
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Wei et al. BMC Gastroenterology          (2024) 24:142 
https://doi.org/10.1186/s12876-024-03219-6

BMC Gastroenterology

†Weiming Wei and Libai Lu contributed equally to this work.

*Correspondence:
Jianchu Wang
wjianchu@sina.com

1Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, The 
Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 
China
2Department of Hepatobiliary and Pancreatic Surgery, Baidong Hospital, 
The Affiliated Hospital of Youjiang Medical University for Nationalities, 
Baise, China

Abstract
Objectives Cuproptosis represents an innovative type of cell death, distinct from apoptosis, driven by copper 
dependency, yet the involvement of copper apoptosis-associated long non-coding RNAs (CRLncRNAs) in 
hepatocellular carcinoma (HCC) remains unclear. This study is dedicated to unveiling the role and significance of these 
copper apoptosis-related lncRNAs within the context of HCC, focusing on their impact on both the development of 
the disease and its prognosis.

Methods We conducted an analysis of gene transcriptomic and clinical data for HCC cases by sourcing information 
from The Cancer Genome Atlas database. By incorporating cuproptosis-related genes, we established prognostic 
features associated with cuproptosis-related lncRNAs. Furthermore, we elucidated the mechanism of cuproptosis-
related lncRNAs in the prognosis and treatment of HCC through comprehensive approaches, including Lasso and 
Cox regression analyses, survival analyses of samples, as well as examinations of tumor mutation burden and immune 
function.

Results We developed a prognostic model featuring six cuproptosis-related lncRNAs: AC026412.3, AC125437.1, 
AL353572.4, MKLN1-AS, TMCC1-AS1, and SLC6A1-AS1. This model demonstrated exceptional prognostic accuracy 
in both training and validation cohorts for patients with tumors, showing significantly longer survival times for 
those categorized in the low-risk group compared to the high-risk group. Additionally, our analyses, including 
tumor mutation burden, immune function, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway 
enrichment, and drug sensitivity, further elucidated the potential mechanisms through which cuproptosis-associated 
lncRNAs may influence disease outcome.

Conclusions The model developed using cuproptosis-related long non-coding RNAs (lncRNAs) demonstrates 
promising predictive capabilities for both the prognosis and immunotherapy outcomes of tumor patients. This could 
play a crucial role in patient management and the optimization of immunotherapeutic strategies, offering valuable 
insights for future research.
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Introduction
Hepatocellular carcinoma (HCC) constitutes around 
90% of all primary liver cancer instances and ranks as the 
second leading cause of cancer-related mortality world-
wide, with an annual incidence of 850,000 new cases. 
The principal risk factors for HCC development are 
well-documented, including infection by hepatitis B and 
C viruses, alcohol consumption, and exposure to afla-
toxin, a fungal metabolite and a major carcinogen glob-
ally [1]. There are five main treatment modalities proven 
to improve the life expectancy of HCC patients: surgical 
resection, liver transplantation, radiofrequency ablation, 
chemoembolization, and targeted therapy with the small 
molecule drug sorafenib [2]. With advancements and the 
widespread adoption of gene sequencing technologies, 
research has increasingly focused on the molecular level, 
aiming to uncover the mechanisms of cancer initiation 
and progression genetically. Currently, tumor mutation 
burden (TMB), immune function, and drug sensitivity 
are at the forefront of hepatocyte research [3].

Long noncoding RNAs (lncRNAs) are a category of 
noncoding RNA molecules exceeding 200 nucleotides in 
length, characterized by their lack of open reading frames 
(ORFs) and absence of protein-coding potential [4]. 
These molecules play a crucial role in a myriad of cellular 
processes, including cell differentiation, lineage specifica-
tion, organogenesis, and tissue homeostasis. Moreover, 
lncRNAs are implicated in the etiology and progression 
of various pathological conditions, such as cancer and 
cardiovascular diseases, thereby emerging as novel bio-
markers and therapeutic targets [5, 6]. In the context of 
HCC, 74 dysregulated lncRNAs have been identified, 
with 52 exhibiting upregulated expression patterns [7]. 
Extensive research has demonstrated a significant asso-
ciation between numerous dysregulated lncRNAs in 
HCC and various clinicopathological features, including 
characteristics of the primary tumor (size, focality, dif-
ferentiation, and encapsulation), invasion and metasta-
sis, disease staging, survival rates, and non-tumorigenic 
aspects like cirrhosis, serum alpha-fetoprotein (AFP) lev-
els, and hepatitis B virus (HBV) infection status [8–10]. 
This burgeoning interest in lncRNAs as gene transcrip-
tion products underscores their potential significance in 
medical research and treatment strategies.

Cuproptosis represents a novel mechanism of cell 
death, primarily driven by the accumulation of intracel-
lular copper ions. These ions directly interact with the 
lipoylated components of the tricarboxylic acid (TCA) 
cycle, leading to the aggregation and malfunction of these 
proteins, thereby obstructing the TCA cycle. This disrup-
tion triggers proteotoxic stress, ultimately culminating 
in cell death [11]. The balance of intracellular copper is 
meticulously controlled to ensure copper homeostasis at 
the cellular level. This regulation involves a sophisticated 

network of copper-dependent proteins, encompassing 
copper enzymes, copper chaperones, and membrane 
transport proteins. These components work in concert to 
manage copper influx, efflux, and utilization within the 
cell, ensuring that copper levels remain within a narrowly 
defined range to maintain copper homeostasis [12]. Cop-
per’s pivotal role in cell signaling underscores its involve-
ment in cancer development and progression, including 
promoting cell proliferation, angiogenesis, and metasta-
sis [13].

In this study, we developed a prognostic model based 
on lncRNAs by identifying cuproptosis-related lncRNAs 
through the TCGA database and integrating them with 
the clinical data of patients from the same database. Fur-
thermore, we conducted analyses to correlate the model’s 
outcomes with mutation profiles, immune functions, 
and drug sensitivity responses in HCC patients. Path-
way enrichment analysis was also carried out to uncover 
potential underlying mechanisms. The comprehensive 
methodology and results of our study are illustrated in 
Fig. 1.

Methods
Data acquisition and organization
RNA sequencing data for HCC and the clinical character-
istics of patients were sourced from the TCGA database, 
encompassing 374 HCC tumor samples. We segregated 
the gene expression matrices into mRNA and lncRNA 
categories, utilizing the clinical data and lncRNA sam-
ples as the foundation for further analysis. Subsequently, 
we identified 19 genes associated with cuproptosis from 
existing literature and pinpointed cuproptosis-related 
lncRNAs via co-expression analysis, laying the ground-
work for the development of a prognostic model. The 
data processing steps included downloading raw data, 
annotating probes, imputing missing values, and elimi-
nating batch effects. This meticulous processing was 
undertaken by two experienced bioinformatics analysts. 
For the analysis, we employed the R software version 
4.2.2, making extensive use of the “limma” package [14].

Prognostic model development
For the construction of the prognostic model, we allo-
cated the HCC tumor samples into a training set and 
a validation set. The training set underwent LASSO 
regression analysis utilizing the “glmnet” package [15] to 
identify more representative genes. Subsequently, uni-
variate Cox regression analysis, facilitated by the “sur-
vival” package [16], was employed to select potential 
prognostic genes. Genes demonstrating statistical signifi-
cance (p-value < 0.05) in the Cox analysis were flagged as 
potential prognostic markers. Within the training cohort, 
patients were stratified into low-risk and high-risk cat-
egories based on the median risk score, serving as the 
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division threshold. The prognostic model, established 
from the training set, was then applied to the validation 
set samples. This step calculated each sample’s risk score 
in the validation cohort and assessed the model’s predic-
tive accuracy.

Correlation analysis
To elucidate the associations between the lncRNAs fea-
tured in our model and cuproptosis-related genes, we 
performed a correlation analysis between these genes 
and the lncRNAs utilized to construct the model. This 
analysis aimed to clarify the relationships among dif-
ferent lncRNAs and cuproptosis genes, enhancing our 
understanding of the interconnectedness between these 
lncRNAs and the relevant pathways involved in copper 
metabolism. The threshold for statistical significance was 
set at p < 0.05.

Survival analysis
We employed Kaplan-Meier curves, using the “survival” 
package, to illustrate the relationship between survival 
time and rate among the samples. To delve deeper into 
the survival differences between high-risk and low-risk 
groups, we conducted ROC analysis with the “timeROC” 
package [17] to evaluate the prognostic potential of the 
genetic markers. Furthermore, to validate our model’s 
prediction accuracy, we assessed its performance across 
different subgroups. This involved categorizing samples 
by gender and disease stage, followed by separate survival 
analyses for each subgroup. Subsequently, we performed 
a Progression-Free Survival (PFS) analysis. By integrat-
ing clinical data from pan-cancer studies in the TCGA 
database with the risk scores derived from our model, 
we divided the samples into high and low groups based 
on the median risk score. This allowed us to compare the 
survival differences in progression-free survival status 

between these two groups, further substantiating the 
prognostic efficacy of our model.

Independent prognostic analysis
We conducted both univariate and multivariate prog-
nostic analyses on variables such as age, gender, stag-
ing, and grading of the samples, alongside the risk score 
derived from our model (based on 6 cuproptosis-related 
lncRNAs), utilizing the “survival” package. This was 
undertaken to further evaluate whether our constructed 
models possess the capability to independently predict 
the prognosis of the samples, distinct from other contrib-
uting factors.

Principal component analysis (PCA)
We executed PCA on the entire gene dataset obtained 
from TCGA, including all genes, 19 cuproptosis-related 
genes, cuproptosis-related lncRNAs, and specifically 
the cuproptosis-related lncRNAs utilized in our model 
construction (AC026412.3, AC125437.1, AL353572.4, 
MKLN1-AS, TMCC1-AS1, SLC6A1-AS1). This analy-
sis was conducted using the “limma” and “scatterplot3d” 
packages [18]. The primary aim was to further validate 
the capability of our model’s genes to distinguish between 
samples in high-risk and low-risk groups effectively.

Immune-related functional analysis
By utilizing the “GSVA” and “GSEABase” packages [19, 
20] for immune-related functional analysis, we were 
able to identify distinct immune-related functions 
between the high- and low-risk groups. This identifica-
tion furnishes a valuable reference for further research 
endeavors.

Fig. 1 Flow chart of the entire study The figure shows the sources of our data, as well as the main methods of analysis
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Functional enrichment analysis
Integrating the risk scores of each sample with the gene 
expression matrix, we conducted a functional enrichment 
analysis on the genes differentially expressed between 
the high and low-risk groups. Utilizing the “org.Hs.eg.
db” and “enrichplot” packages [21, 22], we performed 
GO/KEGG functional enrichment analysis. Based on 
the pathways exhibiting differential expression between 
these groups, we established specific filtering criteria. 
Subsequently, we focused on pathways that showed pro-
nounced differences in expression between the high and 
low-expression groups as the subjects for the next phase 
of our research.

Analysis of TMB differences
Utilizing the TMB data from 368 samples in the TCGA 
database, in conjunction with the risk scores assigned to 
these samples, we analyzed the variations in mutation 
load between the high- and low-risk groups. Addition-
ally, we examined the mutation differences in the genes 
included in our model across these risk groups. This 
approach further elucidated the underlying mechanisms 
of tumor mutations and their potential impact on risk 
stratification.

Drug sensitivity analysis
Leveraging the drug sensitivity data available in the data-
base (https://osf.io/c6tfx/files/osfstorage), we evaluated 
the sensitivity of each sample to 197 drugs. By integrat-
ing these sensitivity scores with the risk scores of each 
sample, we conducted an analysis to determine the dif-
ferential drug sensitivities between the high- and low-risk 
groups. This analysis was performed using the “oncoPre-
dict” package [23], aiming to identify potential therapeu-
tic targets and optimize treatment strategies based on 
risk stratification.

Statistical analysis
Data analysis was conducted using R version 4.2.2, with 
results presented as mean ± standard deviation (SD). Sta-
tistical evaluations were performed with SPSS software 
version 26.0 (SPSS Inc., USA). GraphPad software (ver-
sion 8.0.2) was utilized for the creation and statistical 
analysis of graphs. A P-value of less than 0.05 was consid-
ered statistically significant.

Results
Cuproptosis-related genes and lncRNA co-expression 
analysis results
Through co-expression analysis, we identified 994 
lncRNAs associated with cuproptosis. We visualized 
the interactions between cuproptosis genes and these 
lncRNAs using a Sankey diagram, with the findings pre-
sented in Fig. 2A.

Prognostic model development
The tumor samples sourced from the TCGA database 
were partitioned into a training set (185 samples) and a 
validation set (185 samples). Within the training cohort, 
univariate Cox regression analysis was conducted to iden-
tify potential prognostic genes, with these initial findings 
illustrated in Fig. 2B. Subsequent LASSO regression anal-
ysis was employed to pinpoint more representative genes, 
the outcomes of which are depicted in Fig.  2C-D. Ulti-
mately, we derived a prognostic model based on 6 cupro-
ptosis-associated lncRNAs: AC026412.3, AC125437.1, 
AL353572.4, MKLN1-AS, TMCC1-AS1, and SLC6A1-
AS1. Utilizing this model, we calculated the risk score for 
each sample, subsequently dividing the patients into low-
risk and high-risk groups according to the median risk 
score as the threshold.

Correlation analysis
By conducting a correlation analysis between cupropto-
sis-related genes and the lncRNAs utilized in our model’s 
construction, we elucidated the relationships between 
various lncRNAs and cuproptosis-related genes. This 
analysis revealed that the cuproptosis-related genes most 
strongly associated with AC026412.3 were MTF1 and 
ATP7A; for AC125437.1, the strongest associations were 
with CDK1 and ATP7A; GLS was the most strongly cor-
related cuproptosis-related gene with AL353572.4; LIPT1 
was identified as the strongest correlate for MKLN1-AS; 
LIAS showed the strongest association with SLC6A1-
AS1; and for TMCC1-AS1, the most significant corre-
lations were with PDHB and LIPT1. These findings are 
presented in Fig.  2E, offering insights into the specific 
interactions between cuproptosis-related genes and the 
lncRNAs in our prognostic model.

Survival analysis
Our survival analysis demonstrated that, across all sam-
ples, as well as within the training and validation sets, 
the survival rate of the low-risk group exceeded that 
of the high-risk group over time. These outcomes are 
depicted in Fig.  3A-C. Additionally, we employed risk 
curves for each sample, revealing that patient mortal-
ity in the high-risk group increased over time compared 
to the low-risk group. Moreover, the expression levels 
of AC026412.3, AC125437.1, AL353572.4, MKLN1-AS, 
and TMCC1-AS1 were elevated in the high-risk group, 
whereas SLC6A1-AS1 showed higher expression in the 
low-risk group, as illustrated in Fig. 3D-L. To further vali-
date the predictive accuracy of our model, we conducted 
independent prognostic analyses by categorizing samples 
based on age, gender, stage, and grade. Our model’s risk 
scores demonstrated robust predictive capabilities in 
both univariate and multivariate prognostic analyses, 
with a P value of less than 0.01, as shown in Fig.  4A-B. 

https://osf.io/c6tfx/files/osfstorage
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Additionally, we assessed the model’s accuracy across 
different subgroups using ROC and C-index curves for 
varying ages, genders, stages, and grades, with these find-
ings presented in Fig. 4C-D. We also evaluated the pre-
dictive performance of our model for 1-year, 3-year, and 
5-year survival rates using ROC curves. The area under 
the curve (AUC) values were 0.742 at 1 year, 0.734 at 3 
years, and 0.778 at 5 years, respectively, underscoring the 
model’s predictive accuracy at these time intervals, as 
displayed in Fig. 4E.

Column line graph for survival prediction
We assessed patients based on various criteria, includ-
ing age, gender, stage, grade, T, N, M classifications, 
and risk score, to predict their 1-year, 3-year, and 5-year 
survival rates. This prediction was facilitated through a 
combined scoring approach, further refined using a cali-
bration curve for accuracy. The outcomes of this analy-
sis are presented in Fig. 5A-B, showcasing the predictive 

capability of our model for patient survival over these 
time intervals.

PFS analysis
Utilizing clinical data from pan-cancer studies in the 
TCGA database, along with the risk scores derived from 
our model, we categorized the samples into high and 
low groups based on their median risk values. We then 
compared the PFS differences between these groups. 
Our analysis revealed a significant distinction in PFS 
between the high-risk and low-risk groups, underscor-
ing the effectiveness of our model in stratifying patients 
based on their prognosis. These findings are illustrated in 
Fig. 5C, demonstrating the predictive power of our model 
in identifying differences in progression-free survival 
outcomes.

Survival analysis by clinical staging
We stratified patients into early-stage (Stage I-II) and 
late-stage (Stage III-IV) groups based on their clinical 

Fig. 2 The result of Correlation analysis, Cox regression analysis, and Lasso regression analysis A The correlation analysis results between copper death 
and lncRNA indicate that there are connections between different modules, and different colors represent different copper death-related genes. B The 
result of Cox regression analysis, The red dot represents high risk, while the green dot represents low risk. C-D: The result of Lasso regression analysis, It 
can be seen that modeling 6 genes is more accurate and reliable. E: Correlation analysis between the lncRNAs in the model and the Cuproptosis-related 
genes, Red represents a positive correlation, while blue represents a negative correlation. “*”: p < 0.05, “**”: p < 0.01, “***”: p < 0.001
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staging. The survival curves for both groups demon-
strated a significant difference in survival between the 
high-risk and low-risk groups within our model, appli-
cable to both early and late-stage patients. These findings 
are depicted in Fig. 5D-E, highlighting the model’s capa-
bility to differentiate survival outcomes across various 
stages of disease progression.

PCA analysis
The PCA analysis was conducted to assess if the genes uti-
lized in our model could effectively distinguish between 
high and low-risk groups. This analysis encompassed all 
genes downloaded from TCGA, 19 cuproptosis-related 
genes, cuproptosis-related lncRNAs, and specifically 
the cuproptosis-related lncRNAs incorporated into our 

model (AC026412.3, AC125437.1, AL353572.4, MKLN1-
AS, TMCC1-AS1, SLC6A1-AS1). The results, illustrated 
in Fig.  6A-D, demonstrate the model’s capability to dif-
ferentiate between the samples across these categories, 
highlighting the distinct genetic landscapes of high and 
low-risk groups.

Immune-related function analysis
Through our analysis of immune-related functions, we 
identified significant differences between high and low-
risk groups in specific immune functions, including Type 
II IFN Response, APC co-stimulation, Parainflamma-
tion, Check-point, APC co-inhibition, HLA, and MHC 
class I. These distinctions highlight the varying immune 
landscapes present in different risk groups. The results of 

Fig. 3 The result of Survival analysis and Risk curve A The survival curves of all samples, B the survival curve of the training set, C the survival curve of the 
validation set; horizontal coordinates indicate survival time, vertical coordinates indicate survival rate. D-F risk curve, sample distribution map, and heat 
map for all sample sets, G-I risk curve, sample distribution map, and heat map for training sets, J-L risk curve, sample distribution map, and heat map for 
validation sets. Red dots indicate low risk or the sample is dead, blue dots indicate high risk or the sample is alive p < 0.05
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this analysis are displayed in Fig. 7A, offering insight into 
the immune mechanisms that may underlie the prognos-
tic differences observed between the high and low-risk 
groups.

Functional enrichment analysis
Our functional enrichment analysis unveiled distinct 
pathways significantly enriched in the high-risk group. 
As illustrated in Fig.  7B-C, the GO enrichment analysis 
highlighted key pathways, such as response to xenobiotic 
stimulus, external encapsulating structure organization, 
extracellular structure organization, extracellular matrix 
organization, urogenital system development, regulation 
of cell substrate adhesion, digestion, digestive system 
process, extracellular matrix disassembly, and epithelial 
structure maintenance (BP); anchored component of the 
plasma membrane, immunoglobulin complex, anchored 
component of the membrane, basolateral plasma mem-
brane, endoplasmic reticulum lumen, basal plasma 
membrane, basal part of the cell, collagen-containing 
extracellular matrix, apical plasma membrane, and apical 
part of the cell (CC); CXCR chemokine receptor binding, 

acetylgalactosaminyltransferase activity, chemokine 
receptor binding, calcium-dependent protein binding, 
extracellular matrix structural constituent, carbohydrate 
binding, cytokine activity, G protein-coupled receptor 
binding, receptor ligand activity, and signaling receptor 
activator activity (MF). The KEGG enrichment analysis 
identified pathways more significantly enriched in the 
high-risk group, including the IL-17 signaling pathway, 
Hippo signaling pathway, Wnt signaling pathway, TNF 
signaling pathway, hematopoietic cell lineage, estrogen 
signaling pathway, proteoglycans in cancer, PI3K-Akt sig-
naling pathway, pathways in cancer, and NOD-like recep-
tor signaling pathway, as shown in Fig.  7D-E. Based on 
the differential pathway expression between the high and 
low-risk groups and after establishing filtering criteria, 
the pathways that exhibited more pronounced differences 
in expression were selected for further investigation. This 
strategic approach allows for a focused examination of 
the mechanisms potentially contributing to the observed 
prognostic differences.

Fig. 4 The result of Independent prognostic analysis, C-index curve, and ROC curve A Single-factor prognostic analysis. B Multivariate prognostic analysis 
results. Hazard ratio > 1 indicates high factor. C ROC curve, D C-index curve, Red represents risk score, The larger the area under the curve, the greater 
the credibility of the results. Risk score is the most accurate prediction result, p < 0.05. E ROC curve of predicted the survival of the patients at 1, 3, and 5 
years. p < 0.05
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Differential analysis of TMB
Utilizing TMB data from the TCGA database and cor-
relating it with the samples’ risk scores, we depicted the 
tumor mutation load using a waterfall plot. In the high-
risk group, the most frequently mutated genes were TP53 
(37%), CTNNB1 (21%), and TTN (25%). Conversely, in 
the low-risk group, the predominant mutations were 
found in CTNNB1 (30%), TTN (23%), and TP53 (16%). 
These observations are presented in Fig.  8A-B. Fur-
ther analysis of mutation load differences between high 
and low-risk groups, along with the mutation dispari-
ties in genes used in our model, revealed a higher muta-
tion frequency in the high-risk group compared to the 
low-risk group, as illustrated in Fig.  8C. Incorporating 
survival data into our analysis, we observed that the sur-
vival rate decreases over time in the high mutation group 
compared to the low mutation group. To enhance the 
precision of our model, we integrated previous model 

risk values, categorizing the samples into four groups: 
High-TMB + High-Risk, High-TMB + Low-Risk, Low-
TMB + High-Risk, and Low-TMB + Low-Risk. The sur-
vival analysis across these groups highlighted differences 
in survival rates between the high and low-risk groups 
within both high and low mutation categories, further 
validating our model’s effectiveness. These results are 
showcased in Fig. 8D-E.

Drug sensitivity analysis
Integrating the drug sensitivity data from the database, 
we assessed each sample’s drug sensitivity and then cor-
related these scores with the risk values of each sample. 
This analysis aimed to discern the differences in drug 
sensitivity between high and low-risk groups. By filter-
ing out non-discriminatory results, we identified dis-
parities in the response to 9 drugs between these groups. 
These findings, which highlight the variance in drug 

Fig. 5 The result of the Column line graph to predict the survival of the sample and survival curve A Column line graph to predict the survival of the 
sample, Predict the 1-year, 3-year, and 5-year survival rates of patients through scoring, using the correction curve of the B column chart. C The result of 
PFS analysis, red represents high risk, and blue represents low risk. There is a significant difference in survival time between the high and low risk groups 
in progression-free survival, p < 0.05. D The survival curve of early patients, E: The survival curve of late patients, and the survival rate of the low-risk group 
is higher than that of the high-risk group, p < 0.05
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sensitivity across high and low-risk groups, are illustrated 
in Fig.  9A-I, providing insights into potential therapeu-
tic targets and treatment optimization based on risk 
stratification.

Discussion
Liver cancer remains a significant global health challenge, 
with HCC ranking as a leading cause of cancer-related 
mortality worldwide, a trend that continues to escalate. 
Among all primary liver cancers, HCC is the predomi-
nant form of hepatic malignancy. Over the last decade, 
advances in understanding the molecular pathogenesis 
of HCC have been substantial. Genomic analyses have 
delineated the principal drivers of tumor initiation and 

progression [24], The development of HCC has been 
attributed to various mechanisms, including gene muta-
tions and immune-related functions [25]. TMB, which 
quantifies the number of mutations within tumor cells 
per million base pairs, serves as a critical indicator. A 
high TMB suggests a multitude of mutations, poten-
tially leading to the generation of novel antigens that can 
activate the immune response [26]. TMB levels in HCC 
patients can significantly vary, indicating diverse disease 
profiles.

Immunotherapy, particularly when involving specific 
vascular growth inhibitors, has demonstrated signifi-
cant antitumor efficacy in certain HCC patient subsets. 
The combination therapy of atezolizumab, an anti-PDL1 

Fig. 6 The result of Principal component analysis PCA A All genes, B Cuproptosis-related genes, C Cuproptosis-related lncRNAs, D lncRNAs involved in 
model construction. The red dot represents high risk, while the green dot represents low risk. It can be seen that the lncRNAs involved in the model have 
the most significant effect in dividing high and low risk groups
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antibody, and bevacizumab, a VEGF-neutralizing anti-
body, is becoming the frontline treatment for HCC [27, 
28]. Immune checkpoint inhibitors (ICIs), which boost 
the immune system’s capacity to attack cancer cells by 
blocking immune checkpoint proteins like PD-1 and 
CTLA-4, have achieved remarkable success across vari-
ous cancer types, including melanoma, lung, and gas-
tric cancers [29]. For HCC treatment, hormilizumab 
(Nivolumab) and pembrolizumab (Pembrolizumab) are 
two approved ICIs for advanced stages, significantly 
enhancing the survival prospects for patients, especially 

those unresponsive to prior therapies. Despite their suc-
cess, not all patients exhibit favorable responses to ICIs, 
prompting ongoing research into predictive markers of 
treatment response, with TMB emerging as a promising 
candidate. Recent studies have increasingly focused on 
genetic mutations and the non-apoptotic cell death path-
ways in HCC development. The relationship between 
tumor cell progression, therapy, and the immune micro-
environment is intricate. This environment comprises 
immune cells surrounding the tumor, cytokines, anti-
gen presentation, and immune checkpoint expression, 

Fig. 7 The result of the Analysis of immune-related functions and Functional enrichment analysis A: The result of the Analysis of immune-related func-
tions, the red represents high risk, while the green represents low risk. “*”: p < 0.05, “**”: p < 0.01, “***”: p < 0.001, B-C: The result of GO enrichment analysis, B 
Blue for BP, Red for CC, Green for MF, C From outside to inside, the first circle represents the ID of the GO, the second circle represents the number of genes 
on each GO, the color of the second circle represents the significance of the enrichment, the redder the color means the more significant the enrichment, 
the third circle represents the number of co-expressed genes, and the fourth circle represents the heat ratio of genes. D-E The result of KEGG enrichment 
analysis, The color of the bar graph represents the P-value, the color change from light to dark means that the P-value becomes larger gradually, and 
the size of the endpoints represents the number of genes enriched in the pathway, the larger the endpoints the greater the number of enriched genes
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gaining prominence in the diagnosis and treatment strat-
egies for breast cancer [30]. Understanding the dynamics 
of the immune microenvironment is essential for predict-
ing therapeutic outcomes and devising novel treatments. 
In HCC, this environment is often modulated by the 
tumor’s immune evasion tactics, allowing the cancer to 
suppress immune cell activity and avoid immune detec-
tion, thereby facilitating tumor growth and dissemina-
tion. However, emerging therapeutic strategies aim to 
modify the HCC immune microenvironment to enhance 
susceptibility to immune attacks. Studies have shown 
that ICI treatment can improve the immune microenvi-
ronment in HCC, augmenting T-cell infiltration and pro-
moting anti-tumor immune responses, underscoring the 
rationale behind immunotherapy’s efficacy [31, 32].

Copper toxicity, a distinct form of copper-dependent 
cell death, differs from traditional forms of cell death. 
It is believed that copper directly influences multiple 

signaling pathways in tumor cells by binding to and acti-
vating essential molecules within these pathways [33]. 
Elevated serum copper ion levels have been observed 
in patients with lung, prostate, breast, gallbladder, and 
stomach cancers compared to healthy individuals, high-
lighting copper’s potential role in tumorigenesis [34–37]. 
Mutations and dysregulation of LncRNAs are increas-
ingly recognized for their significant impact on cancer 
[38, 39]. LncRNAs, functioning as both tumor suppres-
sors and oncogenes, have garnered attention as potential 
novel biomarkers and therapeutic targets due to their 
widespread and tissue-specific expression patterns [40]. 
LncRNAs, longer than 200 nucleotides, are integral in 
regulating chromatin dynamics, gene expression, and 
cellular processes such as growth, differentiation, and 
development [41]. They have been shown to influence 
key pathways in tumor development across various can-
cers, including leukemia, breast and prostate cancers, 

Fig. 8 The result of tumor mutation load and survival curve A-B The waterfall plot of tumor mutations shows the low-risk group in blue and the high-risk 
group in red. C Violin diagram for differential analysis of tumor mutations. Blue represents the low-risk group, while red represents the high-risk group. 
D Survival analysis of high and low mutation groups, blue represents the low mutation group, red represents the high mutation group, and E: Survival 
analysis of tumor mutation combined with high and low risk groups. Four groups: H-TMB + high risk, H-TMB + low risk, L-TMB + high risk, L -TMB + low risk. 
p < 0.05
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lung cancer, and HCC, underscoring their pivotal role 
in oncogenesis [42, 43]. The involvement of LncRNAs in 
regulating cancer cell energy metabolism, thus impact-
ing cellular homeostasis and leading to cell death, is a 
growing area of interest [39, 44]. These cuproptosis-
associated LncRNAs may regulate HCC progression by 
affecting copper ion homeostasis and oxidative stress, 
potentially inducing cuproptosis and influencing HCC’s 
pathophysiological processes [45]. The exploration of 
cuproptosis-associated LncRNAs offers new avenues for 
HCC treatment, especially as HCC shows considerable 
resistance to conventional therapies [46, 47], Targeting 

these LncRNAs could modulate cuproptosis, affecting 
HCC cell survival and dissemination. Furthermore, these 
LncRNAs might serve as predictive and diagnostic bio-
markers, aiding in early HCC detection and correlating 
with patient prognosis to guide treatment decisions [48]. 
Understanding the expression of cuproptosis-associated 
LncRNAs can assist in tailoring personalized treatment 
plans, potentially enhancing therapeutic outcomes and 
patient survival. Recent studies, including this one, have 
shed light on the roles of cuproptosis and LncRNAs in 
HCC, focusing on prognosis, diagnosis, immunother-
apy, and drug sensitivity [49–58]. This study leverages 

Fig. 9 The results of drug sensitivity analysis The horizontal coordinate represents the risk of the sample, with red indicating high risk and green indicating 
low risk, and the vertical coordinate indicates sensitivity to the drug. p < 0.05
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the novel concept of cuproptosis and its related genes 
in correlation with LncRNAs to establish a prognostic 
model for HCC using cuproptosis-associated LncRNAs. 
Through tumor mutation TMB and functional enrich-
ment analyses, we aim to elucidate the potential mecha-
nisms of these LncRNAs, offering valuable insights for 
future HCC research and treatment strategies. Investi-
gating cuproptosis-related LncRNAs further can deepen 
our understanding of HCC pathogenesis and unveil new 
clinical treatment targets, paving the way for innovative 
therapies to improve the survival rates and quality of life 
for HCC patients.

Conclusions
In this research, we developed a prognostic model using 
lncRNAs by integrating transcriptome data from HCC 
cases in the TCGA database with cuproptosis-related 
genes. We selected lncRNAs associated with cupropto-
sis as the foundation for our study, further enriching our 
analysis with clinical data from the database. Our inves-
tigation explored the correlation between the model’s 
outcomes and various factors such as tumor mutation 
burden, immune function, and drug sensitivity in HCC 
patients. The findings reveal that the constructed model 
exhibits robust predictive capabilities, offering valuable 
insights for future research.
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