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Abstract

Background: High-mobility group box 1 (HMGB1) is a late mediator of lethal systemic inflammation. Acute liver
failure (ALF) has been shown to trigger systemic inflammation in clinical and animal studies. To evaluate the
possibility of HMGB1 cytoplasmic translocation in ALF, we determined whether HMGB1 is released in hepatocytes
and end organ in patients with liver failure/injury.

Methods: HepG2 cell were stimulated with LPS or TNF-a, the increase of HMGB1 extracellularly in the culture
medium and intracellularly in various cellular fractions were determined by western blot or immunocytochemistry.
To observe sub-cellular location of HMGB1 in hepatocytes, liver specimens were obtained from 6 patients with ALF
caused by HBV infection, 10 patients with chronic viral hepatitis B, 6 healthy controls, as well as animals model of
ALF by intraperitoneal administration of D-GalN (600 mg/kg) and LPS (0.5 mg/kg).

Results: In HepG2 cell culture, LPS or TNF actively induced HMGB1 cytoplasmic translocation and release in a time-
and dose-dependent fashion. In animal model of ALF, cytoplasmic HMGB1 translocation was observed in
hepatocyts as early as 3 hours post onset of ALF. In patients with ALF caused by HBV infection, cytoplasmic
HMGB1 translocation was similarly observed in some hepatocytes of the liver specimen.

Conclusions: Cytoplasmic HMGB1 translocation may occur during ALF, which may potentially contribute to the
pathogenesis of liver inflammatory diseases.

Background
High mobility group box 1 (HMGB1) is a non-histone
nuclear protein ubiquitously expressed in eukaryotes,
that exerts distinct functions at different subcellular
localizations. Within the nucleus, it plays an important
role in the regulation of gene transcription [1]. Upon
release by phagocytes and damaged/necrotic cells [2-5],
extracellular HMGB1 functions as a damage-associated
molecular pattern (DAMP), and contributes to the
pathogenesis of various inflammatory diseases [6,7].
HMGB1 exerts its effects through the receptor for

advanced glycation end products (RAGE) and a number
of the Toll-like family of receptors (TLR2/4) [5]. This
leads to activation of endothelial [8,9] and immune cells,
and consequent release of multiple proinflammatory
cytokines [10]. In animal models of infection or local

tissue injury, HMGB1 functions as a critical mediator of
systemic or local inflammatory injury [11]. In the clini-
cal setting, elevated serum HMGB1 levels have been
described in patients with sepsis [2,12,13], pneumonia
[14], acute pancreatitis [15], as well as cerebral and
myocardial ischemia [16].
Acute liver failure (ALF) is a rare condition in which

rapid deterioration of liver function results in altered
mentation and coagulopathy, and even mortality. Unlike
the United States and many other countries, the primary
cause of ALF in China is viral hepatitis B [17,18], which
accounts for 74% of cases in Hong Kong [19]. The
pathophysiology of ALF remains poorly understood, and
thus, it has become an area of great interest. It has been
suggested that ALF can trigger systemic inflammation in
human clinical trials [20] and animal studies [21].
Patients with ALF have higher circulating concentrations
of proinflammatory cytokines [e.g., tumor necrosis factor
(TNF)-a, interleukin (IL)-1b, and IL-6] than healthy
subjects or patients with acute hepatitis [22,23].
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Recently, HMGB1 has been established as a late media-
tor of lethal systemic inflammatory disease. By itself, or
in conjunction with other proinflammatory cytokines
(e.g., IL-1b, IFN-g and TNF-a), HMGB1 amplifies an
inflammatory response by stimulating the release of var-
ious proinflammatory cytokines [10,24]. In light of the
important role of HMGB1 in inflammatory diseases, we
sought to determine whether HMGB1 cytoplasmic
translocation occurs in hepatocytes following stimula-
tion with exogenous (e.g., bacterial endotoxin) or endo-
genous (e.g., TNF) stimuli.
Like other inflammatory cytokines released by the

liver during early hepatic injury [25-27], HMGB1 may
be similarly released by the liver, thereby triggering/con-
tributing to systemic inflammation. HMGB1 is abun-
dantly expressed in hepatocytes, and predominantly
localized in the nucleus of quiescent cells. It was pre-
viously unknown whether inflammatory stimuli can
induce hepatocytes to actively release HMGB1. Given
the huge numbers of hepatocytes in the liver, potential
HMGB1 release by hepatocytes could contribute to the
pathogenesis of liver failure/injury. Here we demon-
strated that hepatocytes can actively release HMGB1
after challenge with exogenous (e.g., LPS) or endogen-
ous (e.g., TNF-a) inflammatory stimuli. Furthermore,
HMGB1 cytoplasmic translocation was observed in
hepatocytes in the animal model of ALF (induced by
D-galactosamine and LPS), as well as in patients with ALF.

Methods
Cell culture and stimulation
Human hepatocyte cell line HepG2 was obtained from
the American Type Culture Collection (ATCC, Rockville,
MD), and cultured in Dulbecco Modified Eagle’s med-
ium (DMEM) (Gibco BRL, Grand Island, NY) supple-
mented with 10% fetal bovine serum (FBS), 2 mmol/L
glutamine and 100 U/mL penicillin and streptomycin in
flasks at 37°C, in a humidified atmosphere of 5% CO2 in
air. Adherent HepG2 cells in 6 well culture plates were
gently washed with, and cultured in serum-reduced
OPTI-MEM I medium 8 h before stimulation with dif-
ferent concentrations of LPS (Sigma Chemical Co.) or
TNF-a (PromoCell, Heidelberg, Germany) for various
time periods.

MTT assay
Cells were plated at a density of 104 cells/well on 96-
well plates in 200 μl DMEM. After stimulating with LPS
or TNF-a for indicated time periods and concentrations,
20 μl of MTT (Sigma Chemical Co.) was added to each
well and incubated for 2 h at 37°C. After removing
MTT solution, 150 μl dimethylsulphoxide (Sigma Che-
mical Co.) was added to each well. The absorbance was
determined using an ELISA reader at a wavelength of

570 nm (test) and 690 nm (reference). The spectrophot-
ometer was calibrated to zero absorbance using culture
medium without cells. The relative cell viability (%)
related to control wells containing cells and culture
medium without treatment was calculated by [A] test/
[A] control × 100.

Preparation of cellular extracts
Cells were harvested and washed twice with cold PBS;
nuclear and cytoplasmic extracts were prepared accord-
ing to the method of Schreiber et al. Briefly, the cell pel-
let was re-suspended in low salt buffer (10 mM HEPES,
pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA,
1 mM DTT, 0.5 mM PMSF, 1% Nonidet P-40). After
mixing, the intact nuclei were collected by a quick cen-
trifugation, leaving the cytoplasmic fraction in the
supernatant. The nuclear pellet was re-suspended in
Nonidet P-40 high salt buffer (20 mM HEPES, pH 7.9,
0.4 M NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM DTT,
1 mM PMSF, 1% Nonidet P-40). After mixing at 4°C for
15 min on a shaking platform, the nuclear extract was
centrifuged for 5 min in a microfuge at 4°C, and the
supernatant was frozen in aliquots at -80°C. The protein
content of the different fractions was determined by a
Bradford method.

HMGB1 Western blotting analysis
Cell-conditioned medium was harvested and filtered
through Millex-GP (Millipore, Bedford, MA) to remove
cell debris and macromolecular complexes. Samples
were then concentrated 40-fold with Amicon Ultra-4-
10000 NMWL (Millipore, Bedford, MA) following the
manufacturer’s instructions. Proteins in the subcellular
fractions or concentrated cell culture supernatants were
resolved on 10% SDS-PAGE gel and transferred to a
polyvinylidene fluoride membrane. After blocking the
membrane at room temperature for 2 h, the membrane
was incubated overnight at 4°C with primary antibodies
specific for HMGB1 (kindly provided by Dr. Haichao
Wang, North Shore-Long Island Jewish Research Insti-
tute, NY, USA), a cytoplasmic protein (b-actin; Santa
Cruz Biotechnology) and a proliferating cell nuclear
antigen (PCNA; BD Biosciences), respectively. The mem-
brane was then incubated with horseradish peroxidase-
conjugated goat anti-rabbit IgG (1:3000 dilution) for 2 h
at room temperature. The signal was visualized with
ECL detection reagent and quantitated by densitometry
using Quantity One software.

Fluorescence immunostaining
HepG2 cells were cultured on glass cover slips and sti-
mulated with LPS or TNF-a for 24 h. Subsequently,
cells were fixed with 4% formaldehyde for 10 min,
and permeabilized with 0.2% Triton-X-100 in PBS.
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After extensive washing with PBS containing 0.2% BSA,
cells were sequentially incubated with anti-affinity-puri-
fied rabbit anti-HMGB1 antibodies and goat anti-rabbit
secondary antibodies conjugated with fluorescein iso-
thiocyanate (Sigma Chemical Co.), and subsequently
counterstained with propidium iodide (Sigma Chemical
Co.). Images were captured using a fluorescence micro-
scope (Nikon, Japan).

Cytokine Ab array
Human cytokine antibody array (R&D, Minneapolis,
MN), a high throughput technology which detects 42
cytokines on one membrane, was used to determine the
profile of cytokines in the culture medium following the
manufacturer’s instructions. Briefly, the membranes
were sequentially incubated with equal volume of cell-
conditioned culture medium, primary biotin-conjugated
Ab, and HRP-conjugated streptavidin. After exposing to
x-ray film, the relative signal intensity was determined
using UN-SCAN-IT Gel 6.1 software with reference to
the positive controls on the membrane.

Animal model of ALF
Female BALB/c mice aged 6-7 weeks with a body weight
of 18-20 g (from the Experimental Animal Center of
Xiangya hospital, Central South University, Changsha,
China) were handled and treated in accordance with the
strict guiding principles of the National Institution of
Health for experimental care and use of animals. Mouse
ALF was induced by intraperitoneal injection of D-GalN
(800 mg/kg) (Sigma-Aldrich Co., Ltd) and LPS (0.04 mg/
kg) (Sigma-Aldrich Co., Ltd) as previously described
[28-30]. Three hours following the onset of ALF, mice
were sacrificed to harvest liver tissue for immunohisto-
chemistry and hematoxylin-eosin (HE) staining.

The liver specimens from ALF patients caused by HBV
infection
Liver specimens were obtained from 6 patients (5 males
and 1 female; mean age, 32 years) with ALF caused by
HBV infection who received liver transplantations. Spe-
cimens were also collected from 10 (9 males and
1 female; mean age, 36 years) chronic viral hepatitis B
patients without liver failure who received liver trans-
plantations or liver biopsy in Xiangya Hospital, Central
South University, during a two-year period (2005.5-
2007.5). Written informed consent was obtained from
all patients before performing liver biopsy or liver
surgery. This study was approved by the Ethics Com-
mittee of Xiangya Hospital of Central South
University.
The diagnosis of chronic hepatitis B was based on ele-

vated values of serum alanine aminotransferase (ALT)
for at least 1 year, as well as the presence of serum

hepatitis B virus (HBV) markers by ELISA and/or HBV-
DNA by polymerase chain reaction (PCR).
The criteria for ALF [17]: (AASLD Position Paper: The

management of acute liver failure, 2005) include evidence
of coagulation abnormality, usually an INR ≥ 1.5, and any
degree of mental alteration (encephalopathy) in a patient
without preexisting cirrhosis and with an illness of < 26
weeks duration. All these patients had positive results of
serum HBV markers tested by ELISA and/or HBV-DNA
positive by PCR. As controls, normal liver tissue samples
were obtained from 6 patients who had no evidence of
HBV and HCV infection (4 males and 2 females; mean
age, 42 years). Two of these 6 control patients had chole-
lithiasis, 2 had hepatic cyst, and the remaining 2 had
hepatic carcinoma. All the tissue samples were obtained
from the adjacent normal liver, identified by histology, of
these 6 patients. For all the patients involved there was
no evidence of co-infection with other hepatotropic
viruses. Further possible causes of liver damage, such as
alcohol, drugs or autoimmune diseases were also
excluded. Surgically collected liver specimens were fixed
in 4% formaldehyde solution, embedded in paraffin wax,
and stained with haematoxylin and eosin.

Immunohistochemical staining
Four micrometers of tissue sections were de-paraffi-
nized, rehydrated, and treated with an antigen retrieval
solution (10 mmol/L sodium citrate buffer, pH 6.0). The
sections were incubated with a dilution of 1:500 rabbit
anti-HMGB1 antibody (Abcam, UK) overnight at 4°C,
and then incubated with 1:1000 dilution of biotinylated
secondary antibody, followed by avidin-biotin peroxidase
complex (DAKO, Carpinteria, CA) according to the
manufacturer’s instructions. Finally, tissue sections were
incubated with 3’, 3’-diaminobenzidine (Sigma-Aldrich,
Co., Ltd) until a brown color developed, and then the
sections were counterstained with Harris’ modified
hematoxylin. In negative controls, primary antibodies
were omitted. Hepatocytes that have brown staining in
nucleus area represent normal location of HMGB1,
while hepatocytes with brown staining in both cytoplas-
mic and nucleus area were defined as cytoplasmic trans-
location of HMGB1. At least 10 high-power fields were
chosen randomly, and >1000 cells were counted for
each section. Values represent percentages of hepato-
cytes with HMGB1 cytoplasmic translocation in all
hepatocytes counted in each group.

Statistical analyses
All continuous data were expressed as the mean ± SD.
Comparison between groups was performed using Stu-
dent’s t-test or one way-ANOVA analysis. Statistical sig-
nificance was defined as a P < 0.05. All statistical
analyses were performed using SPSS 13.0 for Windows.
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Results
Effects of LPS or TNF-a on the release of HMGB1 in
HepG2 cells
Both exogenous (LPS) and endogenous (TNF-a)
inflammatory stimuli induced active HMGB1 release in
HepG2 cell cultures in a time-dependent fashion
(Figure 1A), starting at 12-16 h post LPS or TNF sti-
mulation. The release of HMGB1 was not dependent
on cell death, because the cell viability was not signifi-
cantly altered by LPS or TNF even at 24 h post treat-
ment (Figure 1B). Furthermore, LPS or TNF
stimulated HepG2 cells to released HMGB1 in a dose-
dependent manner (Figure 1C and 1E), starting at con-
centrations as low as 100 ng/ml (for LPS, Figure 1C)
or 5 ng/ml (for TNF, Figure 1E), and peaking at con-
centrations around 400 ng/ml (for LPS, Figure 1C) or
25 ng/ml (for TNF, Figure 1E), respectively. The
release of HMGB1 was not dependent on cell death,
because LPS or TNF did not significantly affect viabi-
lity at concentrations (up to 400 ng/ml for LPS, and
50 ng/ml for TNF) that effectively induced HMGB1
release (Figure 1D and 1F). At slight cytotoxic dosages,
LPS (800 ng/mL) or TNF-a (100 ng/mL) might also
cause passive HMGB1 leakage from necrotic hepato-
cytes, but the overall extracellular HMGB1 levels were
somewhat lower than active release (Figure 1C
and 1E).

LPS and TNF-a induced HMGB1 cytoplasmic translocation
in HepG2 cells
Following immunostaining, HMGB1 was found predo-
minantly in the nucleus of quiescent HepG2 cells (Fig-
ure 2). At 20 h after stimulation with LPS (100 ng/ml)
or TNF-a (25 ng/ml), HMGB1 staining was observed in
both nuclear and cytoplasmic regions of HepG2 cell cul-
ture (Figure 2A and 1B). Consistently, levels of HMGB1
in the cytoplasmic fractions were increased after stimu-
lation with LPS (200 ng/ml) or TNF-a (25 ng/ml) as
detected by Western blotting analysis (Figure 2C).
Taken together, this experimental data suggests that
both endogenous and exogenous inflammatory stimuli
can induce HMGB1 nuclear-cytoplasmic translocation
in hepatocytes.

Effects of LPS or TNF-a on cytokine release in HepG2
cells
Human cytokine antibody array was used to evaluate the
release of 42 different cytokines from HepG2 cells at
24 h post stimulation with LPS (200 ng/mL) or TNF-a
(25 ng/mL). Interestingly, TNF-a induced the release of
two chemokines (IL-8 and GRO) in HepG2 cell cultures,
indicating that TNF-a can simultaneously stimulate
hepatocytes to release HMGB1 and a subset of chemo-
kines (Figure 3A, B and 3C).

HMGB1 cytoplasmic translocation in hepatocytes of ALF
patients caused by hepatitis B
The pathological findings in the liver of patients with
ALF included massive or sub-massive necrosis of liver
cells and infiltration of immune cells around the necro-
tic foci. As a feature of regeneration, enlarged hepato-
cytes with clear cytoplasm and nucleus were found
within the regeneration foci, (Figure 4A). Subcellular
distribution of HMGB1 was observed in hepatocytes
within the regeneration foci. Interestingly, HMGB1
staining was found in both cytoplasm and nucleus of
many hepatocytes in patients with ALF (Figure 4B). In
some hepatocytes, HMGB1 was only found in the cyto-
plasm, and barely detectable in the nucleus, (Figure 4B),
suggesting nuclear-cytoplasmic HMGB1 translocation
occurs in hepatocytes of patients with ALF. In normal
healthy controls or patients with chronic HBV infection
but not liver failure, HMGB1 staining was mostly loca-
lized in the nucleus, with few cells occasionally positive
for cytoplasmic HMGB1 (Figure 4C). In ALF patients
caused by hepatitis B, the HMGB1 translocation rates
were around 32.84% ± 7.13%, which was significantly
higher than that in chronic hepatitis B patients and
controls.

HMGB1 cytoplasmic translocation in hepatocytes of mice
with ALF
The pathological findings of liver after exposure to
D-Gal and LPS for 3 h showed minor derangement of
hepatic plate, and appearance of ballooning degeneration
in several hepatocytes. Liver specimens from normal
control mice revealed a nuclear localization of HMGB1
in most hepatocytes. Occasionally, HMGB1 staining was
found in the cytoplasm of some hepatocytes of control
mice (Figure 5B). In contrast, HMGB1 cytoplasmic
staining was easily observed in hepatocytes as early as
3 h after administration of D-Gal and LPS. HMGB1
staining was found in both cytoplasm and nucleus of
many hepatocytes in the lobes(Figure 5B). In some
hepatocytes, HMGB1 was only found in the cytoplasm,
showing different stages of HMGB1 cytoplasmic translo-
cation. Consistently, the percentage of hepatocytes with
HMGB1 cytoplasmic staining was significantly higher
(27.42% ± 4.99%) in the D-Gal and LPS treated group
than that in control groups (Figure 5C).

Discussion
Although etiologies of ALF vary between Western coun-
tries and the Eastern developing world, the resulting
clinical manifestation is remarkably similar. This reflects
common patterns of innate immune responses to var-
ious pathogenic factors, such as bacteria toxins, cyto-
kines, and free radicals [31]. Among many others,
proinflammatory cytokines (such as TNF-a, IL-1b, and
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A B

C D

E F

Figure 1 LPS and TNF-a stimulated HepG2 cells to release HMGB1 in a time- and dose-dependent fashion. A, B) LPS and TNF induced
HMGB1 release in a time-dependent fashion. HepG2 cells were stimulated with LPS (200 ng/ml) or TNF-a (25 ng/ml) for indicated time periods,
and extracellular HMGB1 levels (Panel A) or cell viability (Panel B) or were determined by MTT or Western blotting analysis, respectively. HMGB1
levels were determined by the relative optical intensity (OD) of the immunoreactive bands on Western blots, and expressed as mean ± SEM of
three experiments in duplicate. * P < 0.05 versus 0 h treatment group. D, E, F, G) LPS and TNF induced HMGB1 release in a dose-dependent
manner. HepG2 cells were stimulated with LPS or TNF-a at indicated doses for 24 h cells viability and extracellular HMGB1 levels were
determined as described above. *P < 0.05 versus control ("-LPS”, Panel C, D; or “-TNF”, Panel E, F).
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IL-6) may play a common role in the pathophysiology of
ALF.
HMGB1 is a nonclassical proinflammatory mediator

that is secreted by, and activates proinflammatory
responses in, phagocytes and endothelial cells [5]. To
appreciate a potential role for HMGB1 in ALF, we
investigated whether HMGB1 can be released by hepa-
tocytes in the liver of patients or animals with acute
liver failure/injury.
At nontoxic concentrations, both exogenous (e.g.,

LPS) and endogenous (TNF) inflammatory stimuli

induced HMGB1 nuclear-cytoplasmic translocation, and
subsequent release in human hepatocyte HepG2 cells. In
1999, Wang et al first reported that monocytes/macro-
phages actively release HMGB1 in response to exogen-
ous (e.g., LPS) or endogenous inflammatory stimuli
(such as TNF-a, IL-1b, or IFN-g) [2]. Subsequently,
active HMGB1 release has been shown in non-immune
cells such as pituicytes and enterocytes [32,33]. In the
present study, we found that hepatocytes similarly trans-
locate nuclear HMGB1 to cytoplasm, and release it fol-
lowing LPS or TNF-a stimulation. The active release of
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Figure 2 LPS or TNF-a induced HMGB1 cytoplasmic translocation in HepG2 cells. HepG2 cells were stimulated with LPS (100 ng/ml in
panel A and B, 200 ng/ml in panel C) or TNF-a (25 ng/ml) for 20 h, and monitored for HMGB1 cytoplasmic translocation by
immunocytochemistry (Panel A) or by Western blot analysis after cell fractionation (Panel C). A, B). HMGB1 immunohistochemistry assay. The
relative fluorescence intensity in the nuclear ("N”) or cytoplasmic ("C”) regions of multiple represent cells were determined using the Image
Proplus Software, and expressed as mean ± SEM (in arbitrary units, AU) of three independent experiments. Red: nuclear; green: HMGB1; yellow:
merge (original magnification × 400). * P < 0.05 versus control. C). HMGB1 Western blotting analysis. Following cell fractionation, HMGB1 content
in the cytoplasmic ("C”) or nuclear ("N”) fraction was determined by Western blot analysis.
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Figure 3 Effects of LPS or TNF-a on release of cytokines from HepG2 cells. HepG2 cells were stimulated with LPS (200 ng/mL) or TNF-a
(25 ng/mL) for 24 h, and extracellular levels of 42 different cytokines were determined by using human cytokine antibody array. A, B).
Representative cytokine antibody array. Note that TNF, but not LPS, markedly induced the release of IL-8 and GRO. C). Quantitation of relative
levels of IL-8 and GRO. The relative levels of IL-8 and GRO were determined using the UN-SCAN-IT Gel 6.1 software, and the optical density (OD)
was expressed as mean ± SEM of two different experiment. * P < 0.05 versus control group.
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A
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C

Figure 4 HMGB1 cytoplasmic translocation in hepatocytes of ALF patients caused by HBV infection. A). HE staining of liver sections
(×200). a, normal adults; b, chronic viral hepatitis B patients; c, ALF patients caused by hepatitis B (panel c, × 200). B). HMGB1
immunohistochemistry. d and g: healthy controls; e and h: chronic viral hepatitis B patients, f and i: ALF patients. d, e and f × 200; g, h and i ×
800). Brown: HMGB1; Blue: counterstaining of nucleus with hematoxylin; Arrow: cytoplasmic HMGB1 staining in hepatocytes. C). Percentage of
hepatocytes with HMGB1 cytoplasmic translocation.*, P < 0.05 versus controls or chronic hepatitis B patients.
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HMGB1 was not dependent on cell death, as other che-
mokines (such as IL-8 and GRO) were similarly released
by hepatocyte following TNF stimulation.
Hepatocytes are responsible for multiple functions,

including regulation of homeostasis, blood sugar, meta-
bolisms of lipids and amino acids, bile formation, and
detoxifying capacities. Our present study raises the pos-
sibility that activated hepatocytes could be a source of
extracellular HMGB1, which may contribute to inflam-
matory response during ALF [34]. Trying to understand
if hepatocytes can release other cytokines besides

HMGB1 when stimulated with LPS or TNF, human
cytokine antibody array was employed to test 42 typical
cytokines in the supernatant. Interestingly, both LPS
and TNF-a stimulation failed to induce significant
release of typical inflammatory cytokines, such as IL-1,
TNF, IL-6, IFN-g, in HepG2 cells. Nevertheless, a few
chemokines (e.g., IL-8 and GRO) were released by hepa-
tocyte following TNF stimulation but its relevance to
HMGB1 release is a subject of on-going investigation.
In China, a large proportion of ALF are caused by

HBV infection [35], thus we evaluated HMGB1 cytoplas-
mic translocation in ALF patients caused by hepatitis B.
Consistent with previous reports, we found histopatho-
logical changes; these included massive, sub-massive or
bridging necrosis with immune cell infiltration and
regeneration nodular of hepatocytes in liver sections of
patients with ALF. Interestingly, HMGB1 cytoplasmic
translocation is clearly observed in regenerated hepato-
cytes of patients with ALF caused by HBV infection, but
not in patients with chronic HBV infection. One limita-
tion of the clinical study is that liver tissue samples
were obtained during liver transplantation surgery, and
thus did not represent early clinical manifestation
immediately after the onset of ALF. Consequently, we
employed a murine model of ALF induced by co-
administration of D-GalN and LPS to further investigate
the translocation of HMGB1 in hepatocytes during liver
failure/injury. In this model of ALF, liver injury is
dependent on the induction of proinflammatory cyto-
kines (such as TNF and IFN-g) [28,36], and loss of liver
function and hepatic histology occur typically 6-12 h
post administration of D-Gal and LPS [37]. In the pre-
sent study, we found that HMGB1 nuclear-cytoplasmic
translocation occurs as early as 3 h after injection of
D-GalN (600 mg/kg) and LPS (0.5 mg/kg). At this early
time point, there was no significant necrosis of hepato-
cytes and the rate of hepatic apoptosis (detected by
TUNEL assay) was still low (<10%), but the percentage
of hepatocytes with HMGB1 cytoplasmic translocation
was already rather high (27.42% ± 4.99%).
HMGB1 can bind to several potential receptors (e.g.,

RAGE and TLR2/4) and that may be highly expressed
during inflammation or in primary hepatocelullar carci-
noma. We can’t exclude the possibility that the HMGB1
observed in cytoplasm of hepatocytes in ALF patients
was HMGB1 from the nucleus of necrotic cells that
combined with a receptor. This possibility is unlikely,
because LPS- or TNF-a-induced cytoplasmic HMGB1
translocation was observed in hepatocytes in the absence
of cell death in vitro. To examine HMGB1 translocation
in vivo, we strategically chose a very early sampling time
(after onset of acute liver injury/failure), when necrosis
of hepatocytes was rare but the cytoplasmic HMGB1
was easily seen.
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Figure 5 HMGB1 cytoplasmic translocation in hepatocytes of
ALF mice. A): HE staining of liver sections. a: control group; b: D-
GalN and LPS treated group. a, b × 200. B). HMGB1
immunohistochemistry.c and e: control group; d and f: D-GalN and
LPS treated group. c, d × 200; e, f × 800, Brown: HMGB1; Blue:
counterstaining of nucleus with hematoxylin; Arrow: HMGB1
cytoplasmic translocation in hepatocytes. C). Percentages of
hepatocytes with cytoplasmic translocation.* P < 0.05 versus
controls.

Zhou et al. BMC Gastroenterology 2011, 11:21
http://www.biomedcentral.com/1471-230X/11/21

Page 9 of 11



It has been widely suggested that re-localization and
accumulation of HMGB1 in the cytoplasm is a necessary
step for its extracellular release, raising the possibility
that hepatocytes might be a source for extracellular
HMGB1 during ALF. It is reasonable to propose that
during liver injury/failure HMGB1 is released as a dan-
ger signal from activated or damaged hepatocytes as
well as immune cells and necrotic cells. Collectively,
extracellular HMGB1 itself, or in conjunction with other
inflammatory stimuli, orchestrates a rigorous inflamma-
tory response.
To our knowledge, this is the first study to link

hepatic HMGB1 release and potential pathophysiology/
prognosis of ALF. Indeed, circulating HMGB1 levels
were found to be elevated in patients suffering from
liver failure caused by hepatitis B (data not shown).
The source of circulating HMGB1 may include acti-
vated innate immune cells or non-immune cells (such
as hepatocytes).

Conclusions
Taken together, our in vitro experiments revealed that
active nuclear-cytoplasmic HMGB1 translocation and
release occurred in HepG2 cells upon stimulation with
both exogenous (LPS) or endogenous (TNF-a) inflam-
matory stimuli. Furthermore, cytoplasmic HMGB1 was
observed in hepatocytes of patients with ALF caused by
HBV infection, as well as in murine models of ALF.
Together, these observations raised important questions
regarding potential pathogenic roles of HMGB1 in ALF
or liver injury, which warrants further investigation in
future studies.
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