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Introduction
Colon cancer is the leading cause of death globally. 
Researchers discovered evidence that removing precan-
cerous lesions can efficiently reduce the development of 
colon cancer and the medical burden associated with it 
[1]. Colonoscopy can assist physicians in visually identi-
fying the lesions in the colon, but it relies on physicians to 
determine whether it is a precancerous lesion. This study 
focuses on classifying sessile serrated adenomas (SSA), 
traditional (conventional) adenomas (TA), and hyper-
plastic polyps (HP), as 90% of colorectal cancers arise 
from colon adenomas. The serrated type of colon pol-
yps includes traditional serrated adenoma (TSA), sessile 
serrated adenoma (SSA), and hyperplastic polyp (HP). 
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Abstract
In this study, we implemented a combination of data augmentation and artificial intelligence (AI) model—
Convolutional Neural Network (CNN)—to help physicians classify colonic polyps into traditional adenoma (TA), 
sessile serrated adenoma (SSA), and hyperplastic polyp (HP). We collected ordinary endoscopy images under both 
white and NBI lights. Under white light, we collected 257 images of HP, 423 images of SSA, and 60 images of TA. 
Under NBI light, were collected 238 images of HP, 284 images of SSA, and 71 images of TA. We implemented the 
CNN-based artificial intelligence model, Inception V4, to build a classification model for the types of colon polyps. 
Our final AI classification model with data augmentation process is constructed only with white light images. Our 
classification prediction accuracy of colon polyp type is 94%, and the discriminability of the model (area under the 
curve) was 98%. Thus, we can conclude that our model can help physicians distinguish between TA, SSA, and HPs 
and correctly identify precancerous lesions such as TA and SSA.
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TSA and SSA are precancerous lesions that account for 
15–30% of colorectal cancers [2, 3]. As shown in Fig. 1, 
compared with the non-harmful lesion, hyperplastic pol-
yps (HP), the TSA has a prominent appearance such as 
reddish, protruded, pedunculated, “pinecone-like” or 
“branch coral-like” lesions in white light endoscopic view. 
Hence, it is easy to distinguish TSA from HP, even with 
traditional adenoma (TA). Current studies, such as those 
by Brown et al. [4], have developed efficient deep-learn-
ing models to help endoscopists locate the TA and SSA. 
However, in their study, they did not classify the observed 
polyps including TA, SSA and HP in a single framework.

In contrast to TSA, SSA does not have such precise 
characteristics to distinguish itself from HPs. While 
endoscopists can remove all observed polyps, remov-
ing polyps with endoscopic treatment involves risks 
and a financial burden. Internal bleeding, perforation, 
and subsequent bleeding are all common risks associ-
ated with the polyp removing procedure. The financial 
costs involved in lesion removal are also substantial. 
Hence, patients and the healthcare industry would like to 
improve the rate of correctly classifying the type of polyp 
and remove the SSA, TSA, and TA but not the HP.

The current practice of increasing the classification rate 
of lesion types is to train endoscopists with past endos-
copy images with and without narrowband images (NBI). 
However, such a training process takes several years, 
and its duration can vary significantly from one phy-
sician to another. For example, Lee et al. [5] reported a 
new one-year comprehensive training program for an 
endoscopist workgroup to increase their ability to classify 
serrated polyps from other lesions correctly. The health-
care industry needs an efficient and consistent method 
to help physicians classify the lesion type as they locate 

the lesion via endoscopy. The artificial intelligence (AI) of 
image pattern recognition shows promising potential to 
achieve this goal. Artificial intelligence has been applied 
to classify colon neoplasm to no neoplasm [6, 7].

However, the SSA classification remains under-studied. 
Furthermore, accurately classifying the SSA, TA, and 
HP more than often requires enhanced images such as 
NBI and/or magnified endoscopy. For example, Azam et 
al [8] built an AI model with both wight-light and NBI 
images to improve the accuracy of their model. How-
ever, the NBI or other enhanced method has their weak-
nesses [9]. The efficiency of NBI is highly dependent on 
bowel preparation, and the image of NBI is darker than 
the white-light images. Other enhanced methods, such 
as magnified endoscopy might not be available. There-
fore, using enhanced images to build an AI classification 
model can significantly limit the generality of the model. 
Nemoto et al [10] built an AI model that can distinguish 
SSA and TA using white-light images. Their accuracy 
ranges from 77 to 87%.

Among all the artificial intelligence methods, CNN is 
the most widely used for image classification. Hirasawa et 
al. [7] used a CNN to classify 2296 endoscopy images into 
gastric and non-gastric cancers and correctly identified 
71 out of 77 cases. There are several different CNN-based 
classification models that can be implemented in the 
Tenser-Flow chart. The most popular CNN-based models 
include ResNet 50/ResNet 34, MoblieNetV2, GoogLeNet, 
AlexNet, etc., all of which have been applied to build a 
classification model [11]. Other than those well-known 
CNN-based models, there are several advanced models 
for colonoscopy polyp classification such as ResUNet++ 
(cf. Jha et al., [12]), TGANet (cf. Tomar et al [13]), Dou-
bleUNet (cf. Lin et al. [14]), Polyp-PVT(cf. Dong et al. 

Fig. 1 HP, SSA, and TA under white Light
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[15]), and PraNet (cf. Fan et al. [16]). However, those 
more advanced models aim to segment polyps with a 
wide range of features and hence require more training 
samples, thus not suitable for our study. In this study, we 
intend to propose an AI modeling framework that can 
be implemented in any generic healthcare institution. 
Therefore, we choose to implement a more stable and 
well-received CNN-based deep-learning model and com-
bined with a data argumentation heuristic to reduce both 
of the technical barrier and input sample size.

Among those well-received CNN-based deep-learning 
models, by incorporating residual learning in the tradi-
tional neural network, the ResNet model is known for 
its high accuracy without overfitting [17]. However, the 
computational cost of ResNet is relatively high, which 
limits the application of ResNet model as one needs to 
embed multiple AI models in one system and/or instant 
result. In this study, the polyp classification model should 
be embedded in the endoscopy system, and an instant 
classification result is needed during the endoscopy sec-
tion. Furthermore, Nemoto et al. [10] use ResNet50 as 
their modeling backbone in distinguish the SSA and HP 
and they find that their AI model with ResNet50 cannot 
outperform the trained physicians. Therefore, the ResNet 
model might not be the best fit for classifying the colonic 
polyps. Inception V4 is designed to reduce the compu-
tational cost with state-of-art accuracy [18]. As stated 
by McNeely-White et al. [19], the Inception and ResNet 
model’s performances are very similar, while the Incep-
tion requires less computation power. To further improve 
the speed of computation, MoblieNetV2 is proposed to 
build a light-weight model [20]. According to Canziani 
et al. [11]’s comprehensive review, Inception V4 has the 
highest accuracy with a moderate number of parameters. 
In conclusion, the Inception V4 is best fit of our study.

In this study, we propose an AI modeling framework 
that can help any healthcare institution to classified SSA, 
TA, and HP with a single model and use only white-light 
images. Our novelty of the AI modeling framework lies 
on two aspects. First, to overcome a problem with small 
sample size of SSA images, we construct a deep-learning 
model combined with an image-preprocessing algorithm. 
Second, to make the AI model more generally applicable 
across different endoscopies, our AI modeling framework 
requires only ordinary white-light images. The proposed 
model is a highly efficient model that classified TA, SSA, 
and HP with an average accuracy rate of 94.43%, a sen-
sitivity of 98.62%, a specificity of 97.12%, and an AUC of 
97.87%. Our model required a limited sample size and 
only non-magnified white-light images.

Materials and methods
This study was approved by the Institutional Review 
Board of the Chang Gung Memorial Hospital (IRB No. 
202001328B0). Polyps were detected by ordinary white-
light endoscopy. We collected 257 images of HP, 423 
images of SSA, and 60 images of TA under white light. 
We also collected 238 images of hyperplastic, 284 images 
of SSA, and 71 images of TA under NBI. It is worth not-
ing that our data collection does not aim to reassemble 
a data set according to the actual proposition of SSA, 
TA, and HP. By contrast, our data collection method 
aims to allow the AI model to learn different character-
istics of SSA, TA, and HP to classify them. During the 
data collection stage, we intentionally collected the data 
using an unequal sampling method. Unequal sampling 
is a commonly used statistical method for this purpose. 
Uneven sampling broadens the proposition of defects or 
target items and enables the statistical model to extract 
characteristics from the target group. In this study, we 
implemented unequal sampling to increase the propor-
tion of SSA and enable the AI model to extract features 
from SSA images. Experienced endoscopists classified 
all images and pathologies and verified all classification 
results. TensorFlow (https://www.tensorflow.org/) with 
Inception V4 deep-learning model are implemented 
to construct our deep learning model. Images of colon 
polyps were collected from the Lin-Kou Chang Gung 
Memorial Hospital database between 2016 and 2019. 
Two experienced gastrointestinal pathologists reviewed 
the pathology of colon polyps. Images with blurred sur-
faces and poor focal lengths were discarded. The resolu-
tion of the images was 150 × 150 bpi. Our deep learning 
heuristic consisted of three parts: the data augmentation 
algorithm, deep learning framework, and CNN model. At 
the end of this section, we present our statistical valida-
tion methods and operational environment.

Image Preprocessing
To address this small sample size, we developed a proce-
dure to increase the sample size of the images. Data aug-
mentation is an effective and commonly applied method 
for defect detection [21]. We adopted a similar idea to 
design our image preprocessing algorithm. The collected 
images first go through the preprocessing algorithm 
(Algorithm 1), and then the deep learning model is built, 
as described in Heuristic 1.

The image preprocessing algorithm.
Indices.
i = the ith deep learning dataset.
k = the kth randomly divided sub dataset in k-fold cross 

validation method.

https://www.tensorflow.org/
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Algorithm 1
Step 1: Process the images into the correct input format 
for the TensorFlow.

Step 2: Augment the images with rotation. For example, 
one can rotate images by 45°, 90°, and 180°, and triple the 
new useable images. The images are also enhanced by 
image enhancement software (see Fig. 2).

Step 3: Collect and randomly divide the images into 
four equal-sized subsets within each type of polyp. 
Assigned each subset with an index number k. For exam-
ple, in 4-fold cross validation there are four subsets, k = 1, 
2, 3, and 4.

Step 4: Construct deep-learning datasets. Every dataset 
was constructed using the training, validation, and test-
ing sets. All deep learning datasets were named with the 
subsets generated in Step 3. In 4-fold cross validation, 
there are 12 heterogeneous deep-learning datasets, that 
is i = 1.12.

Step 5: Output the deep learning building datasets into 
Heuristic 1. End the Algorithm 1.

Nate that, we named each deep leaning dataset i based 
on the subset index k. For example, if a training set con-
sisted of subsets 1 and 2, a validation set is of subset 3, 
and a test set is subset 4. The deep learning dataset was 
named 1234.

Framework of TensorFlow
In this study, TensorFlow was conducted in the Ana-
conda environment using Jupyter Notebook and Python. 
We used a CNN model, called Inception V4, which 
includes Softmax, Dropout, Average Pooling, Incep-
tions, and Reduction layer. The basic idea of inception 
includes multiple convolution layers, average pooling 
layers, and activation functions (such as Rectified Linear 
Unit (ResLU)). Softmax and dropout were used to pre-
vent model overfitting. The convolution layer extracts 
characteristics from the image. The activation func-
tions introduced weights for the standard deviations and 
added a small value to the bias [21]. The active functions 
can help generate a nonlinear combination of the con-
volution layer and thus activate the neurons and avoid 
dead neurons. The pooling layer retained significant 
characteristics and avoided overfitting problems [22] 
These three parameters—learning rate for the activation 
function, batch size, and epoch for convolution—must 
be optimized within the deep learning process. Detailed 
information on Inception V4 can be found in the study 
by Szegedy et al. [18]. We implemented Inception V4 as 
the convolution neuron network model because of its 
consistency and performance in our preliminary model-
ing experiments. The deep learning model-building pro-
cedure is summarized in Heuristic 1.

Fig. 2 Rotated and enhanced images
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The Heuristic of the deep learning model building.

Heuristic 1
Step 1: Collect data and mark the true state of the images.

Step 2: Input data into Algorithm 1.
Step 3: Index the deep learning datasets from i = 1… 12 

in 4-fold cross validation method. For convenience, we 
label subsets for each deep learning dataset as j = 1,2,3,4. 
Note that j represented the order of the subsets in the 
deep learning dataset, and it is not quals to k.

Step 4: initiate the Heuristic by set i = 1 and go to step 5.
Step 5: Input deep learning dataset i. Go to step 6.
Step 6: Input subsets j = 1, 2, and 3 into TensorFlow 

model. The subsets j = 1 and 2 are training sets, and the 
validation set is set j = 3. Find the best parameters (learn-
ing rate, batch size, and epoch) for the deep learning 
model in Step 6, and output the model to Step 7.

Step 7: Input subsets j = 4 into the deep learning model 
built in Step 7 to test its accuracy. Record the testing 
results for deep learning dataset i.

Step 8: Collect the model testing results. If i = n, stop 
and output all testing results from the deep learning 
models. Otherwise, set i = i + 1 and return to Step 5.

Step 9: Collected all the testing results for statistical 
analysis.

In Fig.  3 below, we present our overall AI modeling 
framework.

Statistical analysis
A percent confidence interval analysis was implemented 
to benchmark the consistency of the deep learning 
model. To highlight the classification power of our deep 
learning model, discriminability indicators such as sensi-
tivity, specificity, and area under the curve (AUC) were 
calculated. We also present a confusion matrix to sum-
marize these indicators. All statistical analyses were con-
ducted using Phyton 3.7.

A confusion matrix was constructed by defining the 
correct classification if the model could identify an image 
containing HP or adenoma. That is, if an SSA image is 
classified as TA by our model in our confusion matrix, 
it is still recorded as a true positive, and vice versa. In 
contrast, if an SSA(TA) image is classified as HP by our 
model, then we record it as a false negative, and vice 
versa (see Table 1).

From the calculation of the confusion matrix, we can 
calculate sensitivity and specificity as Eqs.  (1) and (2), 
respectively. The result of the sensitivity and specificity 
and the area under the curve (AUC) serve as an indicator 
of the model discriminability.

 
Sensitivity =

True Positive

True Positive+ FalseNegative
 (1)

 
Specificity =

TrueNegative

TrueNegative+ False Positive
 (2)

As described in the method, we used the classical 4-fold 
method to check for overfitting in the deep learn-
ing model. A 4-fold method is a commonly adopted 
cross-validation method for deep learning. A 5-fold or 
even k-fold method can be used. We adopted the 4-fold 
method for its simplicity and efficiency. As described in 
Heuristic 1, the augmented data were randomly split into 
4 equal-size subsets. Two of the subsets were assigned to 
build the model: one subset served as a validation set to 
set the parameters, and one test was set to test the accu-
racy of the final model. The results were recorded and 
assessed based on accuracy, sensitivity, specificity, and 
AUC. In addition to the 4-fold method, we also validated 
our AI model with two different aspects including other 
popular method such as ResNet50 and MobileNetV2 
instead of Inception V4, and enhanced coloscopy images 
such as NBI images.

Since we aimed to design a method for healthcare 
institutes to build their own deep learning model, our 
method should be easy to build and execute. The Incep-
tion V4 is a stable and cost efficient deep-learning model 
and the white-light images are available for any brand of 
endoscopy. The execution environment is summarized in 
Table 2. As can be observed, our execution environment 
requirements are affordable for any healthcare institu-
tion. This is another advantage of the proposed method.

Results
Results for the proposed AI modeling framework
The input images of TensorFlow are the outputs of the 
preprocessing algorithm (Algorithm I), and in this sec-
tion, we only present the results for white-light images. 
The initial deep-learning building datasets are summa-
rized in Table 3, and the execution environment is sum-
marized in Table 2.

The parameter selection was based on the results of the 
validation set. We discovered that the optimal validation 
accuracy occurred when the learning rate was 0.0001, 
batch size was four, and epoch was 77. The validation 
accuracy was approximately 95%. The learning rate and 
batch size were applied to all the deep-learning building 
datasets. Each set automatically optimized the number 
of epochs. Potential parameters are shown in yellow. We 
selected a batch size of 4, a learning rate of 0.0001, and 
epoch of 77 as our optimal model parameters based on 
validation accuracy. It is worth noting that the accuracy 
of the AI model for NBI did not outperform that of white 
light images. Because white exhibits promising accuracy, 
we decided to pursue an AI model that makes a classi-
fication with only white-light images. This result contra-
dicts with that found in the current literature. Azam et al. 
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[8] used an AI model to detect laryngeal squamous cell 
carcinoma; the white light and NBI images both showed 
promising accuracy. We hypothesize that this difference 
is because of image augmentation and pre-processing 
(Algorithm 1). White light images may contain more fea-
tures and can be enhanced by image processing. While it 

Table 1 Confusion matrix
True Condition
SSA/TA HP

Predicted Condition SSA/TA True Positive False Positive
HP False Negative True Negative

Fig. 3 AI modeling framework
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is possible to process the images further, NBI’s AI model 
classification performance might improve. However, in 
practice, the AI model with white-light images as input is 
better than that with NBI. NBI requires switching lights 

and suffers from a focusing problem. In this research, 
we focus only on white-light images. Table 4 The param-
eter selection and the validation results. Note that while 
the training time is report, the testing time per image is 
almost instant after the model is built since the image is 
classified one-by-one by the resulting AI model.

As shown in Table  5, for all deep learning models, 
the accuracy of the validation sets ranged from 94.15 to 
96.33%, with an average accuracy of 95.34%. This shows 
that deep learning models hold consistently high accu-
racy for the validation sets. The model-building method 
was consistently effective. We also observed that the 
number of epochs varied from dataset to dataset, but the 
accuracy remained consistent. In other words, our deep 
learning heuristic helps us produce stable results across 
different deep learning datasets. A 99% confidence inter-
val (CI) is added to illustrate the stability of our results. 
As shown in Table  5, the 99% CI ranges from 94.78 to 
95.91%. The values of the datasets 1324 and 1423, 1432, 
and 2413 were below the confidence interval. However, 
even the lowest accuracy rate of 94.16% indicates that the 
model’s accuracy is promising.

Table 6 summarizes the accuracy of the testing sets and 
the number of misclassifications for each testing set. The 
testing accuracy ranged from 93 to 96%, with an aver-
age of 94.43%. The 99% confidence interval ranged from 
93.73 to 95.12%. Datasets 1432, 2413, and 3412 were 
below the confidence interval. Note that among these 
models, two out of the three models use subset 2 as the 
testing set. Hence, subset 2 may contain images that are 
difficult to classify correctly.

Since we classified the lesions into three classes, the 
model might have misclassified SSA as adenoma. The 
misclassification types and their percentages among all 
misclassifications are summarized in Table  7. The per-
centage misclassification was calculated as the number of 

Table 2 The hardware and software environment of deep 
learning model

Item Content
Hardware GPU Tesla P100

GPU RAM 16.0 GB
Software Windows Windows 10 pro

Operation System type x64 processer
NVIDIA NVIDIA 441.22
CUDA CUDA 10.2
Language Environment Anaconda3 Jupyter Notebook
Language Python 3.7
TensorFlow version TensorFlow-GPU 1.14

Table 3 The total number of input images for different subsets
Hyper SSA Ademola

White light Training 514 846 118
Validation 257 423 59
Testing 257 423 59

NBI Training 506 568 142
Validation 238 284 71
Testing 238 284 71

Table 4 Parameters tested by validation process
Learning rate Batch 

size
Epoch Validation 

Accuracy
Training 
Time

0.045 4 6 0.57472825 160 to 170 s
0.01 4 6 0.57472825 160 to 170 s
0.005 4 6 0.57472825 160 to 170 s
0.001 4 6 0.57472825 160 to 170 s
0.0005 4 6 0.57472825 160 to 170 s
0.0001 4 77 0.95788044 160 to 170 s
0.0001 8 79 0.94972825 130 to 140 s

Table 5 The accuracy rate for the validation sets of each dataset
Deep learning dataset name epoch Validation accuracy rate
1234 69 0.96195650
1243 66 0.95788044
1324 66 0.94429350
1342 69 0.95380437
1423 93 0.94701087
1432 86 0.94565219
2314 83 0.96331519
2341 95 0.96059781
2413 97 0.94157606
2431 97 0.95788044
3412 85 0.95788044
3421 39 0.94972825

Average 0.95346467
Std. 0.007512
99% CI 0.9534 ± 0.005586

Table 6 The accuracy of testing sets
Deep learning dataset name Testing accuracy Misclassification
1234 0.9472 39
1243 0.9459 40
1324 0.9405 44
1342 0.9459 40
1423 0.9445 41
1432 0.9323 50
2314 0.9513 36
2341 0.9608 29
2413 0.9310 51
2431 0.9472 39
3412 0.9310 51
3421 0.9540 34
Average 0.9443 41.1667
Standard Deviation 0.0093 6.8601
99% CI 0.9443 ± 0.0069 41.17 ± 4.3587
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images of the misclassification type in the current testing 
set over the total number of misclassifications in the cur-
rent testing set. As shown in Table 6, the most unwanted 
misclassification of SSA or adenoma as HP only consists 
of a small part (16% on average) of all misclassification 
types. While the classification power of our model to sep-
arate SSA and TA is superior to only classifying adenoma 
and HP, we should investigate the discrimination ability 
of TA and HP.

As Table  8 shows, the sensitivity ranged from 0.9772 
to 0.9979, with an average of 0.9862. The standard devia-
tion of the sensitivity was small, which indicates that our 
results are consistent. The specificity of our model ranged 
from 0.9339 to 0.9883, with an average value of 0.9712. 
The AUC was also high, with an average value of 0.9787. 

All three discrimination indicators demonstrate that our 
model performs consistently and accurately. Notably, the 
sensitivity of datasets 1432 and 3412 was lower than the 
95% CI, yet still over 97%.

Results for variants of the proposed AI modeling 
framework
To enrich our validation analysis, we compare several 
variants of the proposed AI framework. We first conduct 
the analysis under same AI modeling framework while 
inputting the NBI images instead of wight-light images. 
Second, we implement other popular CNN-based AI 
models such as ResNet 50 and MobileNetV2 to further 
illustrate the suitability of the Inception V4.

Traditionally, endoscopists have used NBI to help 
classify polyp types. Thus, we validate our AI modeling 
framework with NBI images. The parameter selection 
and validation results are listed in Table  9. As we can 
observed from Table 9, our white-light image model out-
performed the NBI images. As discussed in the NBI is not 
available in every hospital or clinic and exhibits low accu-
racy. We conclude that our white-light model is sufficient 
for building a polyp classification model. Thus, in this 
study, we found that without NBI images, we could still 
build a deep-learning model with high discriminability.

There is various other CNN-based classification mod-
els that can be implemented in the Tenser-Flow. As afore-
mentioned, the ResNet50 is known to aim for higher 
accuracy while requiring more computation power, and 
the MobileNetV2 aims for acceptable accuracy while 
requiring limited computation power. We select Incep-
tion V4 for its stability, high accuracy, and limited size of 
parameters. To further validate the suitability of Incep-
tion V4, we conduct a comparison study between the 
Inception V4, ResNet50, and MobileNetV2. Table  10 
summarizes the performance of the parameter selection 
validation data set. From Tables  9 and 10, we conclude 

Table 7 The percent of each type of misclassification among all 
types of misclassification
Deep learning dataset 
name

SSA and TA 
were misclassi-
fied as HP

HP misclas-
sified as SSA 
or TA

SSA and 
TA self-
misclas-
sified

1234 2.56% 17.95% 79.49%
1243 15.00% 25.00% 60.00%
1324 13.64% 11.36% 75.00%
1342 22.50% 25.00% 52.50%
1423 17.07% 17.07% 65.85%
1432 22.00% 18.00% 60.00%
2314 11.11% 19.44% 69.44%
2341 24.14% 13.79% 62.07%
2413 15.69% 33.33% 50.98%
2431 15.38% 5.13% 79.49%
3412 21.57% 15.69% 62.75%
3421 11.76% 8.82% 79.41%
Average 16.04% 17.55% 66.42%
Standard Deviation 6.08 7.69 10.18
95% CI ± 3.86 ± 4.89 ± 6.47

Table 8 Sensitivity and Specificity for each dataset
Deep learning dataset name Sensitivity Specificity AUC
1234 0.9979 0.9728 0.9853
1243 0.9876 0.9611 0.9743
1324 0.9876 0.9805 0.9841
1342 0.9813 0.9611 0.9712
1423 0.9855 0.9728 0.9791
1432 0.9772 0.9650 0.9711
2314 0.9917 0.9728 0.9822
2341 0.9855 0.9844 0.9850
2413 0.9834 0.9339 0.9586
2431 0.9876 0.9922 0.9899
3412 0.9772 0.9689 0.9730
3421 0.9917 0.9883 0.9900
Average 0.9862 0.9712 0.9787
Standard Deviation 0.0060 0.0155 0.0093
95% CI ± 0.0038 ± 0.0098 ± 0.0059

Table 9 NBI images model building accuracy results
learning rate batch 

size
Epoch Validation 

Accuracy 
rate

Training time

0.0001 4 83 0.88682431 About 13 to 14 s.
0.00005 4 94 0.87500000 About 13 to 14 s.
0.0001 4 119 0.88513511 About 13 to 14 s.
0.00005 4 147 0.88513511 About 13 to 14 s.
0.0001 8 47 0.88851351 About 13 to 14 s.
0.00005 8 142 0.88851351 About 13 to 14 s.

Table 10 Accuracy of other CNN-based models
Model Data Set Accuracy
Inception V4 Validation 0.9497
ResNet 50 Validation 0.9267
MobileNetV2 Validation 0.9233
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that our proposed AI model framework is at least on par 
with other popular CNN-models base model and/or with 
enhanced images.

Discussion
The adenoma–carcinoma sequence was first described by 
Morson [23] in 1974. The removal of all colonic precan-
cerous lesions during colonoscopy is a consensus world-
wide. The “resect and discard” policy is recommended 
not only to reduce the risks of colon polyp removal 
procedures such as bleeding or perforation but also to 
decrease the associated costs of the pathological exami-
nation. To date, various image-enhanced endoscopy sys-
tems have been developed to improve polyps in clinical 
practice. Many papers have reported that AI can be used 
to help identify traditional adenomas [24] other than ser-
rated colon polyps. However, 20–30% of colorectal can-
cers originate from serrated lesions [25]. As, Hirata et.al 
[26] report in their study, even experienced professionals 
found it difficult to accurately distinguish between SSAs 
and HPs using magnifying colonoscopy [26]. As deep-
learning research progress, artificial intelligence (AI) 
is widely used in the interpretation of medical images. 
Therefore, we conducted this study to show how to com-
bine a data argumentation heuristic and existing deep-
learning model AI can help healthcare institute to build 
an in-house differential diagnosis of serrated colon pol-
yps with white-light images.

SSA is not as commonly observed as TA or HP; thus, 
the size of the dataset is limited. To address this issue, 
we propose a method that combines image preprocess-
ing, TensorFlow, and Inception V4 to build a polyp clas-
sification model. Using our proposed method, we built a 
highly accurate classification model (avg. AUC = 97.87%), 
with a sample consisting of 257 images of hyperplastic 
polyps (HP), 423 images of SSA, and 60 images of TA 
under white light. It is worth noting that our method 
allows the endoscopist to build/use the model with a lim-
ited sample size using white light images from ordinary 
endoscopy, not NBI or magnified images. Our AI model 
with only white-light images outperform the SSA and TA 
classification model build in Nemoto et al. [10], which 
obtain accuracy ranges from 77 to 87%. This might be 
due to the fact we combine the data argumentation with 
deep-learning model. The data argumentation allows the 
deep-learning model to extract more features, thus, cre-
ate a more accuracy AI model.

In contrast, one of the significant benefits of accurately 
classifying the polyp type is that it helps relieve the finan-
cial burden of patients. The cost of removing an SSA or 
TA is substantial, and surgery may lead to unwanted side 
effects, such as internal bleeding. Siau et al. [27] found 
that it takes approximately 3.1 years and 265 procedures 
for an endoscopist to be fully aware of the characteristics 

of the different lesions. Hence, our model can assist 
endoscopists in reducing the healthcare industry in their 
endoscopist training and execution times.

According to current literature, most AI models require 
the use of magnifying colonoscopy or the combina-
tion with NBI for optimal performance. In contrast, our 
model can achieve good results with simple white-light 
colonoscopy alone. This outcome limits the convenience 
and widespread applicability of their models [9]. One of 
the contributions of our study is that our AI model works 
better for white light than NBI images. This contradicts 
the results of Lui et al. [8] ’s meta-analysis. In their paper, 
the NBI images were superior to white light images (98% 
vs. 84% accuracy). We argue that our AI model is supe-
rior to those of previous studies in two ways: (1) unequal 
sampling and (2) image preprocessing. We first adopt 
unequal sampling to allow the AI model to extract fea-
tures for the SSA. Then, in Algorithm 1, we enhance all of 
the features with image per processing. These two steps 
help the AI model extract the most features and build a 
more accurate classification model.

While our AI model exhibits a high accuracy rate with 
white light images, this study is not without limitations. 
Our first limitation is that all our data are collected in 
the Lin-Kou Chang Gung Memorial Hospital. This might 
limit our model generality in terms of race. Second, our 
AI model is trained with unequal sampling data sets, 
this might increase the difficulty of future updates of 
the model. Third, our sample is small, but it also is our 
study’s strong point. However, applying our method to 
an enlarged dataset is a possible future research direc-
tion. We also encourage future researchers to develop 
an experimental design that applies the k-fold method to 
validate the proposed AI model.

Conclusion
Conclusion and contribution of the study
In this study we proposed a AI modeling framework 
combining a data argumentation heuristic and a deep-
learning model that can build an efficient AI model with 
small data set of 257 white-light images of HP, 423 white-
light images of SSA, and 60 white-light images of TA. 
With the result of our white-light images data set, we can 
conclude that our model can effectively help physicians 
distinguish between TA, SSA, and hyperplastic polyps. 
Our deep learning model provided high sensitivity (avg. 
98.62%), specificity (97.12%), and discriminability (avg. 
AUC = 97.87%). Our method also requires only open-
source packages such as TensorFlow and programming 
languages such as Python. From the healthcare institu-
tion’s perspective, the proposed AI modeling framework 
requires only open-source packages such as TensorFlow 
with Inception V4 and programming languages such 
as Python. Furthermore, our procedure can construct 
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an efficient model with a small data set of white-light 
images. The simplicity of the AI modeling method and 
input image requirement allows the healthcare industry 
to quickly implement our method to build its models or 
modify our method to meet its needs.

From the endoscopist perspective, since our model 
only requires highlight images for the junior endoscopist, 
it is more user-friendly than the model that requires NBI 
images. Furthermore, the in-house model can assist the 
healthcare industry in more efficiently training junior 
endoscopists to classify colonic polyps and reduce train-
ing time and cost correctly. For endoscopists, the deep 
learning model reduces their time and workload while 
executing coloscopy so that they can provide high-quality 
services to the patient.

Limitation and future study
While our study can significantly help healthcare insti-
tution and endoscopist, this study is not without limita-
tions. First, our model is based on images which needed 
to be collected by the physician. If the healthcare institu-
tion implement both Node-RED to automatically upload 
the coloscopy images during the examination section, 
and link the pathological report with the upload images, 
our AI model can automatically train and improved. 
Furthermore, our current AI model is based only on the 
images, researchers can also find another data argumen-
tation method which can be applied to video and build 
a model that can classified and detect the polyps during 
the colonoscopy without human interruption. Future 
researchers can also develop a more powerful deep-
learning algorithm which can execute the real-time polyp 
location and classification process during the endoscopy 
section.
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