Domain
|
Number of items
|
\(\sigma^{2} ({\text{P}})\)
|
\(\sigma^{2} ({\text{I}})\)
|
\(\sigma^{2} ({\text{PI}})\)
|
\(\sigma^{2} (\delta )\)
|
\(\sigma^{2} (\Delta )\)
|
\(\sigma^{2} ({\text{X}}_{{{\text{PI}}}} )\)
|
\({\text{E}}\rho^{2}\)
|
\(\Phi\)
|
---|
Physical domain
|
6
|
0.517
|
0.037
|
0.186
|
0.186
|
0.224
|
0.042
|
0.735
|
0.698
|
|
8
|
0.517
|
0.028
|
0.140
|
0.140
|
0.168
|
0.032
|
0.787
|
0.755
|
|
9
|
0.517
|
0.025
|
0.124
|
0.124
|
0.149
|
0.029
|
0.806
|
0.776
|
|
11
|
0.517
|
0.020
|
0.102
|
0.102
|
0.122
|
0.024
|
0.836
|
0.809
|
Psychological domain
|
9
|
0.338
|
0.010
|
0.095
|
0.095
|
0.105
|
0.013
|
0.780
|
0.763
|
|
11
|
0.338
|
0.007
|
0.069
|
0.069
|
0.076
|
0.010
|
0.830
|
0.815
|
|
13
|
0.338
|
0.006
|
0.059
|
0.059
|
0.065
|
0.009
|
0.852
|
0.839
|
|
15
|
0.338
|
0.005
|
0.051
|
0.051
|
0.056
|
0.008
|
0.869
|
0.858
|
Social domain
|
9
|
0.190
|
0.010
|
0.142
|
0.142
|
0.152
|
0.012
|
0.573
|
0.556
|
|
11
|
0.190
|
0.008
|
0.116
|
0.116
|
0.124
|
0.010
|
0.622
|
0.605
|
|
13
|
0.190
|
0.007
|
0.098
|
0.098
|
0.105
|
0.009
|
0.660
|
0.644
|
|
16
|
0.190
|
0.006
|
0.080
|
0.080
|
0.085
|
0.008
|
0.705
|
0.690
|
|
17
|
0.190
|
0.005
|
0.075
|
0.075
|
0.080
|
0.007
|
0.717
|
0.703
|
|
27
|
0.190
|
0.003
|
0.047
|
0.047
|
0.051
|
0.005
|
0.801
|
0.790
|
|
29
|
0.190
|
0.003
|
0.044
|
0.044
|
0.047
|
0.005
|
0.812
|
0.801
|
Specific domain
|
11
|
0.143
|
0.023
|
0.108
|
0.108
|
0.132
|
0.025
|
0.568
|
0.520
|
|
14
|
0.143
|
0.018
|
0.085
|
0.085
|
0.103
|
0.020
|
0.626
|
0.580
|
|
17
|
0.143
|
0.015
|
0.070
|
0.070
|
0.085
|
0.016
|
0.671
|
0.626
|
|
20
|
0.143
|
0.013
|
0.060
|
0.060
|
0.072
|
0.014
|
0.705
|
0.663
|
|
24
|
0.143
|
0.011
|
0.050
|
0.050
|
0.060
|
0.012
|
0.742
|
0.703
|
|
34
|
0.143
|
0.008
|
0.035
|
0.035
|
0.043
|
0.009
|
0.803
|
0.770
|
|
41
|
0.143
|
0.006
|
0.029
|
0.029
|
0.035
|
0.007
|
0.831
|
0.802
|
- Item number for present scale is shown in bold
- \(\sigma^{2} (\delta )\) is the variance components of relative error, \(\sigma^{2} (\Delta )\) is the variance components of absolute error, \(\sigma^{2} ({\text{X}}_{{{\text{PI}}}} )\), is the variance components of error when estimating the universe score by using sample mean, \({\text{E}}\rho^{2}\) is the Generalizability coefficient, \(\Phi\) is the index of dependability