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Abstract

Background: Spontaneous bacterial peritonitis (SBP) is a common clinical disease and one of the
most severe complications of acute liver failure (ALF). Although the mechanism responsible for SBP
is unclear, cytokines play an important role. The aim of this study was to investigate the effects of
tumor necrosis factor-alpha (TNF-a) on the structure of the intestinal mucosa and the expression

of tight junction (Zona Occludens |; ZO-1) protein in a mouse model of ALF.

Methods: We induced ALF using D-galactosamine/lipopolysaccharide (GalN/LPS) or GalN/TNF-
o and assessed the results using transmission electron microscopy, immunohistochemistry,
Western blotting, ELISA and real-time quantitative PCR. The effects of administration of anti-TNF-
o 1gG antibody or anti-TNF-a. Rl antibody before administration of GalN/LPS or GalN/TNF-a,

respectively, on TNF-o were also assessed.

Results: Morphological abnormalities in the intestinal mucosa of ALF mice were positively
correlated with serum TNF-a level. Electron microscopic analysis revealed tight junction (TJ)
disruptions, epithelial cell swelling, and atrophy of intestinal villi. Gut bacteria invaded the body at
sites where TJ disruptions occurred. Expression of ZO-1 mRNA was significantly decreased in both
ALF models, as was the level of ZO-1 protein. Prophylactic treatment with either anti-TNF-a IgG
antibody or anti-tumor necrosis factor-a receptor| (anti-TNF-a R1) antibody prevented changes

in intestinal tissue ultrastructure and ZO-| expression.

Conclusion: TNF-a affects the structure of the intestinal mucosa, decreases expression of ZO-1,
and affects the morphology of the colon in a mouse model of ALF. It also may participate in the

pathophysiological mechanism of SBP complicated to ALF.

Background severe complications of ALF and a major cause of death
Acute liver failure (ALF) is a devastating disease associated ~ [1-4]. However, the mechanism responsible for SBP is
with high mortality. Spontaneous bacterial peritonitis  unclear. Previous studies reported that the serum level of
(SBP), a common clinical disease, is one of the most  tumor necrosis factor-a (TNF-a) is elevated in patients
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with severe liver injury and is positively associated with
serum lipopolysaccharide (LPS) level [5,6]. TNF-a is a
cytokine with broad-spectrum physio-and patho-respon-
siveness and is primarily secreted by monocaryons and
macrophages. In addition to participating in humoral and
cellular immune responses, TNF-a also plays an impor-
tant role in diseases such as severe hepatitis, septic shock,
and inflammatory bowel disease [7-10]. However, it is not
known whether TNF-a affects the barrier function of the
intestinal mucosa.

The intestinal mucosa is a physical and metabolic barrier
against toxins and pathogens in the lumen of the gut.
Tight junctions (TJs) are the main structures responsible
for restricting paracellular movement of compounds
across the intestinal mucosa. Structurally, TJs are com-
posed of cytoplasmic proteins, including the zona occlu-
dens proteins, ZO-1, ZO-2, and ZO-3 [11,12] and two
distinct transmembrane proteins, occludin and claudin
[13,14], which are linked to an actin-based cytoskeleton
[15]. TJs function as occluding barriers by maintaining
cellular polarity and homeostasis and by regulating the
permeability of paracellular spaces in the epithelium [16].
7Z0-1, a member of the MAGUK family of proteins, acts as
a scaffold for organizing transmembrane TJ proteins and
recruits various signaling molecules and the actin
cytoskeleton to the TJs [17]. Although previous studies
have afforded an insight into the molecular structure of
TJs, much less is known about TJ functionality under
physiological or pathophysiological conditions. Few stud-
ies have described intestinal mucosa ultrastructure or
changes in TJs during liver failure. In this study, we used
ALF animal models to investigate the effect of TNF-o on
the ultrastructure of the intestinal mucosa with emphasis
on the role of TJs.

Methods

Animals and treatment

Male, six-to eight-week-old BALB/c mice (China Medical
University) were obtained from the China Medical Uni-
versity (Shenyang, China). They were housed and cared
for in rooms maintained at a constant temperature and
humidity. Food and water were allowed ad libitum. Food
was withdrawn the evening before the experiment. All ani-
mal experimental procedures were approved by the Ethics
Committee of China Medical University before the com-
mencement of the study.

All mice were randomly divided into eight groups (n = 8
per group). One group of mice was given intraperitoneal
injections of D-galactosamine (GalN; 800 mg/kg body
weight; Sigma, Saint Louis, USA) and LPS (10 pg/kg body
weight; Sigma) to induce ALF. A second ALF-induction
group was also given intraperitoneal injections of GalN
(800 mg/kg body weight) and TNF-a (10 pg/kg body
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weight; Sigma). Two groups were given antibody treat-
ments prior to ALF induction: one was given anti-TNF-a
IgG (100 pg per mouse; US Biological, USA) and the other
was given anti-TNF-a R1 antibody (100 pg per mouse;
R&D Systems, USA). The anti-TNF-a IgG and anti-TNF-a
R1 antibodies were injected via the vena caudalis 30 min-
utes and 15 minutes before GalN/LPS administration.
There were four control groups, which were injected intra-
peritoneally with GalN, LPS, TNF-a, or NS.

In summary, the eight groups were: 1) GalN/LPS; 2)
GalN/TNF-a; 3) GalN control; 4) LPS control; 5) TNF-a
control; 6) NS control; 7) anti-TNF-a IgG and GalN/LPS;
and 8) anti-TNF-a R1 antibody and GalN/LPS. Mice in the
first six aforementioned groups were euthanized 2, 6, 9,
12 and 24 h after treatment. Mice in the last two of the
aforementioned groups were euthanized 9 h after admin-
istration of GalN/LPS. The study was approved by the Eth-
ics Committee of China Medical University.

Serum TNF-a assay

Serum levels of alanine transaminase (ALT) were deter-
mined using an automatic analyzer (Hitachi, Japan).
Serum levels of TNF-o were determined using an ELISA kit
(R&D Systems) according to the manufacturer's protocol.

Detection and observation of intestinal mucosal
ultrastructure

Ultrathin (70 nm) intestinal sections were examined
using a transmission electron microscope (Hitachi H-600,
Japan).

Immunohistochemical detection of ZO-1 in frozen tissue
sections

Frozen intestinal tissue sections (5 um thick) were fixed
on glass slides by incubating them in acetone for 10 min
at 4°C. The slides were incubated with 3% H,O, for 20
minutes at room temperature and indirectly immuno-
labeled using an ABC kit (Takara, Japan) according to the
manufacturer's instructions. Slides were then blocked in
goat serum for 30 min at 37°C and incubated with a rab-
bit anti-mouse polyclonal ZO-1 antibody (dilution, 1:50;
Santa Cruz Biotechnology, USA) at 4° C overnight. For the
negative controls, the primary antibody was replaced with
PBS. This incubation was followed by incubation with
biotinylated goat anti-rabbit IgG (Histostain-Plus Kkit,
ZYMED) diluted 1:300 in PBS for 2 h at room tempera-
ture. Sections were rinsed in PBS and then in distilled
water. The slides were stained with 3, 3'-diaminobenzi-
dine and counterstained with hematoxylin.

Western blot analysis of tissue ZO-1 content

Intestinal tissue samples were homogenized in lysis buffer
(20 mM Tris-HCI [pH 7.5], 1% Triton X 100, 0.2 M NaCl,
2 mM EDTA, 2 mM EGTA, 1 M DTT and 2 M aprotinin).
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Proteins (50 pg) were electrophoresed using SDS-PAGE
(8%) and transferred to a nitrocellulose membrane. Mem-
branes were blocked with non-fat dried milk in TBS con-
taining 0.05% Tween-20 (TTBS) for 1 h at room
temperature and incubated with a rabbit anti-mouse pol-
yclonal ZO-1 antibody (diluted 1:400; Santa Cruz Bio-
technology) at 4°C overnight. After three washes in TTBS,
the membranes were reacted with a 1:2000 dilution of
alkaline phosphatase-labeled goat anti-rabbit IgG (Santa
Cruz Biotechnology) for 2 h at room temperature. The
immunoreaction was visualized using a-dianisidine and
B-naphthyl acid phosphate (Sigma, USA).

RNA isolation and real-time quantitative PCR

Total RNA was isolated from intestinal tissues using TRI-
zol Reagent (Invitrogen, USA). RNA was purified using
DNase I and depurified using PI-PCI-EHCO. SYBR-green-
based real-time PCR (TaKaRa SYBR RT-PCR kit, Japan)
was used to measure relative gene expression in each sam-
ple. First, we prepared an RNA standard (forward 5'-TTC-
CGGGTCGTGGATACTT-3", reverse 5'-
GTTCCCAGCITATGAAAGGGTT-3', amplicon size 327
bp) and determined standard curves for the ZO-1 gene
and a house-keeping gene (GAPDH RNA standard for-
ward 5'-CAGCCGCATCITCITGTG-3', reverse 5'-
AGGAGCGAGACCCCACTAA-3', amplicon size 335 bp).
PCR was performed using Taqg DNA polymerase (Qiagen,
Valencia, USA) and oligonucleotide primers for mouse
Z0O-1 (forward 5'-CGAGGCATCATCCCAAATAAGAAC-3',
reverse 5'-TCCAGAAGTCTGCCCGATCAC-3', amplicon
size 97 bp) and glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH; forward 5'-AAATGGTGAAGGTCGGTGTG-
3', reverse 5'-TGAAGGGGTCGITGATGG-3', amplicon
size 108 bp). PCR conditions were as follows: one cycle at
95°C for 30 minutes followed by 45 cycles of PCR ampli-
fication, each consisting of 95°C for 5 s and 60°C for 20
s. The concentration of mRNA was calculated according to
the standard curve and then normalized to that of
GAPDH.

Statistical analysis

SPSS version 10.0 Software was used to perform the statis-
tical analyses. All data were analyzed using analysis of var-
iance (ANOVA) followed by a least-squares difference test.
P values < 0.05 were considered significant. All data are
presented as the mean + SE.

Results

The effect of TNF-cx in mice with GalNI/LPS-induced ALF
Most ALF mice (66.7%, 90/120) died between 6 h and 12
h after the GalN/LPS injection. Serum ALT levels increased
significantly 6 h after the GalN/LPS injection compared
with the control groups (P < 0.01) (Table 1). Serum TNF-
o levels reached a maximum value (446.18 + 55.49 pg/
ml) 2 h after the GalN/LPS injection and then decreased
to 14.82 + 9.02 pg/ml at 6 h after the GalN/LPS injection
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(Figure 1). The second highest TNF-a level was observed
9 h after the GalN/LPS injection (319.43 + 33.72 pg/ml).
Liver histopathology showed massive or submassive
necrosis at 9 h after the GalN/LPS injection. We success-
fully used TNF-a in place of LPS to induce ALF in conjunc-
tion with GalN. The ALT levels and histopathological
characteristics of the GalN/TNF-a group were similar to
those of the GalN/LPS group. As the ALF mice that died 9
h (60%, 54/90) after GalN/LPS administration displayed
levels of serum biochemical markers and liver morphol-
ogy consistent with liver failure, we assessed the protective
effects of anti-TNF-a IgG and anti-TNF-a R1 antibodies on
liver failure 9 h after induction of ALF. The mortality of
mice treated with either of the two antibodies was 0% (0/
8). ALT serum levels were only slightly elevated and
decreased rapidly compared with GalN/LPS-treated mice
(P < 0.01). Histopathological examination showed only
spot or focal hepatonecrosis.

Ultrastructural characteristics of the intestinal mucosa
We observed obvious ultramicrostructural changes in the
intestinal mucosa after GalN/LPS administration. Some
epithelial cell microvilli were disarranged and distorted,
and they were sparsely distributed. The epithelial cells
were swollen or shrunken. The mitochondrial matrices
were swollen, cristae were breaked and the TJs were dis-
rupted. The changes in the intestinal mucosa of mice
treated with GalN/TNF-a were similar to those of mice
treated with GalN/LPS. Some TJs were disrupted in the
treatment groups, but there was no disruption of TJs in the
control groups, only swelling of epithelial cells. Patholog-
ical changes in groups that were treated with antibodies
were less severe than those in the ALF groups (Figure 2).

Bacterial invasion of the intestinal mucosa
Under TEM showed that bacterial invasion of the intesti-
nal mucosa began between 6 h and 9 h after GalN/LPS
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Serum TNF-a levels. Serum TNF-a levels increased signif-
icantly in GalN/LPS-treated mice. Serum TNF-a. levels were
determined by ELISA and the data are expressed as the
group mean * SE (eight mice per group).
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Table I: Serum ALT levels in ALF mice
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2h 6h 9h I12h 24h
Groups Number of mice  ALT ALT ALT ALT ALT
(UIL) (UIL) (UIL) (UIL) (UIL)
NS 8 300£03  293%1.0 36823 325+ 0.7 30.7 + 0.4
LPS 8 294408  27.1£20 40770 345 + 3.4 29.1 %17
GalN 8 442+04  634%10 110.1 £2.5 974+ 12 164.1 + 10.6
GalN/LPS 8 222428 25132487422 62355+91242 102158 £ 967.7¢ 102506 + 1045.8
TNF-alpha 8 343£34  327+46 33421 346 +3.9 309 + 88
GalN/TNFalpha 8 337+£29 2041 £821: 47748+ 111800 61778 + 1280.9° 4204.6 + |118.6*
anti-TNF-alpha-lgG+GalN/LPS 8 - - 257.1 £83.2 - -
anti-TNF-alpha R-IgG+GalN/LPS 8 - - 907.3 + 551.6° - -

All values are expressed as mean + SE. a: P < 0.01 vs Saline group, b: P < 0.0 vs GalN/LPS co-injection group

administration. No bacterial invasion was observed in the
control groups. The bacteria invaded at sites at which TJs
were disrupted. It was evident that bacterial invasion of
the intestinal mucosa of the GalN/LPS group occurred via
pinocytosis, but this phenomenon was not observed in
the other groups (Figure 3).

Expression of ZO-1 protein

Immunohistochemical analysis revealed strong ZO-1
expression in the control groups. ZO-1 was moderately
expressed in intestinal tissue 2 h after GalN/LPS or GalN/
TNF-a treatment, and only traces remained 6 h after the
treatments. By 9 h after the injections, it was difficult to
detect positive signals for ZO-1, even in whole intestinal
sections (Figure 4). ZO-1 expression was significantly
increased in the two antibody-treated groups. Western
blot analysis showed that ZO-1 expression decreased sig-
nificantly in ALF mice, particularly 6 h and 9 h after the
GalN/LPS or GalN/TNF-a injections (Figure 5). ZO-1
expression in the two antibody-treated groups was close
to the normal range. These findings are consistent with
the immunohistochemical results.

Expression of ZO-1 mRNA

The ZO-1 and GAPDH RNAs used in the standard prepa-
ration were 327 bp and 335 bp long, respectively. We
obtained a reasonable amplification curve, a standard
curve, and a molten curve. The correlation coefficients of
both standard curves were 0.999. Real-time PCR quantita-
tive analyses showed that there were marked decreases in
Z0-1 expression in ALF mice 6 h and 9 h after GaIN/LPS
or GalN/TNF-a treatment (P < 0.05) (Figure 6).

Discussion

The intestinal mucosal barrier is composed of mucosal
fluid, microvilli, epithelial mucosal cell TJs and other spe-
cial structures. TJs are the most important structures in the
mucosal barrier. The mechanisms responsible for SBP
include cytotoxic effects and alterations in the structure of

the intestinal mucosa. Altered TJ structure in active liver
cirrhosis has been described [18] preciously. However, it
is rarely reported the ultrastructural characteristics and TJ
structrue of the intestinal mucosa in ALF and the mecha-
nisms that link ALF with SBP are still keep unclear.

In the present study, we found that severe damage to the
intestinal mucosa occurred 9 h after GalN/LPS or GalN/
TNEF-a treatment. Morphologic alterations to the intesti-
nal mucosa included shedding of epithelial cells, fractur-
ing of villi, fusion of adjacent villi, mucosal atrophy and
edema. Disruption of TJs on enterocytes and damage to
the mitochondria and endoplasm were also observed. The
recent discovery that several polarity complexes are con-
served in mammalian cells and are closely associated with
TJs indicates that TJs play a vital role in establishing epi-
thelial cell polarity [19]. Although damage to the intesti-
nal mucosa plays a significant role in bacterial invasion of
the body, the responsible mechanism remains to be eluci-
dated.

Moreover, we observed that bacteria in the intestinal tract
of ALF mice invaded the intestinal mucosa by pinocytosis
at 9 h after GalN/LPS administration. It should be noted
that we observed simultaneous disruptions in the integrity
of the TJs. Some studies showed that the integrity of TJs is
important for maintaining cellular polarity [20], a change
in cell polarity may have facilitated bacterial invasion, and
bacterial invasion may have occurred via the sites of dis-
rupted TJs between intestinal mucosa epithelial cells.

Z0-1 is important for maintaining the integrity of intesti-
nal mucosal TJs during pathological insults [21]. In our
study, we found that the immunoreactive ZO-1 signal in
the intestinal mucosa was significantly decreased in ALF
mice, which was confirmed by the results of Western blot
analysis. We also found that ZO-1 expression was signifi-
cantly decreased in the intestinal tissue of human ALF
patients compared with controls, which is consistent with

Page 4 of 9

(page number not for citation purposes)



BMC Gastroenterology 2009, 9:70

Figure 2

Transmission electron microscopy of mouse intes-
tine. Transmission electron microscopy of mice intestine
from the control groups (A, E, and F), the GalN/LPS group
(B, C, and D), and groups that received antibodies prior to
ALF induction (G and H). A) Saline control group (*30,000).
Epithelial cells and T) (—) were intact. B) At 2 h after injec-
tion (x120,000). Epithelial cells were swollen and shrunken.
Microvilli and organelles were normal. TJs (—) were intact.
C) At 6 h after injection (%100,000). Microvilli were almost
normal TJs (=) visible in this section were not disrupted. D)
At 9 h after injection (%60,000). The mitochondria of the
endothelial cells were loose. TJs (—) were disrupted.
Organelles were swollen and had reduced electron density.
At 9 h after injection (%10,000), some microvilli were loose.
A T] (—) was disrupted. E) LPS control group (%120,000). F)
GalN control group (%20,000). Epithelial cells were slightly
shrunken and TJs (—) were intact. G) Anti-TNF-a. IgG group
(%80,000). Epithelial cells were slightly shrunken and TJs (—)
between endothelial cells were intact. H) Anti-TNF-a R1
antibody group (x80,000). The TJs (—) between the
endothelial cells were intact. |) TNF-a-treated group
(%50,000). T} (—) were intact. J) At 9 h after GaIN/TNF-a
administration (x100,000). TJs (—) were disrupted.

http://www.biomedcentral.com/1471-230X/9/70

Figure 3
Morphology and bacterial invasion of colon samples
in the GalN/LPS-treated group. TJs through which bac-
terial invasion occurred (white color, B) were observed A: 2
h (x100,000), B: 6 h (x120,000), C: 9 h (x60,000), and D: 12
h (x80,000) after GalN/LPS administration respectively. The
microvilli (M) were disrupted and the TJs through which bac-
terial invasion occurred were disrupted at 6 h(B), 9 h(C), and
12 h (D) after GalN/LPS administration. The TJs were dis-
rupted or absent at 9 h(C) and 12 h (D) after GalN/LPS
administration.

our findings with animal models. Thus, we conclude that
decreased ZO-1 expression causes TJ disruption.

To detect the key role in the mechanism of the TJ disrup-
tion and ZO-1 protein dicreased in ALF, in liver injury,
inflammation involves sequential activation of signaling
pathways that result in the production of pro-and anti-
inflammatory mediators. Among the pro-inflammatory
mediators, the TNF-o and TNF-o R1 systems play central
roles in the physiological regulation of intestinal barrier
function [22,23]. TNF-a and IFN-y can induce intestinal
epithelial barrier dysfunction [24]. In the present study,
we found that in GalN/LPS-treated mice, TNF-a level
reached a first peak at 2 h after GalN/LPS injection. We did
not observe bacterial invasion of the intestinal mucosa or
hepatocyte necrosis at this timepoint. The second peak
occurred 9 h after the injection, at this timepoint we did
observe bacterial invasion of the intestinal mucosa and
hepatocyte necrosis. But bacterial invasion and hepato-
cyte necrosis were not observed in mice injected with
either GalN or TNF-a alone. We thought that the first peak
in TNF-a was the result of GalN/LPS injection, not ALF
[23]. Then TNF-o was removed through degradation,
whereas the second peak was released by activated macro-
phages, dendritic cells and kupffer cells, which was
reported by Nakama T et al[24]. Moreover, some research-
ers have found that endotoxin (lipopolysaccharide: LPS)
infection due to bacterial translocation is intimately
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Figure 4

T) protein expression in epithelial cells during ALF
(original magnification, X400). A: NS-treated group, B: 2
h after GalN/LPS administration, C: 6 h after GalN/LPS
administration, D: 9 h after GalN/LPS administration, E: LPS-
treated group, F: GalN-treated group, G: anti-TNF-c.-treated
group, H: anti-TNF-a RI-treated group, |: TNF-o-treated
group, J: 9 h after GalN/TNF-a administration. The mucosal
tissue sections were double labeled for ZO-1 (brown color).
Labeled sections were analyzed immunohistochemically.
Decreased ZO-1 staining in the epithelial cells was observed
at 9 h (D) after GalN/LPS and GalN/TNF-a. (J) administra-
tion. In contrast to ZO-| expression in colon tissue 2 h (B)
and 6 h (C) after GalN/LPS administration, ZO-| expression
in the NS group (A), LPS group (E), D-GalN group (F), anti-
TNF-a IgG group (G), anti-TNF-a receptor| group (H), and
TNF-a group (I) were not down-regulated (arrows indicate
Z0O-1)
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involved in the organ failure. LPS that has translocated
into portal blood binds to LPS-binding protein (LBP), was
transported to the monocytes and Kupffer cells in liver
sinusoids. Inflammatory cytokines such as TNF-a et al are
produced and released by monocytes and Kupffer cells
[25]. This study show that the bacterial invasion may play
a role in the occurring of the second TNF-a peak, their
relationship needs to be further investigated.

In addition, we found that the decrease in ZO-1 expres-
sion was correlated with an increase in the serum level of
TNF-a. Many researchers have found that some cytokines
can induce endocytosis of TJ proteins [26] and internali-
zation of epithelial TJ proteins [27]. Reductions in levels
of the tight junction protein, occludin, in intestinal epi-
thelial cells may be caused by the production of TNF-a in
mice with fulminant hepatic failure [28]. TNF-a-induced
increase in Caco-2 cell TJ] permeability was mediated by
NF-kappa B activation. The increase in permeability was
associated with NF-kappa B-dependent downregulation
of ZO-1 protein expression and altered junctional locali-
zation [29-31]. In this study we found that event chronol-
ogy is more important because it gives us some vital clues.
The first TNF-o peak 2 h post GalN/LPS injection may
induce the ZO-1 down expression and the tight junction
disruption observed at 9 h. The pathophysiological proc-
esses of ALF in vivo is complicated, TNF-a plays an impor-
tant role. TNF-a, perhaps is an initiator which can induce
more cytokines such as IL-6 and IFN-y, which can aggra-
vate liver injury and initiate the development of ALF, and
the disruption of TJ intestinal. The first TNF-a peak
occurred at 2 h post injection may induce the ZO-1 down
expression and the tight junction disruption observed at 9
h timepoint.

There was no any damage on TJs and no decrease in the
expression of ZO-1 on the mice group accepted recom-
binant TNF-a, the purpose of this study was to discolse
the change of TJ in ALF process, a positive finding could
be observed if mice accepted a high dose of recombinant
TNF-q, a further study need to performed in the future.

In order to study the role of TNF-a further, we used TNF-
o antibody and anti-TNFR antibody. TNF-a antibody
could neutralize the quantity of TNF-a, and anti-TNFR
antibody could block the combination between TNF-a
and TNF-a R. When TNF-a was blockaded with anti-TNF-
o IgG antibody or anti-TNF-a R1 antibody, there was a
significant decrease in the mice of liver failure and no bac-
terial invasion or hepatocyte necrosis. These data indicate
that TNF-a is an important mediator of bacterial invasion
of the intestinal mucosa during ALF. Moreover, we found
that a significant reduction in ZO-1 mRNA expression in
ALF mice and a significant induction of ZO-1 mRNA
expression in ALF mice pretreated with either anti-TNF-a
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Figure 5

Mucosal colonic tissues from control and ALF mice were analyzed for ZO-| expression. Western blot analyses
indicated that ZO-1 expression was altered in mice with ALF. ZO-1 expression was significantly decreased at 9 h in GalN/LPS-
treated mice (20.11 + 7.37%) and GalN/TNF-o.-treated mice (35.47 + 7.34%) compared with the NS control (100.00 + 0.00%)
and the other groups. No differences were observed in actin expression in the ALF model compared to the control. ZO-|
expression was unchanged at 2 h in the ALF group compared with the NS control. Each bar represents the mean £ SE (n = 3
mice per group). Insets: representative Western blots. Lane I, NS; lane 2, 2 h after GalN/LPS administration; lane 3, 6 h after
GalN/LPS administration; lane 4, 9 h after GalN/LPS administration; lane 5, LPS; lane 6, D-GalN; lane 7, anti-TNF-a-treated
group; lane 8, anti-TNF-a R1-treated group; lane 9, TNF-a.-treated group; lane 10, 9 h after GalN/TNF-o administration. Sta-
tistical significance was determined using a one-way ANOVA followed by the Tukey test. *P < 0.05, **P < 0.01 vs. the NS con-

trol group.

IgG antibody or anti-TNF-a receptorl antibody. These
findings suggest that TNF-o. downregulates ZO-1 protein
expression in intestinal tissue by inhibiting ZO-1 mRNA
expression.

Conclusion

This study demonstrated the changes in intestinal
mucosal morphology in mice with ALF. These changes
were associated with disruption of TJ structure, changes in
epithelial cell microvilli (disarrangement, distortion, and
swelling or shrinkage) and mitochondrial matrices (mito-
chondrial swelling and disturbance of cristae). The disrup-
tion of the intestinal mucosa and consequent bacterial
invasion of the body in ALF may be caused by reduced lev-
els of the TJ-associated protein, ZO-1, the production of
which was not controlled by transcription. These changes
were caused by an elevated serum level of TNF-a, as they
were absent when TNF-a was blocked by anti-TNF-a IgG
antibody or anti-TNF-a R1 antibody. This study con-
firmed that TNF-a damages TJs and affects the expression

of ZO-1 protein in vivo. TNF-o also may participate in the
pathophysiological mechanism of SBP complicated to
ALF. The mechanism of TNF-a-induced changes during
ALF is complex and arrants further study.

List of abbreviations

ALF: Acute liver failure; GalN: D-galactosamine; LPS:
lipopolysaccharide; TJ: tight junction; ZO-1: zona occlu-
dens 1; TEM: transmission electron microscopy; TNF-a:
tumor necrosis factor-a; WB: Western blot; ALT: alanine
transaminase; SBP: spontaneous bacterial peritonitis;
TEM: transmission electron microscopy; TNF-a R: tumor
necrosis factor-a receptor; NS: normal saline.
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Figure 6

Real-time quantitative RT-PCR for ZO-1 mRNA in the ALF groups and other control groups. ZO-1 mRNA level
was decreased at 9 h in mice with ALF. Total RNA derived from each tissue was reverse transcribed and subjected to real -
time quantitative RT-PCR to evaluate ZO-1| and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA levels. Results
are expressed as the number of ZO-| amplicons per 104 GAPDH amplicons. Bars represent the mean value for each group.
The only significant difference in ZO-1 mRNA level between the ALF and control groups (NS: 100.00 £ 0.00%) was at 9 h. At
this time, there was decrease in the level of full-length ZO-1 mRNA in the ALF mice. At all other times, there was no differ-
ence between the ALF group and the other groups, which is consistent with our immunohistochemistry results.
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