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response on outcomes in patients with locally
advanced pancreatic carcinoma treated with
definitive concurrent chemoradiotherapy
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Abstract

Background: We aimed to study the predictive value of combined 18F-fluoro-deoxy-D-glucose positron emission
tomography and computerized tomography (FDG-PET-CT), on outcomes in locally advanced pancreatic carcinoma
(LAPC) patients treated with concurrent chemoradiotherapy (C-CRT).

Methods: Thirty-two unresectable LAPC patients received 50.4 Gy (1.8 Gy/fr) of RT and concurrent 5-FU followed
by 4 to 6 cycles of gemcitabine consolidation. Response was evaluated by FDG-PET-CT at post-C-CRT 12-week.
Patients were stratified into two groups according to the median difference between pre- and post-treatment
maximum standard uptake values (SUVmax) as an indicator of response for comparative analysis.

Results: At a median follow-up of 16.1 months, 16 (50.0%) patients experienced local/regional failures, 6 of which
were detected on the first follow-up FDG-PET-CT. There were no marginal or isolated regional failures. Median pre-
and post-treatment SUVmax and median difference were 14.5, 3.9, and -63.7%, respectively. Median overall survival
(OS), progression-free survival (PFS), and local-regional progression-free survival (LRPFS) were 14.5, 7.3, and 10.3
months, respectively. Median OS, PFS, and LRPFS for those with greater (N = 16) versus lesser (N = 16) SUVmax

change were 17.0 versus 9.8 (p = 0.001), 8.4 versus 3.8 (p = 0.005), and 12.3 versus 6.9 months (p = 0.02),
respectively. On multivariate analysis, SUVmax difference was predictive of OS, PFS, and LRPFS, independent of
existing covariates.

Conclusions: Significantly higher OS, PFS, and LRPFS in patients with greater SUVmax difference suggest that FDG-
PET-CT-based metabolic response assessment is an independent predictor of clinical outcomes in LAPC patients
treated with definitive C-CRT.

Keywords: Concurrent chemoradiotherapy, locally advanced pancreas cancer, positron emission tomography,
metabolic response, clinical outcome prediction

Background
The Gastrointestinal Study Group trial set concurrent
chemoradiotherapy (C-CRT) as the standard of care for
medically-fit patients with locally advanced pancreatic
carcinoma (LAPC) [1]. However, local/regional relapse
rates (42-68%) are still unacceptably high [1,2], and may
be related to the limited radiosensitizing efficacy of

available chemotherapeutics and/or insufficiency of con-
ventionally used radiation doses of 45-50.4 Gy [3]. Addi-
tionally, geographic misses, due to target volume
delineation difficulties using conventional imaging, may
also contribute. For radiotherapy treatment planning
(RTP), sensitivity and specificity of contrast-enhanced
computerized tomography (CT), the standard method for
tumor volume delineation, are insufficient for defining
primary tumor boundaries and nodal extensions [4-11],
emphasizing the need for novel tools.
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18F-fluoro-deoxy-D-glucose positron emission tomo-
graphy (FDG-PET) provides useful information about
tissue metabolism. Studies investigating FDG-PET have
demonstrated significantly better sensitivity, specificity,
and accuracy rates for FDG-PET over CT, in defining
local, regional, and systemic extent of disease in several
tumor sites, including the pancreas [6-8,10,12-17].
Further, Delbeke et al. [18] and Lemke et al. [19]
demonstrated significantly better rates for FDG-PET
and FDG-PET-CT over CT in diagnosing malignancy
and determining local/regional extensions in LAPC.
Growing evidence indicates the need for integration of

functional tumor/surrounding information into modern
RTP practice, to improve target volume delineation. While
anatomic restrictions, related to relatively poor spatial
resolution, limit FDG-PET use in RTP, such restrictions
may be overcome by its co-registration with CT-provided
anatomical data [20,21]. Thus, FDG-PET-CT-based RTP
studies have resulted in RT field alterations [22-24]. We
previously compared CT versus co-registered FDG-PET-
CT for gross tumor volume (GTV) delineation, and
demonstrated a statistically significant increase in GTV in
35.7% patients, with incorporation of FDG-PET data [3].
FDG-PET has also been demonstrated to have a benefi-

cial role in predicting clinical outcomes [25], albeit in only
a few studies of pancreatic carcinoma, and without firm
conclusions [9,11,26-29]. Therefore, this prospective study
was designed to assess the predictive utility of post-treat-
ment FDG-PET-based metabolic response on clinical out-
comes, in medically-fit, unresectable, LAPC patients,
treated with C-CRT using co-registered FDG-PET-CT-
based RTP.

Methods
Patients
Patient eligibility details have been previously reported [3].
Thirty-two patients with unresectable, non-metastatic
LAPC with histologic proof of malignancy were prospec-
tively enrolled. Our institutional definition for technically
unresectable pancreatic carcinoma is to be stage III
(T4N0-1M0) disease, which is the involvement of celiac
axis and/or superior mesenteric artery. Disease extent was
determined by radiological studies and laparoscopy/lapar-
otomy. Standard radiologic studies included contrast
enhanced abdominal CT, magnetic resonance imaging
(MRI) and/or MR-cholangiopancreaticography (MRCP).
We also restaged patients with FDG-PET-CT obtained for
RTP. All eligible patients underwent laparoscopic or
laparotomic examination and biopsies for histologic diag-
nosis of primary tumor and enlarged/metabolically active
regional lymph nodes and isolated single organ metastasis
respecting the current standard institutional staging proce-
dure for pancreatic carcinoma.

Patient-signed informed consent was obtained and the
study design was approved by the Institutional Ethical
Committee, in accordance with the Helsinki Declaration
and Rules of Good Clinical Practice.

FDG-PET-CT-based Treatment Planning and Treatment
Delivery
FDG-PET-CT was performed, within 10 days prior to
treatment, according to institutional protocols [3].
Briefly, patients were immobilized supine with arms up.
Lasers (Acuity, Varian Medical Systems, Palo Alto, CA,
USA) were used to align and mark patients, to define the
coordinate system for RTP and treatment sessions. For
FDG-PET-based RTP, the combined FDG-PET-CT sys-
tem (Discovery-STE 8, General Electric Medical System,
Milwaukee, WI, USA) was used. Six-hour fasting blood
glucose below 150 mg/dl was verified before intravenous
(IV) 370-555 MBq18FDG administration. Patients were
left supine in a quiet room during the distribution phase,
and combined image acquisition commenced 60 minutes
after FDG injection.
An enhanced CT with IV plus oral contrast media

through 5-mm slices from the skull base to the pelvis
inferior border was acquired using a standardized proto-
col with 140 kV/80 mA. Thereafter, the PET scan was
acquired in 3D mode from skull base to the pelvis infer-
ior border (6-7 bed positions, 3 minutes/position) with-
out repositioning. CT and PET images were acquired
with the patient breathing shallowly. Attenuation was
corrected using CT images. FDG uptake areas were cate-
gorized as malignant by location, intensity, shape, size,
and visual correlation with CT images, to differentiate
physiologic from pathologic uptake.
Image registration and RTP were performed via the

Eclipse 7.5 RTP system (Varian Medical Systems). Two
radiation oncologists, assisted by a nuclear medicine physi-
cian, defined target volumes and contoured the GTV,
planning target volume (PTV), and organs at risk, on the
co-registered FDG-PET-CT images. GTV included the
primary tumor and involved lymph nodes apparent on CT
(short axis ≥ 1.5 cm) and/or FDG-PET images. PTV was
defined as GTV+2 cm in each direction, allowing for
microscopic extension and setup errors. The primary
tumor and involved lymph node(s) alone were irradiated,
without elective regional irradiation.
A single target volume, without cone down volumes,

using a four-field technique (postero-anterior/antero-pos-
terior/laterals) was irradiated. Treatment volumes were
defined using customized multi-leaf collimators. Patients
received RT regimens using 18 MV photon energy linear-
accelerators. A dose of 50.4 Gy (1.8 Gy/fr, 5 days/week)
encompassed the defined PTV with isodose lines not
cooler or hotter than 95% and 107%, respectively. To
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achieve this, dosimetric practice wedges modified beams.
Dose-volume histograms assessed patient target volume
coverage and organ-at-risk doses. For normal tissues, max-
imum dose limits were 45 Gy for spinal cord; 50 Gy for
small bowel and stomach; 50 Gy for ≤ one-third, 35 Gy for
two-thirds, and 30 Gy for three-thirds of the liver; and
20 Gy for at least two-thirds of one functioning kidney.
Dose levels beyond these limits were considered as exclu-
sion criteria.

Chemotherapy
Patients received continuously-infused 5-FU (225 mg/m2/
day, 7 days/week) throughout the RT course as a radiosen-
sitizer, and additional maintenance treatment (4-6 course)
with gemcitabine (1000 mg/m2 IV over 100 minutes, days
1, 8 and every 21 days) after C-CRT completion.

Response Evaluation and Follow-up
Treatment response was assessed by re-staging FDG-
PET-CT scans from post-C-CRT 12-week follow-up,
according to EORTC-1999 guidelines [30]. The time
interval of 12-week for the first follow-up FDG-PET-CT
was mandatorily chosen as the shortest possible time for
response assessment according to our national health
insurance politics, rather than an evidence based practice.
Thereafter, patients were monitored by 8-12 weekly stu-
dies (blood count/chemistry; serum CEA and CA 19-9).
Additional abdominal ultrasound and/or CT, chest CT,
cranial magnetic resonance imaging, and FDG-PET-CT
were used as indicated.

Statistical Analyses
The primary endpoint was to assess the predictive useful-
ness of FDG-PET-CT-based metabolic response, following
C-CRT, on clinical outcomes by assessing maximum stan-
dard uptake value (SUVmax) differences between pre- and
post-treatment scans. Patients were categorized into two
groups (response greater versus lesser than the median dif-
ference; one-sample T test) and compared by local/regio-
nal progression-free survival (LRPFS), progression-free
survival (PFS), and overall survival (OS). LRPFS was
defined as survival without local/regional failure, calcu-
lated as the time between the first day of treatment and
the date of local/regional failure or death/last visit. PFS
and OS were calculated as the time between the first day
of treatment and any type of disease progression, and the
date of death/last visit, respectively. Survival analysis was
performed using the Kaplan-Meier method, and survival
curves were compared with two-sided log-rank tests. Cox
proportional hazard model was applied to evaluate the
relationship of SUVmax difference (greater or lower than
median) and known prognostic variables, including age
(continuous), gender (male or female), ECOG perfor-
mance statuses (ECOG 0-1 or 2), nodal involvement (N0

or N1), hemoglobin levels (< 12 or ≥ 12 g/dl), CA 19-9
levels (< 100 or ≥ 100), CEA levels (< 10 or ≥ 10), pancrea-
tic primary (head or body), weight loss (≥ 5% or < 5%)
with survival. Since the study population is small, and
exact prognostic values of these parameters are not clear,
we chosen enter selection method. All statistical tests are
two-sided, and p < 0.05 was considered statistically
significant.

Results
Forty-four patients were enrolled, and 32 were eligible.
Twelve (27.3%) were excluded due to distant metastasis
[peritoneal surfaces (N = 5), liver (N = 4), multiple organs
(N = 3)] apparent on FDG-PET but not CT, and referred
to the Department of Medical Oncology for systemic ther-
apy. Patient, disease, and treatment characteristics of 32
eligible patients were as depicted in Table 1. Patients toler-
ated C-CRT without grade 3-4 acute toxicity. No che-
motherapy dose reduction was necessary, but treatment
was interrupted in 3 cases (9.4%) due to intractable grade
3 acute diarrhea for 3, 5, and 5 days, respectively.
At a median follow-up of 16.1 months (range: 4.2-34.3),

24 of 32 patients (75%) were dead. Outcomes of eligible
32 patients were as depicted in Table 2. Median OS, PFS,
and LRPFS were 14.5 (95% CI: 9.9-19.1), 7.3 (95% CI: 5.9-
8.7), and 10.3 months (95% CI: 5.6-15.0), respectively
(Figure 1). Twenty-six patients (81.3%) experienced some
failure during the follow-up period. Sixteen patients
(50.0%) developed infield recurrences, 3 (9.4%) of which
were isolated, and 13 (40.6%) were concomitant with dis-
tant relapses. Distant relapses without local failures were
encountered in 10 (31.3%) patients, but ultimately distant
relapses were evident in 23 patients (71.9%). Distant fail-
ure sites included the liver (N = 9), peritoneum (N = 7),
and multiple organs (N = 7 patients). There were no
marginal or isolated regional recurrences.
Median pre- and post-treatment SUVmax levels were

14.5 (range: 6.5-22.6) and 3.9 (range: 1.4-24.1), respec-
tively. Response evaluation at the 12-week FDG-PET-CT
follow-up revealed increased metabolic activity in 6
(18.7%) and decreased in 26 (81.3%) cases. Median SUV-

max difference was -63.7% (range -85.9 - 54.5). Compara-
tive survival analysis revealed a statistically-significant
superiority for patients depicting a SUVmax reduction
greater than 63.7% in terms of OS, PFS, and LRPFS (Fig-
ure 2). Corresponding median survival times for the
patient group with greater versus lesser SUVmax change
were 17.0 (95% CI: 14.5-19.4) versus 9.8 (95% CI: 7.2-12.4)
for OS (p = 0.009), 8.4 (95% CI: 5.5-11.3) versus 3.8 (95%
CI: 1.8 - 6.7) for PFS (p = 0.005), and 12.3 (95% CI: 3.1-
21.5) versus 6.9 months (95% CI: 1.8-12.0) for LRPFS (p =
0.02), respectively. There were no significant difference
between two groups in terms of patient, disease, and treat-
ment related factors, which may potentially impact
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prognosis (Table 1). Multivariate analysis based on these
factors demonstrated that, only the SUV response retained
its independent prognostic value on OS (p = 0.007), PFS
(p = 0.008), and LRPFS (p = 0.018), respectively.
Another factor anticipated to potentially alter both

SUVmax change and treatment outcomes was the aver-
age cycles of gemcitabine received by patients in each
response group. Analysis revealed that patients in
greater versus lesser metabolic response groups received
3.0 (range; 2-4) and 3.2 cycles (range; 2-4) prior to 12
week PET-CT scan (p = 0.74), and a total of 4.9 (range;
4-6) and 4.6 cycles (range; 4-6) of gemcitabine (p =
0.62), respectively. Further analysis revealed that the OS,
PFS, and LRPFS advantage of the group with greater
SUV change over that with lesser SUV change was also
independent of gemcitabine chemotherapy received by

patients (p = 0.009, p = 0.013, and p = 0.024,
respectively).
6 of 16 patients (37.5%) in group with lesser metabolic

response demonstrated early disease progression at 12-
week PET-CT evaluation. To analyze the value of this
findings on outcomes we further stratified patients into
3 respective groups; Group 1: Greater SUV response (N
= 16); Group 2: Lesser SUV response (N = 11); and
Group 3: Early progression. Corresponding median sur-
vival times in Groups 1 vs. 2 vs. 3 were 17.0 (95% CI:
14.5-19.4) vs. 11.2 (95% CI: 6.7-15.7) vs. 6.2 (95% CI:
4.5-7.9) for OS (p < 0.001); 8.4 (95% CI: 5.5-11.3) vs. 6.4
(95% CI: 4.7-8.1) vs. 2.2 (95% CI: 2.0-2.4) for PFS (p <
0.001); and 12.3 (95% CI: 3.1-21.5) vs. 9.8 (95% CI: 7.3-
12.3) vs. 4.0 (95% CI: 2.4-5.6) for LRPFS (p < 0.001),
respectively (Figure 3).

Table 1 Patient, tumor, and treatment characteristics

Characteristic Overall
(N = 32)

Greater SUV response (%)
(N = 16)

Lesser SUV response (%)
(N = 16)

p-value

Age (Years)

Median 58.2 59.3 57.6 0.32

Range 37-69 43-69 37-64

Gender (%) 0.43

Male 23 (71.9) 11 (34.4) 12 (37.5) 0.43

Female 9 (28.1) 5 (15.6) 4 (12.5)

ECOG Performance 0.26

ECOG 0-1 24 (75) 11 (34.4) 13 (40.6)

ECOG 2 8 (25) 5 (15.6) 3 (9.4)

Hemoglobin 0.22

Median 10.8 10.6 11.1

Range 9.4-16.2 9.4-15.2 9.7-16-4

< 12 g/dl (%) 21 (65.6) 11 (34.4) 10 (31.2)

≥ 12 g/dl (%) 11 (34.4) 5 (15.6) 6 (18.8)

CA 19-9 (%) 0.58

< 100 7 (21.9) 4 (12.5) 3 (9.4)

≥ 100 25 (78.1) 12 (37.5) 13 (40.6)

CEA (%) 0.63

< 10 27 (84.4) 13 (40.6) 14 (37.5)

≥ 10 5 (15.6) 3 (9.4) 2 (12.5)

Pancreatic Primary (%) 0.63

Head 27 (84.4) 14 (37.5) 13 (40.6)

Body 5 (15.6) 2 (12.5) 3 (9.4)

Nodal stage (%) 0.14

0 13 (40.6) 6 (18.8) 7(21.9)

1 19 (59.4) 10 (31.2) 9 (28.1)

Weight loss (%) 0.19

≥ 5% 22 (68.8) 14 (37.5) 10 (31.2)

< 5% 10 (31.2) 2 (12.5) 6 (18.8)

SUVmax 0.45

Median 14.5 14.0 15.1

Range 6.5-22.6 6.5-20.7 9.5-22.6

Abbreviations: CEA, Carcinoembriogenic antigen; ECOG, Eastern Cooperative Oncology Group; SUV, Standard uptake value.
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Table 2 Treatment outcomes of eligible 32 patients

Patient Pre-PET
gemcitabine cycles

Total gemcitabine cycle Pre-treatment
SUVmax

Post-treatment
SUVmax

Relative SUV change
(%)

SUV response
(G/L/P)

OS
(mo)

LRPFS
(mo)

PFS
(mo)

Resection status
(N/Y)

1 3 5 13,5 1,9 -85,9 G 16,4 16,4 8,4 Y

2 2 6 11,3 2,4 -84,8 G 15,5 15,5 15,5 N

3 4 5 14,9 3,9 -83,8 G 17,0 17,0 17,0 N

4 2 6 10,5 1,5 -83,7 G 16,2 9,2 6,1 Y

5 2 4 13,8 3,4 -80,5 G 14,5 10,3 7,3 N

6 3 6 14,2 2,9 -79,6 G 17,5 17,5 17,5 Y

7 4 6 7,9 2,8 -77,6 G 8,5 8,5 5,2 N

8 3 4 19,2 4,4 -77,1 G 12,8 7,8 4,8 N

9 4 5 16,8 2,4 -75,7 G 14,2 10,5 10,5 N

10 2 4 20,7 3,1 -75,1 G 20,4 20,4 20,4 Y

11 3 4 8,6 1,4 -73,7 G 34,3 34,3 34,3 Y

12 4 5 7,8 2,3 -70,5 G 18,0 12,3 9,0 N

13 4 6 6,5 2,1 -67,7 G 11,3 6,1 6,1 N

14 3 4 14,8 2,3 -64,6 G 17,2 17,2 17,2 N

15 2 4 17,6 3,4 -64,3 G 20,2 10,5 7,5 Y

16 3 5 15,8 5,7 -63,9 G 15,2 15,2 7,4 N

17 4 5 17,3 2,5 -63,6 L 18,8 18,8 12,8 N

18 2 4 10,4 4,1 -61,0 L 16,1 11,3 6,4 N

19 4 4 22,6 3,9 -56,7 L 11,2 5,7 5,7 N

20 3 5 18,6 4,2 -55,4 L 25,8 25,8 19,3 N

21 3 5 15,2 3,9 -54,3 L 16,3 16,3 16,3 N

22 4 6 12,2 6,8 -54,3 L 9,8 9,8 3,2 N

23 4 5 16,9 4,1 -52,8 L 8,3 8,3 4,7 N

24 4 4 15,7 8,1 -48,4 L 10,3 4,1 3,8 N

25 2 4 12,4 5,8 -43,2 L 10,3 10,3 7,3 N

26 3 5 11,5 8,7 -34,3 L 13,2 8,7 7,3 N

27 2 4 15,1 20,4 25,1 P 7,4 4,4 2,3 N

28 4 5 9,5 13,2 38,9 P 6,8 4,0 3,0 N

29 2 4 11,5 18,7 41,6 P 4,2 4,2 3,2 N

30 3 5 16,2 21,4 42,1 P 6,9 6,9 2,2 N

31 4 4 16,3 24,1 47,8 P 5,4 2,9 2,0 N

32 3 5 11,2 17,3 54,5 P 6,2 2,9 2,1 N

Abbreviations: G, Greater; L, Lesser, LRRFS, Local-regional progression free survival; Mo, Months; N, No; OS, Overall survival; P, Progression; PFS, Progression free survival; SUVmax, Maximum standard uptake value; Y,
Yes.
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Analysis of the impact of metabolic response on tumor
resectability following C-CRT demonstrated that 6 of 16
patients (37.5%) with higher SUV response became
resectable compared to none among those who pro-
gressed early (N = 6) or responded lesser than -63.7% (N
= 10). At the time of this analysis, 4 of the 6 resected
patients (66.7%) were still alive at 18.8, 20.4, 25.8, and
34.3 months of follow-up, while remaining two patients
were lost due to widespread disease progression at 18.0
and 20.2 months, respectively.

Discussion
Compared to conventional contrast-enhanced CT, both
FDG-PET and FDG-PET-CT are superior for malig-
nancy diagnosis and local extension determination in
PC [9,18,19,31]. In patients with PC, Delbeke et al. [18]

showed higher diagnostic sensitivity, specificity, and
accuracy for FDG-PET over CT (92%, 85%, and 91%
versus 65%, 61%, and 65%, respectively). In a larger
cohort of 104 patients, Lemke et al. [19] reported that
FDG-PET-CT improved malignancy detection sensitivity
from 76.6% (CT) and 84.4% (FDG-PET) to 89.1%. In
their literature review, Pakzad et al. [32] also described
good sensitivity (90-95%) and specificity (82-100%) of
FDG-PET for PC detection. In a recent meta-analysis by
Tang et al. [33], including 51 studies, sensitivity of
FDG-PET-CT (90.1%) was significantly higher than
FDG-PET (88.4%) and endoscopic ultrasonography
(81.2%). Taken together, these suggest potentially
improved diagnosis, staging, and treatment of PC via
FDG-PET-CT.
An important contribution of FDG-PET in PC manage-

ment is its potential to alter planned treatments by detect-
ing CT-occult distant metastasis. In our study, addition of
FDG-PET to CT data upstaged 12 (27.3%) of 44 patients
from stage 3 to 4, and changed treatment intent from
curative to palliative. Therefore, more than one-fourth of
patients were spared useless and potentially toxic C-CRT,
and instead referred to systemic treatment without delay.
Supporting this observation, a study by Delbeke et al., of
21 patients with stage 4 PC, demonstrated that metastases
were diagnosed both on CT and FDG-PET in only 10
(47.6%) of 21 patients, but FDG-PET detected distant
metastases, not identified on CT, in 7 (33.3%) additional
patients [34]. Similarly, Mertz et al. [35], demonstrated
that FDG-PET detected 7 (77.8%) of 9 proven metastases,
while CT only detected 3 (33.3%). Taken together, these
indicate the importance of accurate staging for precise
management of such patients.
The first step in tumor control rate improvement with

RT is accurate definition of the primary tumor and its
local/regional extensions. However, relatively low sensi-
tivity and specificity of conventional imaging techniques
makes attaining this goal difficult. Lemke et al. [19]
demonstrated higher sensitivity of FDG-PET-CT over
CT in depicting adjacent tissue invasion (47.7% versus

Figure 1 Survival curves for study population. Solid line: OS;
Dashed line: PFS; Doted line: LRPFS.

Figure 2 Comparative survival analyses between patients with greater and lesser PET-CT response. A: Overall survival (OS); B:
Progression-free Survival (PFS); C: Local Regional Progression-free Survival (LRPFS). Solid line: greater SUVmax change; Dashed line: lesser SUVmax

change.
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68.2%), highlighting the weakness of CT in delineating
tumor burden, which is important for RT success.
Results of our earlier study revealed that an average
29.7% enlargement in GTV was necessary in 5 of 14
(35.7%) patients because of CT-occult additional lymph
node metastases and/or primary tumor extensions
detected by FDG-PET-CT [3]. Based on these results,
FDG-PET-CT was used for target volume definition in
the current study.
Despite its accordance with the CT-based C-CRT lit-

erature, reported range of 42-68% [1,2], the 50% infield
failure rate, observed here, contrasts with our expecta-
tions. Rather than due to inefficacy in accurate target
volume definition, failures may be related to other rea-
sons. Limited radiosensitizing efficacy provided by 5-FU
may have contributed. Gemcitabine, with its strong
radiosensitizing properties, is promising [36-40], but
impact of its concurrent use on treatment outcomes
remains to be investigated in the era of metabolic
response assessment. Another contributor may be the
potential insufficiency of 50.4 Gy RT. Unfortunately,
results of dose escalation studies failed to report an
advantage for higher doses [1,41,42]. However, based on
our observation of no marginal and regional failures,
and on > 90% local control rates achieved in stereotactic
body RT studies [43-45], testing concurrent gemcitabine
and escalated RT doses by using “dose-painting” RT,
after mapping involving site metabolic activity, may be
useful.
FDG-PET-based metabolic response assessment fol-

lowing anticancer therapies has been reported as a strong
predictor of clinical outcomes [25]. However, in the era
of PC, there are reports with conflicting results
[6,9,11,26-29,46,47]. To our knowledge, despite its small
size, our study is unique in that it used the SUVmax dif-
ference as a tool for assessing response following defini-
tive C-CRT in patients with LAPC. Here, compared to
baseline values, SUVmax was decreased in 26 (81.3%)
patients, and SUVmax difference > 63.7% was associated
with significantly improved OS, PFS, and LRPFS. These

results are in line with those of similar studies. Choi et al.
[26] demonstrated that patients with FDG-PET response
≥ 50% (N = 2) had better surgical resection and OS com-
pared to those with < 50% (N = 16). Likewise, in our
study, 6 of 16 patients (37.5%) with higher SUVmax

response became resectable, compared to none of those
with lesser response (N = 10). In a study with 9 cases
treated with neoadjuvant CRT, Rose et al. [9] found that
all four patients with ≥ 50% reduction, and only 2 of 5
patients with lesser response, were able to undergo resec-
tion. Another study of 10 PC patients treated with arter-
ial chemo-infusion and RT [27] showed that FDG-PET
aided in assessing the efficacy of treatment over CT in 4
patients. In 2 patients, only FDG-PET detected a thera-
peutic response, and in the other 2 patients, FDG-PET
showed a therapeutic response before CT detected tumor
size changes. Bang et al. [11] reported response evalua-
tion by both FDG-PET and CT scans in 15 patients with
CRT-treated PC. Six patients, with > 50% reduction in
FDG uptake, had longer time to tumor progression. In
this regard, our current data not only strongly support
the available literature, but also suggest an independent
role for “relative change in SUVmax values” in predicting
clinical outcomes following C-CRT.

Conclusions
Although limited by small sample size, our results revealed
two major findings. First, accordant with available litera-
ture, we showed that integration of FDG-PET-CT into
LAPC management has the potential to alter planned
treatments by detecting CT-occult metastasis in 27.3% of
patients. Therefore, by using FDG-PET-CT scanning,
more than one-fourth of patients may be spared useless
and potentially futile CRT protocols. And second, signifi-
cantly higher OS, PFS, and LRPFS in patients with greater
SUV response suggest “metabolic response assessment” as
an independent predictor of clinical outcomes in LAPC. In
conclusion, despite these positive findings, our current
results should be accepted as a baseline, rather than a
guide, and be validated by future larger studies.

Figure 3 Comparative survival analyses between patients with greater PET-CT response, lesser PET-CT response and early progression.
A: Overall survival (OS); B: Progression-free Survival (PFS); C: Local Regional Progression-free Survival (LRPFS). Solid line: greater response; Doted
line: lesser response; Dashed line: early progression.
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