.1300 2005 0.1350	0.0601 0.1261 0.0474 0.1052 0.1158 0.4229	0.1508 0.0833 0.1597 0.1569	-34.654 -17.563 -15.515 -20.724	0.000 0.000 0.000 0.000					14.34 14.14 14.22 14.29
Hatami et al., 20 Mahmoudi et al., 2 Mostaghni et al., 2 Somi et al., 2006 Pourshams et al.,	03 0.0680 2003 0.1380 2009 0.0630 0.1300 2005 0.1350 I., 2017 0.4330	0.0601 0.1261 0.0474 0.1052 0.1158 0.4229	0.1508 0.0833 0.1597 0.1569 0.4431	-34.654 -17.563 -15.515 -20.724 -12.858	0.000 0.000 0.000 0.000 0.000	0.00	0.50	1	.00	14.34 14.14 14.22 14.29
Hatami et al., 20 Mahmoudi et al., 2 Mostaghni et al., 2 Somi et al., 2006 Pourshams et al., Khodamoradi et al	03 0.0680 2003 0.1380 2009 0.0630 0.1300 2005 0.1350 I., 2017 0.4330	0.0601 0.1261 0.0474 0.1052 0.1158 0.4229 0.0618	0.1508 0.0833 0.1597 0.1569 0.4431 0.2788	-34.654 -17.563 -15.515 -20.724 -12.858 -4.064	0.000 0.000 0.000 0.000 0.000				00	14.34 14.14 14.22 14.29
Hatami et al., 20 Mahmoudi et al., 2 Mostaghni et al., 2 Somi et al., 2006 Pourshams et al.,	03 0.0680 2003 0.1380 2009 0.0630 0.1300 2005 0.1350 1., 2017 0.4330 0.1376	0.0601 0.1261 0.0474 0.1052 0.1158 0.4229 0.0618 <u>Statist</u>	0.1508 0.0833 0.1597 0.1569 0.4431 0.2788	-34.654 -17.563 -15.515 -20.724 -12.858	0.000 0.000 0.000 0.000 0.000		0.50		.00	14.34 14.14 14.22 14.29 14.37
Hatami et al., 20 Mahmoudi et al., 2 Mostaghni et al., 2 Somi et al., 2006 Pourshams et al., Khodamoradi et al	03 0.0680 2003 0.1380 2009 0.0630 0.1300 2005 0.1350 I., 2017 0.4330	0.0601 0.1261 0.0474 0.1052 0.1158 0.4229 0.0618	0.1508 0.0833 0.1597 0.1569 0.4431 0.2788	-34.654 -17.563 -15.515 -20.724 -12.858 -4.064	0.000 0.000 0.000 0.000 0.000 0.000				00	14.34 14.14 14.22 14.29
Hatami et al., 200 Mahmoudi et al., 2 Mostaghni et al., 2 Somi et al., 2006 Pourshams et al., Khodamoradi et al Study name Nouraie et al, 2007	03 0.0680 2003 0.1380 2009 0.0683 0.1300 2005 0.1350 0.1350 0.1376 Event rate 7 0.2280	0.0601 0.1261 0.0474 0.1052 0.1158 0.4229 0.0618 <u>Statist</u> Lower limit	0.1508 0.0833 0.1597 0.1569 0.4431 0.2788	-34.654 -17.563 -15.515 -20.724 -12.858 -4.064	0.000 0.000 0.000 0.000 0.000 0.000				00	14.34 14.14 14.22 14.29 14.37 Relative
Hatami et al., 200 Mahmoudi et al., 2 Mostaghni et al., 2 Somi et al., 2006 Pourshams et al., Khodamoradi et al <u>Study name</u> Nouraie et al, 2007 Hatami et al., 2007	03 0.0680 2003 0.1380 2009 0.0683 0.1300 2005 0.1350 0.1350 0.1370 0.1376 Event rate 7 0.2280 03 0.2473	0.0601 0.1261 0.0474 0.1052 0.1158 0.4229 0.0618 <u>Statist</u> Lower limit 0.2052 0.2333	0.1508 0.0833 0.1597 0.1569 0.4431 0.2788 ics for ea Upper limit 0.2526 0.2618	-34.654 -17.563 -15.515 -20.724 -12.858 -4.064 ich study Z-Value -17.740 -28.479	0.000 0.000 0.000 0.000 0.000 0.000 p-Value 0.000 0.000				00	14.34 14.14 14.22 14.29 14.37 Relative weight 14.27 14.30
Hatami et al., 200 Mahmoudi et al., 2 Mostaghni et al., 2 Somi et al., 2006 Pourshams et al., Khodamoradi et al D <u>Study name</u> Nouraie et al., 2007 Hatami et al., 2006 Rogha et al., 2006	03 0.0680 003 0.1380 0.090 0.0630 0.1300 2005 0.1350 0.1376 Event rate 7 0.2280 03 0.2473 5 0.3280	0.0601 0.1261 0.0474 0.1052 0.1158 0.4229 0.0618 Statisti Lower limit 0.2052 0.2333 0.3095	0.1508 0.0833 0.1597 0.1569 0.4431 0.2788 Upper limit 0.2526 0.2618 0.3471	-34.654 -17.563 -15.515 -20.724 -12.858 -4.064 z-Value -17.740 -28.479 -16.497	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000				.00	14.34 14.14 14.22 14.29 14.37 Relative weight 14.27 14.30 14.30
Hatami et al., 200 Mahmoudi et al., 2 Mostaghni et al., 2 Somi et al., 2006 Pourshams et al., Khodamoradi et al Mouraie et al, 2007 Hatami et al., 2007 Rogha et al., 2006 Mahmoudi et al., 2	03 0.0680 003 0.1380 009 0.0630 0.1300 2005 0.1350 0.1350 0.1376 Event rate 7 0.2280 03 0.2473 5 0.3280	0.0601 0.1261 0.0474 0.1052 0.1158 0.4229 0.0618 Statisti Lower limit 0.2052 0.2333 0.3095 0.2593	0.1508 0.0833 0.1597 0.1569 0.4431 0.2788 ics for ea Upper limit 0.2526 0.2618 0.3471 0.2912	-34.654 -17.563 -15.515 -20.724 -12.858 -4.064 ich study Z-Value -17.740 -28.479 -16.497 -23.740	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000				.00	14.34 14.14 14.22 14.29 14.37 Relative weight 14.27 14.30 14.30
Hatami et al., 200 Mahmoudi et al., 2 Mostaghni et al., 2 Somi et al., 2006 Pourshams et al., Khodamoradi et al C Study name Nouraie et al., 2000 Hatami et al., 2000 Rogha et al., 2000 Mahmoudi et al., 2000 Mahmoudi et al., 2000	03 0.0680 003 0.1380 0.090 0.0633 0.1300 2005 0.1350 0.1350 0.1376 Event rate 7 0.2280 03 0.2473 5 0.3280 1003 0.2750	0.0601 0.1261 0.0474 0.1052 0.1158 0.4229 0.0618 Statisti 0.2052 0.2333 0.3095 0.2593 0.3121	0.1508 0.0833 0.1597 0.1569 0.4431 0.2788 ics for ea Upper limit 0.2526 0.2618 0.3471 0.2912 0.3816	-34.654 -17.563 -15.515 -20.724 -12.858 -4.064 Z-Value -17.740 -28.479 -16.497 -23.740 -8.110	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000				00	14.34 14.14 14.22 14.29 14.37 Relative weight 14.27 14.30 14.30 14.30 14.25
Hatami et al., 200 Mahmoudi et al., 2 Mostaghni et al., 2 Somi et al., 2006 Pourshams et al., Khodamoradi et al D <u>Study name</u> Nouraie et al, 2007 Hatami et al., 2007 Rogha et al., 2006 Mahmoudi et al., 2 Pourshams et al., 2	03 0.0680 003 0.1380 009 0.0683 0.1300 2005 0.1350 1.,2017 0.4330 0.1376 Event rate 7 0.2280 03 0.2473 5 0.3260 003 0.2750 009 0.3460 2005 0.4043	0.0601 0.1261 0.0474 0.1052 0.1158 0.4229 0.0618 Statisti Lower limit 0.2052 0.2333 0.3095 0.2593 0.3121 0.3752	0.1508 0.0833 0.1597 0.1569 0.4431 0.2788 ics for ea Upper limit 0.2526 0.2618 0.3471 0.2912 0.3816 0.4341	-34.654 -17.563 -15.515 -20.724 -12.858 -4.064 z-Value -17.740 -28.479 -16.497 -23.740 -8.110 -6.210	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000				00	14.34 14.14 14.22 14.29 14.37 Relative weight 14.27 14.30 14.30 14.30 14.25 14.28
Hatami et al., 200 Mahmoudi et al., 2 Mostaghni et al., 2 Somi et al., 2006 Pourshams et al., Khodamoradi et al C Study name Nouraie et al., 2000 Hatami et al., 2000 Rogha et al., 2000 Mahmoudi et al., 2000 Mahmoudi et al., 2000	03 0.0680 003 0.1380 009 0.0683 0.1300 2005 0.1350 0.1370 0.1376 Event rate 7 0.2280 03 0.2473 5 0.3280 003 0.2453 5003 0.3460 2005 0.4043 ., 2017 0.7640	0.0601 0.1261 0.0474 0.1052 0.1158 0.4229 0.0618 Statisti Lower limit 0.2052 0.2333 0.3095 0.2593 0.3121 0.3752	0.1508 0.0833 0.1597 0.1569 0.4431 0.2788 0.4431 0.2788 Upper limit 0.2526 0.2618 0.3471 0.2912 0.3816 0.4341 0.7725	-34.654 -17.563 -15.515 -20.724 -12.858 -4.064 z-Value -17.740 -28.479 -16.497 -23.740 -8.110 -6.210 48.011	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000				00	14.34 14.14 14.22 14.29 14.37 Relative weight 14.27 14.30 14.30 14.30 14.25
Hatami et al., 200 Mahmoudi et al., 2 Mostaghni et al., 2 Somi et al., 2006 Pourshams et al., Khodamoradi et al D <u>Study name</u> Nouraie et al, 2007 Hatami et al., 2007 Rogha et al., 2006 Mahmoudi et al., 2 Pourshams et al., 2	03 0.0680 003 0.1380 009 0.0683 0.1300 2005 0.1350 0.1370 0.1376 Event rate 7 0.2280 03 0.2473 5 0.3280 003 0.2453 5003 0.3460 2005 0.4043 ., 2017 0.7640	0.0601 0.1261 0.0474 0.1052 0.1158 0.4229 0.0618 Statisti Lower limit 0.2052 0.2333 0.3095 0.2593 0.3121 0.3752	0.1508 0.0833 0.1597 0.1569 0.4431 0.2788 0.4431 0.2788 Upper limit 0.2526 0.2618 0.3471 0.2912 0.3816 0.4341 0.7725	-34.654 -17.563 -15.515 -20.724 -12.858 -4.064 z-Value -17.740 -28.479 -16.497 -23.740 -8.110 -6.210	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			d 95% CI	00	14.34 14.14 14.22 14.29 14.37 Relative weight 14.27 14.30 14.30 14.30 14.25 14.28

overall prevalence of GERD in Iranian population was 5.64%, 12.50%, 18.62%, and 43.07%, respectively. In a systematic review in 2014, the weekly prevalence of GERD in North America was 18.1-27.8%, in South America was 23.0%, in Europe was 8.8-25.9%, in East Asia was 2.5–7.8%, in Middle East was 8.7-33.1% and in Australia was 11.6%, and was specifically reported for Iran to be 10.1-15.0% [49], which is consistent with the present study.

In the present study, the causes of heterogeneity in the studies can be attributed to the geographic region and the studied population, while previous studies also mentioned racial and geographical factors for the pathogenesis of GERD [49, 50].

In a systematic review in Iran, the causes of heterogeneity for the prevalence of GERD have been attributed to different criteria such as definition, difference in social factors, cultural background, and lifestyle in different

Table 4 Subgroup analysis of prevalence of regurgitation

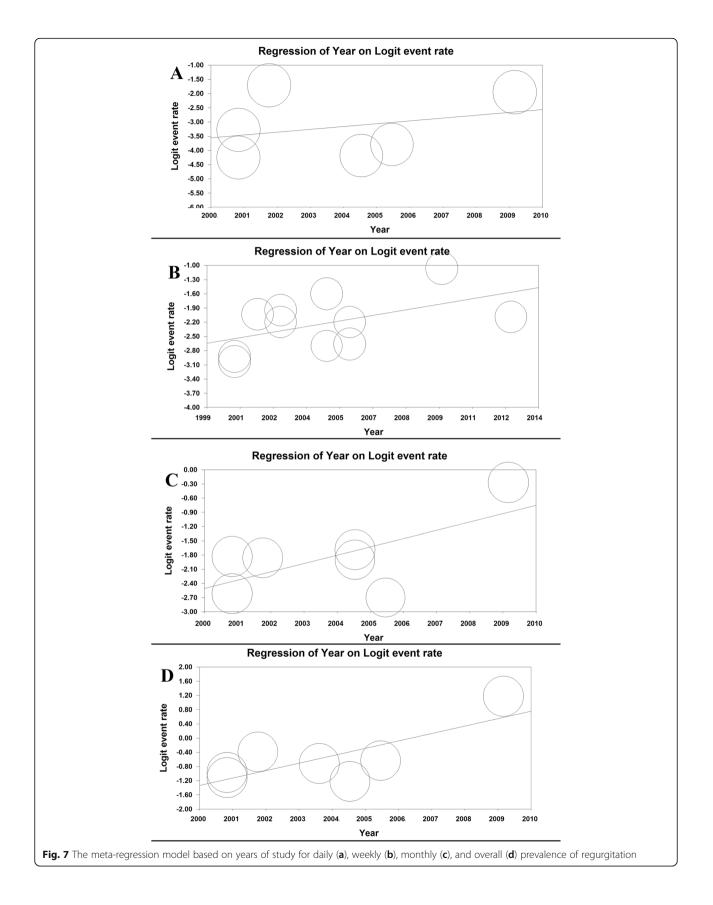

Variable			Studies	Sample (N)		Heterogeneity		95% CI	Pooled			
			(N)	Total subjects	Event	I ² <i>P</i> -Value		-	prevalence (%)			
Daily	Areas	Center	3	7727	188	94.21	< 0.001	0.97-4.09	2.00			
		East	1	1066	163	-	-	13.26–17.59	15.30			
		South	2	9981	1165	98.05	< 0.001	00.94–25.82	5.43			
		Test for subgroup difference	es: Q = 33.	289, df(Q) = 2, P	< 0.001							
	Population	Blood donors	1	3517	128	-	-	3.07-4.31	3.64			
		General population	4	12,249	1346	97.96	< 0.001	2.78-10.41	5.45			
		Health care worker	1	3008	42	-	-	1.04–1.89	1.40			
		Test for subgroup difference	es: Q = 33.	09, df(Q) = 2, P <	0.001							
	Year of studies	1998–2005	4	8793	351	99.04	< 0.001	1.04-10.53	3.40			
		2006–2015	2	9981	1162	98.05	< 0.001	0.94–25.82	5.43			
		Test for subgroup difference	es: Q = 0.1	96, df(Q) = 1, <i>P</i> =	0.658							
	Quality of studies	Low risk	3	11,047	1328	98.90	< 0.001	5.03-13.76	8.42			
		Moderate risk	3	7727	188	94.56	< 0.001	0.97-4.09	2.00			
		Test for subgroup differences: $Q = 10.268$, df(Q) = 1, $P < 0.001$										
	Method of data collection	Questionnaire + Interview	5	17,708	1353	99.17	< 0.001	1.07-8.02	2.98			
	Sex	Interview	1	1066	163	99.51	< 0.001	13.26–17.59	15.30			
		Test for subgroup difference	es: Q = 10.	819, df(Q) = 1, P	= 0.001							
		The odds ratio of females t	o males: 1	.315 (95% Cl: 0.78	86-2.201	P = 0.29	97); Hetero	geneity: I ² : 64.2	23%, <i>P</i> = 0.06			
Weekly	Areas	Center	4	27,266	1931	99.22	< 0.001	4.02-12.65	7.23			
		East	1	1066	124	_	_	9.81–13.66	11.60			
		North	2	1490	150	93.15	< 0.001	4.53–17.19	9.03			
		South	4	11,318	2583	98.55	< 0.001	6.71–24.37	13.21			
		Test for subgroup differences: $Q = 3.130$, df(Q) = 3, $P = 0.372$										
	Population	Blood donors	1	3517	162	_	_	3.96-5.34	4.60			
		General population	6	32,689	4296	99.71	< 0.001	6.71–23.16	12.83			
		Health care worker	3	4197	257	93.11	< 0.001	4.27-11.51	7.08			
		injured people of B	1	737	74	_	_	8.03-12.38	1.00			
		Test for subgroup difference						0.00 12.00	1.00			
	Year of studies	1991–2004	7	12,379	1093	98.18	< 0.001	5.55-13.53	8.75			
		2005-2013	4	28,761				4.51-27.80	11.89			
		Test for subgroup difference				JJ.02	< 0.001	7.51 27.00	11.09			
	Quality of studies	Low risk	4	29,227	3753	99.83	< 0.001	4.68–27.62	12.04			
	Quality of studies	Moderate risk	7	11,913	1035		< 0.001	4.08-27.02 5.41-13.62	8.67			
						90.10	< 0.001	5.41-15.02	0.07			
	Method of data collection	Test for subgroup difference	.es: Q = 0.5					0.01 12.00	11.00			
	Method of data collection		1	1066	124	-	-	9.81-13.66	11.60			
		Questionnaire	3	2238	252	22.68	< 0.001	9.85-12.86	11.27			
		Questionnaire + Interview		37,836	4412	99.73	< 0.001	4.61–16.96	9.04			
		Test for subgroup difference										
	Sex	The odds ratio of females t $P < 0.001$	o males: 0	.856 (95% Cl: 0.5)	09–1.433	9, P = 0.5	58); Heter	ogeneity: l ² : 84	.1/%,			
Monthly	Areas	Center	3	7727	842	98.17	< 0.001	6.94–18.29	11.44			
		East	1	1066	144	_	-	11.58–15.69	13.50			
		North	1	589	77			10.52–15.97	12.00			

Table 4 Subgroup analysis of prevalence of regurgitation (Continued)

Variable			Studies	Sample (N)	Sample (N)		geneity	95% CI	Pooled		
			(N)	Total subjects	Event	²	P-Value		prevalence (%)		
		South	2	9981	4056	99.59	< 0.001	2.06-71.12	18.55		
		Test for subgroup difference	es: Q = 0.5	52, df(Q) = 3, P =	0.907						
	Population	Blood donors	1	3517	239	-	-	6.01-7.68	6.80		
		General population	4	12,249	4388	99.61	< 0.001	6.03-37.74	16.47		
		Health care worker	2	3597	492	0	0.605	12.59–14.83	13.67		
		Test for subgroup difference	es: Q = 88.	495, df(Q) = 2, P -	< 0.001						
	Year of studies	1991–2004	5	9382	1062	96.48	< 0.001	8.80–16.47	12.12		
		2005–2013	2	9981	4056	99.59	< 0.001	2.06-71.12	18.55		
		Test for subgroup difference	es: Q = 0.1	67, df(Q) = 1, <i>P</i> =	0.683						
	Quality of studies	Low risk	3	11,047	4200	99.62	< 0.001	4.44-46.54	16.75		
		Moderate risk	4	8316	918	97.28	< 0.001	7.92–17.23	11.80		
		Test for subgroup difference	es: Q = 0.2	73, df(Q) = 1, P =	0.601						
	Method of data collection	Interview	1	1066	144	-	-	11.58–15.69	13.50		
		Questionnaire + Interview	6	18,297	4975	99.76	< 0.001	5.64-29.99	13.80		
		Test for subgroup difference	es: Q = 0.0	02, df(Q) = 1, P =	0.960						
	Sex	The odds ratio of females t	o males: 0	.500 (95% CI: 0.08	35–2.952,	P = 0.85	59); Hetero	geneity: I ² : 98.3	30%, <i>P</i> < 0.00		
Overall	Areas	Center	4	10,127	2758	95.05	< 0.001	23.09-31.00	26.86		
		East	1	1066	431	-	-	37.53-43.41	40.43		
		South	2	9981	7326	99.79	< 0.001	18.17–88.55	56.72		
		Test for subgroup differences: $Q = 26.883$, $df(Q) = 2$, $P < 0.001$									
	Population	Blood donors	1	3517	870	_	-	23.33-26.18	24.73		
		General population	5	14,649	8818	99.84	< 0.001	19.28–67.23	41.18		
		Health care worker	1	3008	827	-	-	25.93-29.12	27.50		
		Test for subgroup difference	es: Q = 8.0	28, df(Q) = 2, P =	0.018						
	Year of studies	1991–2004	5	11,193	3198	97.12	< 0.001	24.40-34.70	29.28		
		2005–2013	2	9981	7326	99.79	< 0.001	17.17-88.55	56.72		
		Test for subgroup difference	es: Q = 1.5:	87, df(Q) = 1, <i>P</i> =	0.208						
	Quality of studies	Low risk	3	11,047	7757	99.78	< 0.001	22.40-79.34	51.29		
		Moderate risk	4	10,127	2758	95.02	< 0.001	23.09-31.00	26.86		
		Test for subgroup difference	es: Q = 2.4	83, df(Q) = 1, P =	0.115						
	Method of data collection	Interview	2	3466	1218	94.67	< 0.001	29.35-44.21	36.46		
		Questionnaire + Interview	5	17,708	9297	99.90	< 0.001	14.91-65.41	36.53		
		Test for subgroup difference		,							
	Sex	The odds ratio of females t				0 0.01		annaitr <i>u</i> 1 ² , 00 1	00% D < 0.00		

Cl Confidence intervals, N number

cities or different populations [51]. On the other hand, due to the limitations of population-based studies, where precise diagnostic methods such as PH metric testing cannot be used, some of these differences can be due to the lack of a comprehensive standard for classifying symptoms and complications of GERD, which makes comparison between studies difficult [52]. Some differences in reported reflux rates may be due to cultural and ethnic differences in perceiving, expressing, and understanding symptoms of reflux. For example, there are differences in describing symptoms and diseases in some areas and among some ethnic groups, while other groups do not pay attention to the symptoms of the disease. It has been pointed out that different groups and cultures have different perceptions of the word "heartburn". In a study in Boston among different ethnic groups, only 13% of Chinese and Korean people had a proper understanding of the word "heartburn" [53].

Iranian people are gaining weight such that the prevalence of obesity in Iranian adults is 21.5% [54]. Meanwhile, the economic and social status of people has changed rapidly. Therefore, some studies have reported that the above factors are important risk factors [55].

Smoking has always been associated with GERD. The relationship between smoking and GERD (any symptoms) continues even after smoking is stopped [39]. Smoking increases the frequency of GERD by reducing the pressure of the sphincter [56] and decreases the secretion of the bicarbonate of the saliva [57]. However, some other mechanisms may also be involved in the relationship between smoking and symptoms of GERD. Therefore, smoking may result in exaggerated negative intrathoracic pressure and inspiratory thoracoabdominal pressure gradient, which may cause gastrointestinal reflux [58, 59]. In a meta-analysis, the prevalence of smoking among Iranian men and women was reported to be 21.7% and 3.6%, respectively [59].

There is varied evidence regarding the relationship between gender and GERD symptoms, but most studies show no relationship [60]. However, in many studies based on endoscopy, non-erosive and erosive GERD are more common in men and women, respectively [61, 62]. In the present study, only the daily symptoms of GERD were significantly higher in women compared to men.

The prevalence of GERD-related symptoms and tissue damage is different in ethnic/racial groups [63, 64]. We found a significant difference between the weekly and overall prevalence of GERD in different areas; the weekly and overall prevalence of GERD in the south was 21.26% and in the north was 60.86%. Iran has different ethnicities (Kurds, Persians, Turks, Arabs, Turkmen, etc.) with different customs and lifestyles, each of which predominantly lives in certain geographic area (e.g., Kurds are concentrated in western Iran) [65]. Nevertheless, the environmental or genetic factors that affect these differences are not clear yet [39].

The study with highest quality in this meta-analysis was the study of Islami et al. [39] on 49,975 people of the general population, with a daily, weekly, monthly, and overall GERD prevalence of 11.83%, 8.06%, 40.96%, and 60.86%, respectively, who reported a high incidence.

In the present study, the prevalence of daily, weekly, monthly, and overall prevalence of GERD did not change significantly over time. In 2005, a systematic review on population-based studies reported the weekly prevalence of GERD to be 10–20% in Europe and the United States and less than 5% in East Asia [66]. However, in a more recent systematic review in 2011, the weekly prevalence of GERD was reported to be 8.8– 25.9% in Europe and 18.1–27.8% in North America and 2.5–7.8% in East Asia 49). Therefore, the global prevalence of GERD is increasing over time [49]. The results of the Egger's test show that bias has been suggested for the overall prevalence of GERD. Publication bias is usually suggested for studies that are based on relationship assessment scale because studies with a positive result are more likely [48, 67].

There were several limitations for this early study, so interpreting the results should be done with cautious. The questionnaire consisted of only the major and common symptoms of GERD such as heartburn and acid reflux, but not other symptoms. Non-gastric manifestations of GERD are not included. Indeed, in the absence of a golden standard for the diagnosis of GERD, we only have the questionnaires, which are common in clinical or epidemiological studies.

Conclusion

The present meta-analysis provides comprehensive and useful information on the epidemiology of GERD in Iran for policy-makers and health care providers. This study showed a high prevalence of GERD in Iran. Therefore, effective measures on GERD-related factors such as lifestyle can be among the health policies of Iran.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10. 1186/s12876-020-01417-6.

Additional file 1: Figure 1- supplementary: The sensitivity analysis for daily (A), weekly (B), monthly (C), and overall (D) prevalence of GERD symptoms in Iranian population.

Additional file 2: Figure 2-supplementary: The daily (A), weekly (B), monthly (C), and overall (D) prevalence of GERD symptoms in Iranian males.

Additional file 3: Figure 3-supplementary: The daily (A), weekly (B), monthly (C), and overall (D) prevalence of GERD symptoms in Iranian females.

Additional file 4: Figure 4-supplementary: Publication bias for daily (A), weekly (B), monthly (C), and overall (D) prevalence of GERD symptoms.

Additional file 5: Figure 5- supplementary: The sensitivity analysis for daily (A), weekly (B), monthly (C), and overall (D) prevalence of heartburn in Iranian population.

Additional file 6: Figure 6-supplementary: The daily (A), weekly (B), monthly (C), and overall (D) prevalence of heartburn in Iranian males.

Additional file 7: Figure 7-supplementary: The daily (A), weekly (B), monthly (C), and overall (D) prevalence of heartburn in Iranian females.

Additional file 8: Figure 8-supplementary: Publication bias for daily (A), weekly (B), monthly (C), and overall (D) prevalence of heartburn.

Additional file 9: Figure 9- supplementary: The sensitivity analysis for daily (A), weekly (B), monthly (C), and overall (D) prevalence of regurgitation in Iranian population.

Additional file 10: Figure 10-supplementary: The daily (A), weekly (B), monthly (C), and overall (D) prevalence of regurgitation in Iranian males.

Additional file 11: Figure 11-supplementary: The daily (A), weekly (B), monthly (C), and overall (D) prevalence of regurgitation in Iranian females.

Additional file 12: Figure 12-supplementary: Publication bias for daily (A), weekly (B), monthly (C), and overall (D) prevalence of regurgitation.

Additional file 13. PRISMA 2009 Checklist.

Abbreviations

GERD: Gastroesophageal reflux disease; NSAIDs: Nonsteroidal Antiinflammatory Drugs; BMI: Body mass index; IranDoc: Iranian Research Institute for Information Science and Technology; SID: Scientific Information Database; RICST: Regional Information Center for Science and TechnologyMOOSE Meta-analyses Of Observational Studies in Epidemiology; PRISMA: Systematic Reviews and Meta-analysis; NOS: Newcastle Ottawa Scale; OR: Odds ratio; CI: Confidence interval; CMA: Comprehensive Meta-Analysis

Acknowledgements

Hereby, we would like to thank the llam University of Medical Sciences for their support.

Authors' contributions

M.A, MR.HA, F. K, M. K, and H. N acquired the data. M. A analyzed and interpreted the data. M. A, MR.HA, F. K, M. K, and H. N and M. S drafted the manuscript; MA, MS, and MK critically revised the manuscript for important intellectual content. MK supervised the study. All authors have read and approved the manuscript.

Funding

This study was funded by the llam University of Medical sciences. The funder had no role in the process of study design, data analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials

The datasets supporting the conclusions of this research are contained in the article.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

There is not conflict of interest between the authors of this study.

Author details

¹Department of General Surgery, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran. ²Department of Internal Medicine, Shahid Mostafa Khomeini Hospital, Ilam, Iran. ³Department of Pathology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran. ⁴School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran. ⁵Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.

Received: 4 March 2020 Accepted: 7 August 2020 Published online: 14 September 2020

References

- Vakil N, Van Zanten SV, Kahrilas P, Dent J, Jones R. The Montreal definition and classification of gastroesophageal reflux disease: a global evidencebased consensus. Am J Gastroenterology. 2006;101(8):1900.
- Manterola C, Muñoz S, Grande L, Bustos L. Initial validation of a questionnaire for detecting gastroesophageal reflux disease in epidemiological settings. J Clin Epidemiol. 2002;55(10):1041–5.
- El-Serag HB, Petersen NJ, Carter J, Graham DY, Richardson P, Genta RM, et al. Gastroesophageal reflux among different racial groups in the United States. Gastroenterology. 2004;126(7):1692–9.
- Mikami DJ, Murayama KM. Physiology and pathogenesis of gastroesophageal reflux disease. Surg Clin. 2015;95(3):515–25.
- Buckles DC, Sarosiek I, McCallum RW, McMillin C. Delayed gastric emptying in gastroesophageal reflux disease: reassessment with new methods and symptomatic correlations. Am J Med Sci. 2004;327(1):1–4.

- Wong W, Lam K, Lai K, Hui W, Hu W, Lam C, et al. A validated symptoms questionnaire (Chinese GERDQ) for the diagnosis of gastro-oesophageal reflux disease in the Chinese population. Aliment Pharmacol Ther. 2003; 17(11):1407–13.
- Kim O, Jang HJ, Kim S, Lee HY, Cho E, et al. Gastroesophageal reflux disease and its related factors among women of reproductive age: Korea Nurses' Health Study. BMC Public Health. 2018;18(1):1133.
- Ohba T, Ebata S, Koyama K, Haro H. Prevalence and key radiographic spinal malalignment parameters that influence the risk for gastroesophageal reflux disease in patients treated surgically for adult spinal deformity. BMC Gastroenterol. 2018;18(1):8.
- Kusano M, Hashizume K, Ehara Y, Shimoyama Y, Kawamura O, Mori M. Size of hiatus hernia correlates with severity of kyphosis, not with obesity, in elderly Japanese women. J Clin Gastroenterol. 2008;42(4):345–50.
- Mostaghni A, Mehrabani D, Khademolhosseini F, Masoumi SJ, Moradi F, Zare N, et al. Prevalence and risk factors of gastroesophageal reflux disease in Qashqai migrating nomads, southern Iran. World J Gastroenterol: WJG. 2009; 15(8):961.
- Vossoughinia H, Salari M, Amirmajdi EM, Saadatnia H, Abedini S, Shariati A, et al. An epidemiological study of gastroesophageal reflux disease and related risk factors in urban population of mashhad, iran. Iran Red Crescent Med J. 2014;16(12);e15832.
- 12. El-Serag HB. Time trends of gastroesophageal reflux disease: a systematic review. Clin Gastroenterol Hepatol. 2007;5(1):17–26.
- Lee S-W, Lee T-Y, Lien H-C, Peng Y-C, Yeh H-J, Chang C-S. Correlation between symptom severity and health-related life quality of a population with gastroesophageal reflux disease. Gastroenterol Res. 2017;10(2):78.
- Nouraie M, Razjouyan H, Assady M, Malekzadeh R, Nasseri-Moghaddam S. Epidemiology of gastroesophageal reflux symptoms in Tehran, Iran: a population-based telephone survey. Arch Iran Med. 2007;10(3):289–94.
- Nouraie M, Radmard AR, Zaer-Rezaii H, Razjouyan H, Nasseri-Moghaddam S, Malekzadeh R. Hygiene could affect GERD prevalence independently: a population-based study in Tehran. Am J Gastroenterol. 2007;102(7):1353.
- Hatami K, Pourshams A, Azimi K, Sarrafi M, Mehrabani M, Mostajabi P, et al. Dyspepsia, gastroesophageal reflux disease and irritable bowel syndrome among blood donors. Govaresh. 2003;8(4):138–46.
- Rogha M, Mohabatian B, Daemi P, Bashardoost N, Pourshams A. Gastroesophageal reflux disease in Esfahan. Govaresh. 2006;11(3):145–9.
- Mahmoudi S, Pourshams A, Akbari M, Malekzadeh R. The prevalence of irritable bowel syndrome and gastroesophageal reflux disease among Tehran University students. Govaresh. 2012;8(4):159–62.
- Somi MH, Farhang S, Mirinezhad K, Jazayeri E, Nasseri-Moghaddam S, Moayeri S, et al. Prevalence and precipitating factors of gastroesophageal reflux disease in a young population of Tabriz, northwest of Iran. Saudi medical journal. 2006;27(12):1878.
- 20. Pourshams A, Rahmani A, Hatami K. Gastroesophageal reflux disease in Iran. Govaresh. 2005;10(1):48–53.
- Bordbar G, Bolandnazar N-S. Gastroesophageal reflux disease (GERD): prevalence and association with psychological disorders among medical sciences students. Int J PharmTech Res. 2015;8(7):120–30.
- Pourhoseingholi A, Safaee A, Pourhoseingholi MA, Boghimi-Dehkordi B, Habibi M, Vahedi M, et al. Prevalence and demographic risk factors of gastrointestinal symptoms in Tehran province. Ital J Public Health. 2010;7(1).
- Khoshbaten M. Gastro-esophageal reflux disease in northwestern Tabriz, Iran. Ind J Gastroenterol. 2003;22(4):138–9.
- 24. Safaee A, Moghimi-Dehkordi B, Pourhoseingholi M. Heartburn and related factors in general population in Tehran, capital of Iran. East Afr J Public Health. 2010;7(2).
- Honarkar Z, Baladast M, Khorram Z, Akhondi Sh AM, Masoodi M. An analysis of gastrointestinal symptoms in causalities of catastrophic earthquake of bam, Iran. Shiraz E-Med J. 2005;6(1):2.
- 26. Keshteli AH, Daneshpajouhnejad P, Adibi P. Risk factors of bloating and its association with common gastrointestinal disorders in a sample of Iranian adults. Turk J Gastroenterol. 2017;28(3):179–90.
- 27. Shahravan S, Maleki I. Prevalence and clinical conditions of gastroesophageal reflux: a population based study in sari city, Iran. Govaresh. 2013;18(2):112–3.
- Reshadat R, Fattahi N, Iri R, Saeedi B, Shahabbaspoor Z, Emami L, et al. Prevalence of gastroesophageal reflux and its related factors in Sanandaj. Sci J Kurdistan Univ Med Sci. 2017;22(4).
- 29. Pourhoseingholi A, Pourhoseingholi MA, Moghimi-Dehkordi B, Barzegar F, Safaee A, Vahedi M, et al. Epidemiological features of gastro-esophageal

reflux disease in Iran based on general population. Gastroenterol Hepatol Bed Bench. 2012;5(1):54.

- Khodamoradi Z, Gandomkar A, Poustchi H, Salehi A, Imanieh MH, Etemadi A, et al. Prevalence and correlates of Gastroesophageal reflux disease in southern Iran: pars cohort study. Middle East J Dig Dis. 2017;9(3):129.
- Saberi-Firoozi M, Khademolhosseini F, Yousefi M, Mehrabani D, Zare N, Heydari ST. Risk factors of gastroesophageal reflux disease in shiraz, southern Iran. World J Gastroenterol: WJG. 2007;13(41):5486.
- Aletaha N, Pourshams A, Nouraie M, Malekshah AF, Malekzadeh R. Gastroesophageal reflux disease in Gonbad city: the prevalence and risk factors. J Med Council Islamic Republic Iran. 2010;28(2):176–234.
- Nasseri-Moghaddam S, Mofid A, GHOTBI MH, Razjouyan H, Nouraie M, RAMARD AR, et al. Epidemiological study of gastro-oesophageal reflux disease: reflux in spouse as a risk factor. Aliment Pharmacol Ther. 2008;28(1): 144–53.
- Solhpour A, Pourhoseingholi MA, Soltani F, Zarghi A, Habibi M, Ghafarnejad F, et al. Gastro-esophageal reflux symptoms and body mass index: no relation among the Iranian population. Indian J Gastroenterol. 2008;27(4): 153–5.
- 35. Saberi HR, Moravveji AR. Gastrointestinal complaints in shift-working and day-working nurses in Iran. J Circadian Rhythms. 2010;8(1):9.
- Hoseini-assal SK, Amra B. Respiratory symptoms and gastroesophageal reflux in adult population of more than 20 years old in Shahrekord. J Shahrekord Univ Med Sci. 2004;6(1):58–62.
- Vakhshoori M, Keshteli AH, Saneei P, Esmaillzadeh A, Adibi P. Relationship between meal frequency and Gastroesophageal reflux disease (GERD) in Iranian adults. Dig Dis Sci. 2018;63(11):2998–3008.
- Mansour-Ghanaei F, Joukar F, Atshani SM, Chagharvand S, Souti F. The epidemiology of gastroesophageal reflux disease: a survey on the prevalence and the associated factors in a random sample of the general population in the northern part of Iran. Int J Mol Epidemiol Genet. 2013;4(3): 175.
- Islami F, Nasseri-Moghaddam S, Pourshams A, Poustchi H, Semnani S, Kamangar F, et al. Determinants of gastroesophageal reflux disease, including hookah smoking and opium use–a cross-sectional analysis of 50,000 individuals. PLoS One. 2014;9(2):e89256.
- Karimian M, Salamati M, Azami M. The relationship between metabolic syndrome and increased risk of Barrett's esophagus: an updated systematic review and meta-analysis. BMC Gastroenterol. 2020;20(1):138.
- Sayehmiri K, Tavan H. Systematic review and meta-analysis methods prevalence of peptic ulcer in IRAN. J Govaresh. 2015;20(4):250–8.
- Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA. 2000;283(15):2008–12.
- Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.
- Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa: Ottawa Hospital Research Institute; 2011.
- Green S, Higgins J, Alderson P, Clarke M, Mulrow C, Oxman A. Cochrane handbook for systematic reviews of interventions. West Sussex: Wiley; 2008.
- 46. Ades A, Lu G, Higgins J. The interpretation of random-effects meta-analysis in decision models. Med Decis Mak. 2005;25(6):646–54.
- 47. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.
- Ehsani MJ, Maleki I, Mohammadzadeh F, Mashayekh A. Epidemiology of gastroesophageal reflux disease in Tehran, Iran. J Gastroenterol Hepatol. 2007;22(9):1419–22.
- El-Serag HB, Sweet S, Winchester CC, Dent J. Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut. 2014;63(6): 871–80.
- Sharma P, Wani S, Romero Y, Johnson D, Hamilton F. Racial and geographic issues in gastroesophageal reflux disease. Am J Gastroenterol. 2008;103(11): 2669.
- Fazel M, Keshteli AH, Jahangiri P, Daneshpajouhnejad P, Adibi P. Gastroesophageal reflux disease in Iran: SEPAHAN systematic review No. 2. Int J Prev Med. 2012;3(Suppl 1):S10.
- Delavari A, Moradi G, Birjandi F, Elahi E, Saberifiroozi M. The prevalence of gastroesophageal reflux disease (GERD) in the Islamic Republic of Iran: a systematic review. Middle East J Dig Dis. 2012;4(1):5.

- 53. Spechler S, Jain S, Tendler D, Parker R. Racial differences in the frequency of symptoms and complications of gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2002;16(10):1795–800.
- 54. Mirzazadeh A, Sadeghirad B, Haghdoost A, Bahreini F, Kermani MR. The prevalence of obesity in Iran in recent decade; a systematic review and meta-analysis study. Iran J Public Health. 2009;38(3):1–11.
- Rosaida MS, Goh K-L. Gastro-oesophageal reflux disease, reflux oesophagitis and non-erosive reflux disease in a multiracial Asian population: a prospective, endoscopy based study. Eur J Gastroenterol Hepatol. 2004; 16(5):495–501.
- Thomas GA, Rhodes J, Ingram JR. Mechanisms of disease: nicotine—a review of its actions in the context of gastrointestinal disease. Nat Rev Gastroenterol Hepatol. 2005;2(11):536.
- Trudgill N, Smith L, Kershaw J, Riley S. Impact of smoking cessation on salivary function in healthy volunteers. Scand J Gastroenterol. 1998;33(6): 568–71.
- Ayazi S, DeMeester SR, Hsieh C-C, Zehetner J, Sharma G, Grant KS, et al. Thoraco-abdominal pressure gradients during the phases of respiration contribute to gastroesophageal reflux disease. Dig Dis Sci. 2011;56(6):1718– 22.
- Moosazadeh M, Ziaaddini H, Mirzazadeh A, Ashrafi-Asgarabad A, Haghdoost AA. Meta-analysis of smoking prevalence in Iran. Addict Health. 2013;5(3–4): 140.
- 60. Nusrat S, Nusrat S, Bielefeldt K. Reflux and sex: what drives testing, what drives treatment? Eur J Gastroenterol Hepatol. 2012;24(3):233–47.
- Cook M, Wild C, Forman D. A systematic review and meta-analysis of the sex ratio for Barrett's esophagus, erosive reflux disease, and nonerosive reflux disease. Am J Epidemiol. 2005;162(11):1050–61.
- 62. Cho JH, Kim HM, Ko GJ, Woo ML, Moon CM, Kim YJ, et al. Old age and male sex are associated with increased risk of asymptomatic erosive esophagitis: analysis of data from local health examinations by the Korean National Health Insurance Corporation. J Gastroenterol Hepatol. 2011;26(6):1034–8.
- 63. Corley DA, Kubo A, Zhao W. Abdominal obesity, ethnicity and gastrooesophageal reflux symptoms. Gut. 2007;56(6):756–62.
- Wang A, Mattek NC, Holub JL, Lieberman DA, Eisen GM. Prevalence of complicated gastroesophageal reflux disease and Barrett's esophagus among racial groups in a multi-center consortium. Dig Dis Sci. 2009;54(5): 964–71.
- Azami M, Moslemirad M, YektaKooshali MH, Rahmati S, Soleymani A, Shamloo MBB, et al. Workplace violence against Iranian nurses: a systematic review and meta-analysis. Violence Vict. 2018;33(6):1148–75.
- Dent J, El-Serag H, Wallander MA, Johansson S. Epidemiology of gastrooesophageal reflux disease: a systematic review. Gut. 2005;54(5):710–7.
- Sayehmiri K, Azami M, Nikpey S, Borji M, Sayehmiri F. Hepatitis B Vaccination Coverage in Health Personnel of Iran: A Systematic Review and Meta-Analysis Study. Irje. 2015;11(3):1–10.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

