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Abstract 

Background Liver fibrosis is a major risk factor for hepatocellular carcinoma (HCC). We have previously reported 
that differentially methylated regions (DMRs) are correlated with the fibrosis stages of metabolic dysfunction-asso-
ciated steatotic liver disease (MASLD). In this study, the methylation levels of those DMRs in liver fibrosis and subse-
quent HCC were examined.

Methods The methylation levels of DMRs were investigated using alcoholic cirrhosis and HCC (GSE60753). The data 
of hepatitis C virus-infected cirrhosis and HCC (GSE60753), and two datasets (GSE56588 and GSE89852) were used 
for replication analyses. The transcriptional analyses were performed using GSE114564, GSE94660, and GSE142530.

Results Hypomethylated DMR and increased transcriptional level of zinc finger and BTB domain containing 38 
(ZBTB38) were observed in HCC. Hypermethylated DMRs, and increased transcriptional levels of forkhead box K1 
(FOXK1) and zinc finger CCCH-type containing 3 (ZC3H3) were observed in HCC. The methylation levels of DMR of kaz-
rin, periplakin interacting protein (KAZN) and its expression levels were gradually decreased as cirrhosis progressed 
to HCC.

Conclusions Changes in the methylation and transcriptional levels of ZBTB38, ZC3H3, FOXK1, and KAZN are important 
for the development of fibrosis and HCC; and are therefore potential therapeutic targets and diagnostic tools for cir-
rhosis and HCC.
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Background
Hepatocellular carcinoma (HCC) is a major cause of 
morbidity and mortality worldwide, with an increasing 
incidence rate [1]. Its most important risk factors are 
hepatitis B virus (HBV) and hepatitis C virus (HCV). 
Effective treatments against chronic infections with HBV 
or HCV have significantly reduced the incidence of viral-
associated HCC; however, the incidence of HCC associ-
ated with metabolic dysfunction-associated steatotic liver 
disease (MASLD), formerly known as nonalcoholic fatty 
liver disease (NAFLD) [2] remains high. Alcoholic steato-
hepatitis (ASH) is another important risk factor for HCC. 
Liver fibrosis characterizes disease progression in these 
chronic liver diseases, and the fibrosis level is a major risk 
factor for HCC development [3].

MASLD has been prioritized, and genetic and epi-
genetic analyses have been performed. Our previous 
genome-wide association studies and those of others 
have established a definitive genetic background associ-
ated with fibrosis stages [4–6]. Genetic variations affect 
DNA methylation levels and gene expression, indicating 
that epigenetic changes are important for MASLD devel-
opment and progression [7]. To evaluate the effect of 
epigenetic status on fibrosis levels, whole hepatic mRNA 
sequencing was performed, followed by weighted gene 
co-expression network analysis (WGCNA) [8]. Two core 
gene networks associated with MASLD progression were 
identified, one of which was a scale-free network with 
four hub genes associated with increased fibrosis and 
tumorigenesis, while the other was a random network 
associated with mitochondrial dysfunction. Furthermore, 
genome-wide hepatic DNA methylation analysis has 
identified 610 differentially methylated regions (DMRs) 
associated with fibrosis progression in MASLD [9]. A 
method to evaluate DMR networks has been developed, 
and two DMR networks associated with MASLD pro-
gression were detected [10]. The methylation levels of 
DMRs in one of the networks (Network 1) decreased with 
fibrosis progression. Network 1 included genes involved 
in transcriptional regulation, cytoskeleton organiza-
tion, and cellular proliferation and is thus potentially 
associated with tumorigenesis and fibrosis. Meanwhile, 
Network 2 was potentially associated with metabolic dys-
function. The methylation levels of DMRs in Network 2 
increased with fibrosis progression.

Next, the possible occurrence of DMRs associated with 
fibrosis in MASLD in other liver diseases, such as viral 
hepatitis, cirrhosis, and HCC, was investigated. Network 
2 was observed in viral hepatitis and HCC, with three 
potential hub genes: fatty acid binding protein 1 (FABP1), 
serum/glucocorticoid regulated kinase 2 (SGK2), and 
hepatocyte nuclear factor 4 α (HNF4A) [11]. FABP1, 
SGK2, and HNF4A methylation levels in cirrhotic livers 

were higher than those in normal livers, and their methyl-
ation levels in HCC samples were comparable to normal 
levels. Network 1 was not observed in viral hepatitis or 
HCC; however, it included zinc finger and BTB domain 
containing 38 (ZBTB38) [12] and formin 1 (FMN1) genes 
[13], which may play important roles in the development 
of fibrosis and cancer. Thus, it is important to investigate 
the possible relationship between individual DMRs in 
Network 1 and liver fibrosis and the potential occurrence 
of HCC in various chronic liver diseases. In this study, 
the methylation levels of DMRs in Network 1 in the livers 
of cirrhosis and HCC patients were examined.

Methods
DNA methylation analysis datasets
For the DNA methylation analysis, the hepatic DNA 
methylation data of normal, alcoholic cirrhosis, and alco-
holic HCC (National Center for Biotechnology Informa-
tion [NCBI] Gene Expression Omnibus [GEO] accession 
number GSE60753) [14] were used. For replication anal-
yses, hepatic DNA methylation data of normal, HCV-
infected cirrhosis, and HCV-infected HCC (GSE60753), 
those of normal, cirrhosis, and HCC (GSE56588) [15], 
and those of viral hepatitis and HCC (GSE89852) [16] 
were used. DNA methylation levels in these datasets 
were determined using an Infinium HumanMethyla-
tion450 BeadChip (Illumina, San Diego, CA, USA). The 
β-value was used to estimate the methylation level of the 
CpG locus using the ratio of intensities between methyl-
ated and unmethylated alleles.

Extraction of DMRs associated with both fibrosis and HCC
The important DMRs associated with both fibrosis and 
HCC were extracted from 180 DMRs in Network 1, 
which has been previously reported to be associated 
with fibrosis progression in MASLD [9, 10]. Screening 
of DMRs related to fibrosis and HCC was performed 
as illustrated in Fig.  1. The GSE60753 dataset included 
methylation levels for 34 normal liver samples, 21 alco-
holic and 39 HCV-infected cirrhotic liver samples, and 
15 alcohol-related and 12 HCV-infected HCC liver sam-
ples [14]. Using this database as the initial screening 
tool, the methylation levels of DMRs between normal vs. 
alcoholic cirrhosis and normal vs. alcoholic HCC were 
compared. This study identified the DMRs associated 
with both fibrosis and HCC; the change in methylation 
levels in cirrhosis and HCC should be in the same direc-
tion. Significantly hypomethylated or hypermethylated 
DMRs were extracted from livers with chronic diseases 
(alcoholic cirrhosis and alcoholic HCC) compared with 
those from normal livers. For the second screening, the 
methylation levels of normal, HCV-infected cirrhosis and 
HCV-infected HCC in GSE60753 were used. In addition, 
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the GSE56588 dataset, which included the data from 11 
normal, 10 cirrhotic, and 224 HCC liver samples [15], 
and the GSE89852 dataset, which included 37 viral hepa-
titis and 37 HCC liver samples [16] were analyzed. After 
screening, 17 DMRs related to liver fibrosis and HCC 
were identified.

Evaluation of the relationship among 17 identified DMRs, 
liver fibrosis, and HCC
To confirm whether the 17 identified DMRs were asso-
ciated with HCC, we examined the methylation levels 
of normal culture hepatocytes (n = 17) and established 
liver cancer cell lines (n = 8) reported in GSE60753) 
[14]. For further evaluation of these DMRs, we inves-
tigated the transcriptional levels using the following 
RNA sequencing datasets: GSE114564 (15 normal, 20 
chronic hepatitis, 10 cirrhosis, 10 dysplastic nodules, 

18 early HCC, and 45 advanced HCC liver samples) 
[17], GSE94660 (21 pairs of tumor and non-neoplas-
tic liver tissues of patients with HBV-HCC) [18], and 
GSE142530 (12 normal, 10 alcoholic hepatitis, and 6 
alcoholic cirrhotic liver samples) [19].

Statistical analysis
A clustering dendrogram of the samples for the 54 
CpG sites in 12 DMRs from the GSE60753 dataset was 
constructed based on their Euclidean distance using 
WGCNA [20]. Methylation levels of DMRs between the 
two groups were evaluated using Hotelling’s T-squared 
test (Hotelling R-package, version 1.0–8). Compari-
sons of the transcriptional levels between liver dis-
ease groups were performed using analysis of variance 
(ANOVA), along with pairwise comparisons of each 

Fig. 1 Screening procedures for extracting DMRs related to fibrosis and HCC
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liver disease versus normal liver using the t-test (ISwR 
R-package, version 2.0–8).

Results
Identification of DMRs associated with both liver fibrosis 
and HCC
Liver fibrosis is a major cause of HCC development from 
viral hepatitis, ASH, and MASLD. We have previously 
reported 610 DMRs associated with fibrosis stages in 
patients with MASLD [9]. These DMRs were clustered 
into Networks 1 and 2 [10]. The methylation levels of 
genes in these networks correlated with increased fibrosis 
stages in MASLD. Network 2 was persistent in viral hep-
atitis, cirrhosis, and HCC, with three potential hub genes 
(FABP1, SGK2, and HNF4A) [11]. Network 1 was not 
observed in viral hepatitis, cirrhosis, or HCC. The meth-
ylation levels of each DMR in Network 1 were strongly 
associated with fibrosis stages in patients with MASLD; 
thus, individual DMR in Network 1 was prioritized to 

examine the possible alterations in its methylation level 
in liver fibrosis and whether these alterations persist after 
HCC.

After screening for DMRs using the method shown 
in Fig.  1, 17 DMRs were identified, of which 12 were 
hypomethylated in alcoholic cirrhosis and HCC and 5 
were hypermethylated in alcoholic cirrhosis and HCC 
(Figs. 2, 3, 4, 5, Supplementary Fig. 1). The hypomethyl-
ated DMRs observed in alcoholic cirrhosis and alcoholic 
HCC were found in ZBTB38, sulfotransferase family 2B 
member 1 (SULT2B1), FMN1, aldehyde dehydrogenase 
3 family member B2 (ALDH3B2), solute carrier fam-
ily 6 member 19 (SLC6A19), kazrin, periplakin interact-
ing protein (KAZN), long intergenic non-protein coding 
RNA 1550 (LINC01550), potassium voltage-gated chan-
nel subfamily Q member 1 (KCNQ1), troponin T3, fast 
skeletal type (TNNT3), PNKD metallo-beta-lactamase 
domain containing (PNKD), E74 like ETS transcrip-
tion factor 1 (ELF1), and tropomyosin 4 (TPM4) genes. 

Fig. 2 Methylation and transcriptional levels of ZBTB38 in normal, cirrhotic, hepatocellular carcinoma (HCC) livers, and HCC cell lines. A The 
methylation levels of ZBTB38 in liver samples from control subjects, patients with alcoholic cirrhosis, and patients with HCC due to chronic 
alcoholism. P-values were calculated using Hotelling’s T-squared test. B The methylation levels of ZBTB38 in liver samples from control subjects, 
patients with HCV-infected cirrhosis, or HCC. P-values were calculated using Hotelling’s T-squared test. C The methylation levels of ZBTB38 in normal 
culture hepatocytes and HCC cell lines. P-values were calculated using Hotelling’s T-squared test. D The transcriptional levels of ZBTB38 in normal, 
chronic hepatitis, cirrhosis, dysplastic nodule, early HCC, and advanced HCC liver samples. P-values were calculated for each disease versus normal 
liver. Data are expressed as the mean ± standard deviation. Data were analyzed using the GSE60753 and GSE114564 datasets
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Hypomethylated DMRs were confirmed in HCV-
infected cirrhosis and HCV-infected HCC, along with 
two other data sets of cirrhosis and HCC (GSE56588 and 
GSE89852) (Figs. 2, 3, 4, 5, Supplementary Fig. 1). Hyper-
methylated DMRs observed in alcoholic cirrhosis and 
alcoholic HCC were found in forkhead box K1 (FOXK1), 
zinc finger CCCH-type containing 3 (ZC3H3), nuclear 
factor IX (NFIX), histone deacetylase 4 (HDAC4), and 
tetraspanin 9 (TSPAN9) genes. Hypermethylated DMRs 
were confirmed in HCV-infected cirrhosis and HCV-
infected HCC, as well as in two other data sets of cirrho-
sis and HCC (GSE56588 and GSE89852) (Figs. 2, 3, 4, 5, 
Supplementary Fig. 1).

Methylation levels of the 17 identified DMRs in HCC cell 
lines
To determine whether cell culture models mimic 
in  vivo methylation changes, we examined the meth-
ylation levels of the 17 identified DMRs in HCC 

cell lines. The datasets GSE60753 includes meth-
ylation levels of normal culture hepatocytes (n = 17) 
and established liver cancer cell lines (n = 8) [14]. 
The methylation levels of DMRs in ZBTB38, FMN1, 
ALDH3B2, KAZN, KCNQ1, TNNT3, and ELF1 genes 
were significantly lower in HCC cell lines, while those 
in SULT2B1, SLC6A19, LINC01550, PNKD, and TPM4 
genes did not show significant differences (Figs.  2, 3, 
4, 5, Supplementary Fig. 2). The methylation levels of 
DMRs in FOXK1, ZC3H3, NFIX, HDAC4, and TSPAN9 
genes were significantly higher in HCC cell lines 
(Figs.  2, 3, 4, 5, Supplementary Fig.  2). The methyla-
tion levels of 12 DMRs were changed in HCC cell lines 
as observed in  vivo. Further analysis was conducted 
using these 12 DMRs.

Transcriptional levels of genes in the 12 DMRs
We investigated the transcriptional levels of the genes in 
the 12 DMRs and determined whether these DMRs affect 

Fig. 3 Methylation and transcriptional levels of KAZN in normal, cirrhotic, hepatocellular carcinoma (HCC) livers, and HCC cell lines. A The 
methylation levels of KAZN in liver samples from control subjects, patients with alcoholic cirrhosis, and patients with HCC due to chronic 
alcoholism. P-values were calculated using Hotelling’s T-squared test. B The methylation levels of KAZN in liver samples from control subjects, 
patients with HCV-infected cirrhosis, or HCC. P-values were calculated using Hotelling’s T-squared test. C The methylation levels of KAZN in normal 
culture hepatocytes and HCC cell lines. P-values were calculated using Hotelling’s T-squared test. D The transcriptional levels of KAZN in normal, 
chronic hepatitis, cirrhosis, dysplastic nodule, early HCC, and advanced HCC liver samples. P-values were calculated for each disease versus normal 
liver. Data are expressed as the mean ± standard deviation. Data were analyzed using the GSE60753 and GSE114564 datasets
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transcriptional levels in fibrotic livers and HCC. We 
used the transcriptional levels from the RNA sequenc-
ing datasets GSE114564, which included 15 normal, 20 
chronic hepatitis, 10 cirrhosis, 10 dysplastic nodules, 18 
early HCC, and 45 advanced HCC liver samples [17]. 
Replication was performed using RNA sequencing data 
sets, GSE94660 (21 pairs of tumor and non-neoplastic 
liver tissues of patients with HBV and/or HCV) [18], 
and GSE142530 (12 normal, 10 alcoholic hepatitis, and 
6 alcoholic cirrhotic liver samples) [19]. The expres-
sion of KAZN significantly decreased in HCC; notably, 
KAZN’s expression was also decreased in dysplastic nod-
ules but became more pronounced as HCC progressed. 
The expression levels of the KAZN were lower in cirrho-
sis (Figs.  2, 3, 4, 5, Supplementary Fig.  3). These results 
suggest that the epigenetic changes KAZN are associ-
ated with the progression of liver fibrosis and tumo-
rigenesis. The expression levels of the ZBTB38, FOXK1, 
and ZC3H3 were significantly increased in HCC (Fig. 2, 

Supplementary Fig.  3), while those of ALDH3B2 and 
TNNT3 were too low to evaluate. The expression of 
FMN1, KCNQ1, ELF1, NFIX, HDAC4, and TSPAN9 did 
not show reproducible significant differences in cirrhosis 
and HCC (Supplementary Fig. 3).

Clustering analysis of normal liver and cirrhotic livers 
from HCV‑infected individuals, or chronic alcoholics, 
and HCC liver samples from HCV‑infected individuals 
or chronic alcoholics
The possibility of using these DMRs to diagnose cirrho-
sis and HCC was investigated. With clustering analysis 
using 54 CpG sites in the 12 DMRs, the samples from 
the GSE60753 dataset [14] were classified accurately 
into normal, cirrhotic, and HCC liver samples (Fig. 6 A). 
Using 22 CpG sites in 4 DMRs, namely KAZN, ZBTB38, 
FOXK1, and ZC3H3, also led to the accurate classifica-
tion of samples (Fig.  6 B). These DMRs did not show a 
clear classification of etiology, alcoholism, or HCV. The 

Fig. 4 Methylation and transcriptional levels of FOXK1 in normal, cirrhotic, hepatocellular carcinoma (HCC) livers, and HCC cell lines. A The 
methylation levels of FOXK1 in liver samples from control subjects, patients with alcoholic cirrhosis, and patients with HCC due to chronic 
alcoholism. P-values were calculated using Hotelling’s T-squared test. B The methylation levels of FOXK1 in liver samples from control subjects, 
patients with HCV-infected cirrhosis, or HCC. P-values were calculated using Hotelling’s T-squared test. C The methylation levels of FOXK1 in normal 
culture hepatocytes and HCC cell lines. P-values were calculated using Hotelling’s T-squared test. D The transcriptional levels of FOXK1 in normal, 
chronic hepatitis, cirrhosis, dysplastic nodule, early HCC, and advanced HCC liver samples. P-values were calculated for each disease versus normal 
liver. Data are expressed as the mean ± standard deviation. Data were analyzed using the GSE60753 and GSE114564 datasets
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CpG sites consisting of each DMR are listed in Supple-
mentary Table 1.

Discussion
Liver fibrosis is a major risk factor for HCC development 
[1, 2]. Epigenetic studies provide a better understand-
ing of the pathogenesis of liver fibrosis, HCC, and vari-
ous other diseases. Despite the several studies conducted 
to this effect [14–16, 21, 22], the changes in methylation 
levels during the progression from liver fibrosis to HCC 
remain controversial. The methylation levels of multi-
ple consecutive CpG sites affect gene expression; thus, 
DMR analysis is more effective for epigenetic research 
[23–25]. We have previously performed DMR analysis 
using MASLD livers predisposed to HCC and identi-
fied 610 DMRs associated with fibrosis stages [9]. These 
DMRs were clustered into two networks (Networks 1 
and 2) [10]. Network 2 contained 430 DMRs and was 
observed in viral hepatitis and HCC populations with 

three potential hub genes (FABP1, SGK2, and HNF4A) 
[11]. DMR methylation level changes observed in liver 
fibrosis reverted to normal levels in HCC [11]; therefore, 
the DMRs in Network 2 were not considered strong risk 
factors for HCC regarding liver fibrosis. Network 1 was 
not observed in cirrhosis and HCC; however, individual 
methylation changes were considered important for liver 
fibrosis and HCC. In this study, 12 DMRs were identified 
and changes in methylation levels were observed in both 
liver fibrosis and HCC. The methylation levels of these 
DMRs were confirmed in HCC cell lines. The methyla-
tion levels of 24 CpG sites in four genes could distinguish 
between normal, cirrhotic, and HCC livers; therefore, 
DMR analysis in liver diseases is important.

We identified 4 genes, namely, KAZN, ZBTB38, 
FOXK1, and ZC3H3, the epigenetic changes of which 
are associated with HCC. ZBTB38, FOXK1, and ZC3H3 
directly participated in epigenetic modifications and 
their transcriptional levels were increased in HCC. 

Fig. 5 Methylation and transcriptional levels of ZC3H3 in normal, cirrhotic, hepatocellular carcinoma (HCC) livers, and HCC cell lines. A The 
methylation levels of ZC3H3 in liver samples from control subjects, patients with alcoholic cirrhosis, and patients with HCC due to chronic 
alcoholism. P-values were calculated using Hotelling’s T-squared test. B The methylation levels of ZC3H3 in liver samples from control subjects, 
patients with HCV-infected cirrhosis, or HCC. P-values were calculated using Hotelling’s T-squared test. C The methylation levels of ZC3H3 in normal 
culture hepatocytes and HCC cell lines. P-values were calculated using Hotelling’s T-squared test. D The transcriptional levels of ZC3H3 in normal, 
chronic hepatitis, cirrhosis, dysplastic nodule, early HCC, and advanced HCC liver samples. P-values were calculated for each disease versus normal 
liver. Data are expressed as the mean ± standard deviation. Data were analyzed using the GSE60753 and GSE114564 datasets
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ZBTB38 is a zinc finger transcription factor (ZNF) that 
is considered a methyl-CpG binding protein [12, 26]. 
Its depletion can either promote, reduce, or not affect 
cell proliferation according to cell type; thus, ZBTB38 
functions as a potential oncogene or tumor suppressor 
in cancer [27, 28].
FOXK1 belongs to a family of evolutionarily conserved 

transcription factors characterized by forkhead DNA-
binding domains; it regulates the expression of target 
genes and contributes to various cellular functions, 
including the cell cycle, cell growth, proliferation, differ-
entiation, programmed death, metabolism, DNA dam-
age, drug resistance, angiogenesis, and carcinogenesis 
[29]. FOXK1 was reported to be upregulated in HCC cells 
compared with levels in normal liver cells, and its down-
regulation reduced cell viability [30], consistent with our 
findings. ZC3H3 participates in m6A-methyladenine 
modification, a post-transcriptional regulatory marker 
in different RNAs, such as messenger RNAs (mRNAs), 

transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), circu-
lar RNAs (circRNAs), micro RNAs (miRNAs), and long 
non-coding RNAs (lncRNAs). m6A-methyladenine RNA 
modification is essential in the initiation and progres-
sion of human cancers [31, 32]. ZBTB38 binds to meth-
ylation sites and ZC3H3 catalyzes m6A methylation of 
RNA, hence, they are involved in epigenetic changes dur-
ing tumorigenesis. FOXK1 plays a role in transcriptional 
regulation. Therefore, increased transcriptional levels of 
ZBTB38, FOXK1, and ZC3H3 may affect the epigenetic 
regulation of several genes, including their own, leading 
to the development of HCC.
KAZN is a desmosomes component associated with 

periplakin [33]. We demonstrated that the methyla-
tion levels of KAZN and its transcriptional levels were 
decreased in HCC. Indeed, its overexpression stimu-
lates terminal differentiation and reduces cell growth, 
whereas its knockdown inhibits differentiation and 
stimulates proliferation [34]. Notably, the methylation 

Fig. 6 Clustering dendrogram of samples based on their Euclidean distance. Clustering dendrogram of the samples for the 54 CpG sites in 12 
differentially methylated regions (DMRs) (A) or 22 CpG sites in 4 DMRs (KAZN, ZBTB38, FOXK1 and ZC3H3) (B) retrieved from the GSE60753 dataset 
and conducted based on their Euclidean distance, using weighted gene co-expression network analysis (WGCNA)
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levels of KAZN were decreased in both cirrhosis and 
HCC and so were its expression levels as the liver pro-
gressed from cirrhosis, dysplastic nodules, and early 
HCC to advanced HCC. The decreased expression of 
KAZN could inhibit differentiation and stimulate the 
proliferation of liver cells in cirrhosis, leading to the 
development of HCC.

The methylation levels of CpG sites in the 12 genes 
could be used to distinguish between normal, cirrhotic, 
and HCC livers, which was possible with CpG sites in 
KAZN, ZBTB38, FOXK1, and ZC3H3. The methylation 
levels of the CpG sites in the 12 or 4 genes could not 
distinguish between alcoholism- and HCV-derived liver 
disease. Therefore, these CpG sites could be potentially 
useful for diagnosing liver cirrhosis and HCC.

Conclusions
DMR analysis identified 4 genes associated with HCC. 
Altered methylation and transcriptional levels of 
ZBTB38, FOXK1, and ZC3H3 could deteriorate tran-
scriptional regulation, resulting in the development of 
HCC. Changes in methylation and transcriptional levels 
of KAZN could alter the cytoskeleton in liver cells, result-
ing in the development of liver fibrosis and, consequently, 
HCC. These genes are potential therapeutic targets and 
diagnostic tools for cirrhosis and HCC.
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