
Badiali et al. BMC Gastroenterology 2012, 12:134
http://www.biomedcentral.com/1471-230X/12/134
RESEARCH ARTICLE Open Access
Adhesion GPCRs are widely expressed throughout
the subsections of the gastrointestinal tract
Luca Badiali1,2, Jonathan Cedernaes1, Pawel K Olszewski1,3, Olof Nylander1, Anna V Vergoni2 and Helgi B Schiöth1*
Abstract

Background: G protein-coupled receptors (GPCRs) represent one of the largest families of transmembrane receptors
and the most common drug target. The Adhesion subfamily is the second largest one of GPCRs and its several
members are known to mediate neural development and immune system functioning through cell-cell and
cell-matrix interactions. The distribution of these receptors has not been characterized in detail in the gastrointestinal
(GI) tract. Here we present the first comprehensive anatomical profiling of mRNA expression of all 30 Adhesion GPCRs
in the rat GI tract divided into twelve subsegments.

Methods: Using RT-qPCR, we studied the expression of Adhesion GPCRs in the esophagus, the corpus and antrum of
the stomach, the proximal and distal parts of the duodenum, ileum, jejunum and colon, and the cecum.

Results: We found that twenty-one Adhesion GPCRs (70%) had a widespread (expressed in five or more segments)
or ubiquitous (expressed in eleven or more segments) distribution, seven (23%) were restricted to a few segments of
the GI tract and two were not expressed in any segment. Most notably, almost all Group III members were
ubiquitously expressed, while the restricted expression was characteristic for the majority of group VII members,
hinting at more specific/localized roles for some of these receptors.

Conclusions: Overall, the distribution of Adhesion GPCRs points to their important role in GI tract functioning and
defines them as a potentially crucial target for pharmacological interventions.
Background
The superfamily of G protein-coupled receptors (GPCRs)
is one of the largest families of membrane bound proteins
in the human genome [1] comprising about 800 members.
Being involved in a high number of physiological func-
tions, including development, neurotransmission, metab-
olism, reproduction, immune responses, and behavior,
GPCRs act as receptors for a great number of different
signals, both endogenous - amines, peptides, proteins,
lipids, nucleotides, neurotransmitters - and sensory, as
organic odorants, pheromones, tastes and photons. Accord-
ing to the phylogenetic analysis of the entire human GPCR
repertoire, five subfamilies make up the GRAFS classifica-
tion system: Glutamate, Rhodopsin, Adhesion, Frizzled/
Taste2 and Secretin [2]. The phylogenetic grouping of
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Adhesion GPCRs, based on the 7TM regions, revealed
that there are seven groups [3].
GPCRs are characterized by having seven α-helices that

span the plasma membrane and form a receptor with a
binding cavity for a ligand; the extracellular segment may
also be able to bind a ligand. The main feature of the
Adhesion family is the long N terminus with complex
domain architecture which is thought to be highly glyco-
sylated and form a rigid structure in the outer part
of the protein. This extracellular portion contains the
GPCR proteolytic site (GPS) and several various domains
that can also be found in other proteins such as lectin,
epidermal growth factor, olfactomedin, immunoglobulin,
thrombospondin and cadherin domains [3]. The GPS
domain is referred to as an intracellular cleavage motif,
pivotal for the protein transport from the endoplasmic
reticulum to the membrane [4], while several other N
terminal domains play important roles in the receptor-
ligand binding as well as cell-to-cell and cell-to-matrix
adhesion [5]. Distinguishing themselves even more from
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other GPCRs, Adhesion GPCRs are genomically com-
plex, each receptor having many isoforms [6], with mul-
tiple alternatively-spliceable introns and large genomic
sizes, which makes them difficult to study [7]. Only a few
members of Adhesion GPCRs have been demonstrated to
interact with G proteins [8,9].
Beyond its evident role in digestion and adsorption,

the gastrointestinal (GI) tract is involved in a variety of
other physiological functions, such as endo- and exocrine
secretion and immune responses [10-12]. Its autono-
mous neuronal network, referred to as the enteric ner-
vous system or ENS, is also intimately linked with the
brain in the brain-gut axis important for, among others,
food intake regulation [13,14]. GPCRs in the GI tract are
known to be involved in nutrient balancing [15-17] and
regulation of the immune system [18,19]. In some cases
their gross expression patterns in the GI tract have been
established, but more subtle proximodistal variations in
expression and their biological functions have yet to be
determined [20]. Furthermore, dysfunction of GPCRs is
already known to contribute to certain diseases affecting
the GI tract. For example, GPR49 overexpression has
been related to increased incidence of human colon
primary tumors [21], whereas overexpression of the
Adhesion GPCR CD97 has been correlated to colorec-
tal cancer [22], rectal adenocarcinoma recurrence and
metastasis [23], and gastric carcinoma [24].
Though about 85% of Adhesion GPCRs are still

orphans or lack biological characterization (details about
known functions are provided in [6]), EMR receptors
have been shown to be involved in immune responses
[25]: Crohn’s disease and ulcerative colitis are two of the
main inflammatory bowel diseases affecting the GI tract,
and there is a growing body of evidence indicating that
the onset of these pathologies may be related to an
immune system deregulation by the ENS or gut micro-
biota [11,12]. The characterization of immunologically
important Adhesion GPCRs in the GI tract may therefore
lead to a greater understanding of these pathological con-
ditions. Profiling of the entire GI tract, accounting for
intra-regional differences is important since proximal-
distal part of GI tract’s anatomical regions can serve dif-
ferent roles or be selectively affected by diseases; e.g. bile
acids and vitamin B12 adsorption occur in the distal
ileum, Barrett’s disease affects the distal esophagus [26],
and gastric cancer occurs either proximally or distally
[27]. Likewise, Crohn’s disease more frequently affects
the terminal ileum [28]. Knowledge of the proximodistal
expression pattern may therefore indirectly facilitate pin-
pointing the function of Adhesion GPCR orphans.
We present here the first complete analysis of mRNA

expression of all members of the Adhesion GPCRs sub-
family throughout the entire rat GI tract, which was
divided into twelve subsegments (as described previously
[29]). Using RT-qPCR with a validated range of house-
keeping genes, we studied the expression in the esopha-
gus, the corpus and the antrum of the stomach, the
proximal and distal parts of the duodenum, jejunum,
ileum and colon, and in the cecum.

Methods
Animal handling and tissue isolation
Three male Dark Agouti rats (Scanbur AB, Sweden)
weighing approximately 200 grams, were kept under
constant conditions (12 h dark/light cycle) at 21°C. The
animals were fasted overnight but had free access to
water before carrying out the experiment. The following
morning the animals were intraperitoneally anesthetized
with Na-5-ethyl-1-(1’-methyl-propyl)-2-thiobarbituric acid
(InactinW; 125 mg/kg b. wt). Body temperature was main-
tained at 37.5 ± 0.5°C through a temperature regulator
controlling a heating pad. Thereafter, a tracheotomy was
performed and a cannula (PE-200) was inserted to guar-
antee free airways. Following a midline incision to open
the abdominal cavity, the following structures, about 5 to
10 mm in length, were localized and dissected (Figure 1):
Distal esophagus (a few mm from the stomach); corpus
of the stomach; antrum of the stomach; proximal (1 mm
from the pylorus) and distal duodenum (4 cm from the
pylorus); proximal (9 cm from the pylorus) and distal
jejunum (19 cm from the pylorus); proximal (29 cm from
pylorus) and distal ileum (2.5 cm from the ileocecal
valve); cecum; proximal (5 cm from ileocecal valve) and
distal colon (12 cm from the ileocecal valve). The whole
GI tract wall was isolated for the RT-qPCR analysis.
After the operation, an intravenous bolus injection of

a saturated KCl solution was used to euthanize the ani-
mals. All animal procedures followed the regulations and
policies outlined by the Swedish Animal Protection Act
and were approved by the Uppsala Ethic Committee.

RNA isolation and cDNA synthesis
RNA isolation and cDNA synthesis were performed as
previously reported [30]. Briefly, tissue samples were
homogenized by sonication in the TRIzol reagent (Invi-
trogen, Sweden) using a Branson sonifier. Chloroform
was added to the homogenate and centrifuged at 12000 g
at 4°C for 15 minutes. The aqueous phase was collected
and RNA precipitated with isopropanol. The pellets were
washed with 75% ethanol, air dried and dissolved in
RNAse-free water. The DNAse treatment was performed
to remove DNA contamination: DNAse I (Roche Diag-
nostics, Sweden) was added to the samples and incubated
at 37°C for 4 h, followed by inactivation by heating to
75°C for 15 minutes. Absence of DNA contamination in
the RNA samples was confirmed by PCR. NanodropW

ND-1000 Spectophotometer (NanoDrop Technologies,
Delaware, USA) was used to determine RNA concentration.



Figure 1 GI sectioning approximately indicating the different sections of the rat GI tract used for analysis. The GI tract was divided into
twelve segments: the esophagus, the corpus and the antrum of the stomach, the proximal and distal parts of the duodenum, ileum, jejunum and
colon, and the cecum.
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Thereafter, cDNA was synthesized by priming with
random hexameres and MMLV reverse transcriptase
(GE Healthcare, Sweden). PCR was performed to confirm
cDNA synthesis. An equal amount of the total cDNA
from each of the three rats was pooled, and the pooled so-
lution was used as the template material for RT-qPCR.
Primer design
Sequences for rat housekeeping genes and all known
Adhesion GPCR gene sequences were downloaded from
the GenBank. All primers were designed using Beacon
Primer Design 7.0 (Premier Biosoft, USA) and positioned
within TM regions of the Adhesion GPCRs. The primer
sequences for rat Adhesion GPCRs and housekeeping
genes are provided in additional material (see Additional
file 1).
Quantitative real-time PCR
The RT-qPCR was performed using a MyiQ thermal
cycler (Bio-Rad Laboratories, Sweden). Each RT-qPCR
reaction, with a total volume of 20 μl, contained cDNA
synthesized from 25 ng of total RNA, 0.25pmol/μl of
each primer, 20 mM Tris–HCl (pH 8.4), 50 mM KCl,
4 mM MgCl2, 0.2 mM NTP, SYBR Green (1:50000)
(Invitrogen, USA) and 0.02U/μl Taq DNA polymerase
(Biotools, Spain). The reaction conditions were the fol-
lowing: initial denaturation at 95°C for 4 min, succeeded
by 40 cycles at 95°C for 15 s, 55–62°C for 30 s (optimal
annealing temperature) and 72°C for 30 s. This was fol-
lowed by 81 cycles at 55°C for 10 s (increased by 0.5°C
per cycle). All real-time PCR experiments were run in
triplicates. A negative control for each primer pair and a
positive control with 25 ng of rat genomic DNA was
included on each plate.

Data analysis and relative expression calculations
Bio-Rad iQ5 software v2.0 software (Bio-Rad Laborator-
ies, Sweden) was used to process RT-qPCR data and
obtain threshold cycle (Ct) values. Melting curves were
analyzed to assure that only one product with the
expected melting point was amplified and that this was
separate from the negative control. LinRegPCR was used
to calculate PCR efficiencies for each sample and Grubbs'
test (GraphPad, USA) was applied to exclude any outliers
when calculating the average PCR efficiency for each pri-
mer pair. The delta Ct method [31] was used to convert
Ct values into relative quantities with the standard devi-
ation, and the highest expression was normalized to 1.
The GeNorm software [32] was used with results from
the five most stable housekeeping genes to calculate
normalization factors for each tissue to compensate for
differences in cDNA quantity. Subsequently, the normal-
ized quantities were calculated and maximum expression
was set to 1: all relative expression values are shown
as fold decrease with respect to the detected maximum
expression (see Additional file 2).

Results
The rat Adhesion GPCR gene sequences were down-
loaded from GenBank (see Additional file 1) and 7TM
regions were identified with the Conserved Domain
Database [33]. We analyzed the expression of 30 Adhe-
sion GPCR family members in the rat GI tract. The gut
was divided into twelve different segments proceeding
from the esophagus to the colon and each tissue was
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isolated and used for RNA extraction and cDNA synthe-
sis. The expression values of five housekeeping genes
(Histone protein 3b, β-tubulin, β-actin, succinate de-
hydrogenase complex, subunit A and cyclophilin) were
used to calculate normalization factors for rat cDNA.
Each reaction was run in triplicate and with a positive
control (genomic DNA) to confirm the validity of the
amplification process; relative expression values for rat
Adhesion GPCRs are displayed as a fold decrease relative
to the detected maximum expression, arbitrarily set at 1
(see Additional file 2).
A total of twelve GPCRs (40%) were found to be ubi-

quitous along the GI system (expressed in at least eleven
segments – Figure 2), nine GPCRs (30%) had widespread
expression (detected in at least five segments – Figure 3),
GPR56
Group II

GPR97
Group II

LEC3
Group III

ETL
Group III

GPR124
Group IV

GPR125
Group IV

GPS OLF LRRGBLHBD EGF

Figure 2 GPCRs expressed ubiquitously along the GI tract. Each panel
belonging, N terminal moieties and relative expression in twelve segments
level of expression set to 1). Values are plotted as the mean ± SD; n = 3. Th
representation of the domains in the N-termini as determined by RT-BLAST
N-termini moieties: GPS, GPCR proteolytic site; HBD, hormone-binding dom
binding lectin domain; LRR, leucine rich repeats; Ig, immunoglobulin; SEA, s
tripeptide sequences that conform to the consensus sequence for N-linked
stretches; E, esophagus; F, corpus of the stomach; A, antrum of the stomac
proximal and distal parts of the jejunum; I1 and I2, proximal and distal part
the colon.
seven GPCRs (23%) had restricted expression (transcript
found in no more than four segments – Figure 4) and
two GPCRs were not detected in any segments. The ubi-
quitously expressed genes (Figure 2) consisted of two
members from Group II, namely GPR56 and GPR97
(although neither was expressed in the esophagus), all
but one (EMR4) of the members from Group III (LEC1,
LEC2, LEC3, ETL, EMR1, CD97), two members from
Group IV (GPR124 and GPR125; the third member
GPR123 could not be detected in any segment), GPR133
from Group V, and GPR116 from Group VII.
Among genes with widespread expression (Figure 3),

BAI2 and BAI3 displayed a very similar pattern, being
detected in the antrum of the stomach and the proximal
part of the duodenum, and from the distal jejunum to
LEC1
Group III

LEC2
Group III

EMR1
Group III

CD97
Group III

GPR133
Group V

GPR116
Group VII

SEAIg Glycosylation site

refers to one GPCR showing three pieces of information: group of
of the GI tract. Expression levels are relative for each gene (maximal
e phylogenetic grouping is based on the 7TM regions; the schematic
at NCBI is adapted from our previous work [3]. Abbreviations for
ain; EGF, epidermal growth factor; OLF, olfactomedin; GBL, galactose-
perm protein, enterokinase, and agrin; glycosylation sites (NXS or NXT
glycosylation) – shown as small circles attached to the N-termini
h; D1 and D2, proximal and distal parts of the duodenum; J1 and J2,
s of the ileum; C, cecum; K1 and K2, proximal and distal parts of



BAI2
Group I
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Figure 3 GPCRs with widespread expression along the GI tract. Each panel refers to one GPCR showing three pieces of information: group
of belonging, N terminal moieties and relative expression in twelve segments of the GI tract. Expression levels are relative for each gene (maximal
level of expression set to 1). Values are plotted as the mean ± SD; n = 3. Abbreviations for N-termini moieties: GPS, GPCR proteolytic site; HBD,
hormone-binding domain; TSP1, thrombospondin; PTX, pentraxin domain; EGF, epidermal growth factor; CA, cadherin domains; LamG, laminin;
glycosylation sites (NXS or NXT tripeptide sequences that conform to the consensus sequence for N-linked glycosylation) – shown as small circles
attached to the N-termini stretches; E, esophagus; F, corpus of the stomach; A, antrum of the stomach; D1 and D2, proximal and distal parts of
the duodenum; J1 and J2, proximal and distal parts of the jejunum; I1 and I2, proximal and distal parts of the ileum; C, cecum; K1 and K2,
proximal and distal parts of the colon.
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the colon. In comparison, BAI1 had limited expression,
only being detectable in the distal ileum and colon.
GPR114 was found throughout the entire GI tract except
for the esophagus and fundus of the stomach, while
GPR128 was expressed in the whole intestine, but not in
the stomach or esophagus. GPR112 was found in the
duodenum, jejunum, ileum and proximal colon. GPR64
was expressed only in the stomach and, to a lesser extent,
in the distal ileum and colon. CELSR1 and CELSR2,
members of Group V, displayed a very similar pattern,
being expressed in the stomach, colon and proximal
jejunum, while CELSR1 was also found in the esophagus.
No expression of CELSR3 could be detected. EMR4
expression was restricted to the jejunum, ileum and
colon. Out of the nine widespread Adhesion GPCRs, as
many as four belong to Group II.
In total, seven genes had restricted expression (Figure 4),
including the aforementioned BAI1. Two genes were
members of Group II: VLGR1, with increasing expression
from the jejunum to the proximal part of ileum, and
GPR126, with isolated expression in the ileum and colon.
An expression pattern similar to that of the latter gene
was also observed for GPR110, belonging to Group VII,
while from the same group, GPR111 and GPR115 were
only expressed in the esophagus, and GPR113 expression
was detected at a low level only in the proximal colon.
Out of the seven genes with restricted expression, the
majority (4 out of 7) thus belonged to Group VII.

Discussion
In this paper, we present the first comprehensive chart of
the mRNA expression of all 30 Adhesion GPCRs in the
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Figure 4 GPCRs with limited expression along the GI tract. Each panel refers to one GPCR showing three pieces of information: group of
belonging, N terminal region and relative expression in twelve segments of the GI tract. Expression levels are relative for each gene (maximal
level of expression set to 1). Values are plotted as the mean ± SD; n = 3. GPR111, GPR113, GPR115 were only expressed in one sub-segment: the
expression value was arbitrarily set to 1 to indicate the presence of expression. Abbreviations for N-termini moieties: GPS, GPCR proteolytic site;
HBD, hormone-binding domain; TSP1, thrombospondin; PTX, pentraxin domain. Glycosylation sites (NXS or NXT tripeptide sequences that
conform to the consensus sequence for N-linked glycosylation) are shown as small circles attached to the N-termini stretches; E, esophagus; F,
corpus of the stomach; A, antrum of the stomach; D1 and D2, proximal and distal parts of the duodenum; J1 and J2, proximal and distal parts of
the jejunum; I1 and I2, proximal and distal parts of the ileum; C, cecum; K1 and K2, proximal and distal parts of the colon.
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rat GI tract. We find that the majority of the GPCRs are
expressed ubiquitously throughout the GI tract, high-
lighting their importance for GI tract physiology. At the
same time, the restricted expression patterns of seven
GPCRs suggest that these receptors may have specific
functions in these parts of the GI tract and they in
particular may constitute potential therapeutic targets.
While two other studies have mapped GPCRs expres-
sion in the mouse gut [34,35] as well as one study
that mapped the Adhesion GPCRs expression distri-
bution in the mouse and rat [36], in none of these
studies has the GI system been divided into so many
segments, using both proximal and distal subsegments
of several GI tract regions. Based on our results we
found that the Adhesion GPCRs could be divided in-
to three categories: genes ubiquitously expressed, genes
with widespread expression, and genes with restricted/
specific expression.
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Genes with ubiquitous expression
Twelve GPCRs (namely GPR56, GPR97, LEC1, LEC2,
LEC3, ETL, EMR1, CD97, GPR124, GPR125, GPR133
and GPR116) were detected in at least eleven segments
along the GI tract (Figure 2). Being ubiquitously expressed,
these genes may play important roles for normal GI
tract functioning. Intriguingly though, most of these
receptors still have no known functions. Among the few
de-orphanized GPCRs, GPR56 is known to be involved in
the development of the testis [37], and CNS [38,39].
Similarly, GPR56 might be involved in the development
of the GI tract. Furthermore, overexpression of GPR56
has been reported in esophageal squamous cells carcin-
omas (EECCs) and dysplastic tissues contrary to adjacent
nonmalignant esophageal tissue [40]. As we found no
esophageal expression in wild type animals, but high
gastric (especially fundus) expression, our results lends
further support to the conclusion by Sud et al. that
GPR56 is an interesting candidate as an early diagnostic
marker in esophageal cancer.
CD55 and chondroitin sulphate have been described as

ligands for CD97 leading to leukocyte activation [41]:
lack of CD55 and CD97 resulted in decreased arthritis in
mouse experimental models of rheumatoid arthritis [42].
CD97 has also been implicated in the initiation and
establishment of inflammatory processes, e.g. in multiple
sclerosis [43]. Outside cells of the immune system, CD97
is also expressed in smooth muscle cells [44,45]. Since
we detected the transcript throughout the whole GI tract,
probably also in associated immune cells, we suggest
CD97 might constitute a target in inflammatory bowel
diseases, in particular Crohn’s disease that is able to
affect any region of the GI tract [46]. Interestingly, all but
one of the members of the group III members were ubi-
quitously expressed, which could imply that this group of
Adhesion GPCRs is of particular importance for GI tract
functioning.

Genes with widespread expression
Nine genes (BAI2, BAI3, GPR114, GPR128, GPR112,
GPR64, EMR4, CELSR1 and CELSR2) were found to
have widespread expression, that is, they were detected
in more than five segments (Figure 3). BAI2 and BAI3,
belonging to the family of brain angiogenesis inhibitor
(BAI), displayed very similar expression patterns. There-
fore, they might serve similar roles, such as being
involved in angiogenesis in the GI tract, which is pivotal
in ischaemia and tumorigenesis, and which has recently
been shown to be of importance for the development
and perpetuation of IBD [47,48]. GPR64 is known to
interfere with fluid re-adsorption [49] and our results
showed high expression of the GPR64 transcript in the
stomach but not in adjacent segments. We therefore
speculate that GPR64 might be important for water
homeostasis during the first digestive process in the
stomach where water, together with mucus, HCl and
pepsinogen, are secreted.
From the CELSR family, CELSR2 and CELSR3 are

known to be distributed mainly in CNS and to regulate
neural development [50]. In contrast, CELSR1 has been
described in lungs, involved in spatial development and
branching morphogenesis [51]. Given that CELSR1 and
CELSR2 had such limited but very similar expression in
the GI tract, we hypothesize that these two genes might
control the reciprocal signaling interactions between the
epithelium and mesenchyme during morphogenesis of
gastric epithelia and their expression is maintained
also in the adult stage. GPR112 has been reported in the
dominant neuroendocrine cells of the GI tract, the enter-
ochromaffin (EC) cells, in the normal mucosa of the
human ileum, and also as a potential target for GI neu-
roendocrine carcinomas [52]. We detected its transcript
in the duodenum - where EC cells display the highest ex-
pression [53] - jejunum, ileum and proximal colon: our
finding is in good agreement with the work of Ito et al.
[35]. GPR112 could be involved in serotonin release or
participate in the nutrient sensing functions of EC cells
[54].

Genes with restricted expression
Seven GPCRs (BAI1,VLGR1, GPR126, GPR110, GPR113,
GPR111 and GPR115) were found to be expressed in
fewer than five segments (Figure 4), each showing highly
specific and varying expression patterns. BAI1 is known
to be involved in angiogenesis, tumor formation [55] and
host responses to Gram-negative infections [56], which
include severe ICU-acquired infections [57,58]. Given
the restricted expression in the colon and ileum, this
receptor may play a role in tumor development in the
intestine and in defense mechanisms against Gram-
negative bacteria in the lower GI tract. GPR126 has been
reported to play an essential role for peripheral nerve
development and myelination in mammals [59]; its lim-
ited expression in the ileum and colon could suggest an
involvement in myelination of neurons of the myenteric
plexuses crucial for GI motility, or submucosal plexuses,
which regulate luminal and epithelial cell function.
Mutations on VLGR1 are known to underlie human
Usher syndrome type II [60]. The complex extracellular
domain of the VLGR1 receptor, with a Calx-β cation
binding motif, has led to a suggested role in the sensing
of Ca2+ [61]. Given that VLGR1 expression was restricted
to the jejunum and proximal ileum, one might
hypothesize that VLGR1 participates in Ca2+-sensing in
the small intestine. GPR110 has been recently shown to
be an oncogene in murine T lymphomas and a marker
for lung and prostate cancer [62]. The receptor is orphan,
and since the expression was restricted to the ileum and
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colon, GPR110 could potentially play a role in sensing
nutrients or in malignancies, such as Coeliac disease-
associated T lymphomas [63] or cancer of the small or
large intestine.
There were consistent differences in the expression

between the proximal and distal part of the same seg-
ment for a given gene, as shown in Figure 5, which high-
lights GPCRs highly expressed in specific subsegments of
the GI tract. For example,VLGR1 had its highest expres-
sion in the proximal ileum, but it was not detected in the
distal segment (Figure 4). This observation is in accord-
ance with our previous work [29], describing notable
proximodistal differences in solute carrier profiling in the
GI tract. Our results therefore further support the ration-
ale of analyzing each segment not as a homogenous
Figure 5 GPCRs whose high expression is associated with
specific subsegments of the GI tract. The figure shows GPCRs
whose levels were found to be markedly higher in a given segment
relative to the expression level in other adjacent segments. For each
region, two or three genes with the highest regionally specific
expression levels are shown. To better illustrate the extent to which
a given gene is highly expressed in a subsegment-specific manner
compared with adjacent segments, a three-level system was
adopted using the * symbol, assigning none, one or two symbols to
each gene. The greater the deviation in expression level is from the
surrounding expression pattern, the more asterisks have been
assigned for a given gene. It should be noted that the distal
duodenum and the cecum are not shown in the figure since no
region-specific high gene expression levels were found for these
two segments.
entity but taking into account proximodistal differences.
It is worth noting that members of the same group, e.g.
Group II members GPR114 and GPR64 or Group VII
members GPR111 and GPR113, are expressed in different
segments, thus they might regulate different functions.
It should be also noted that the direct comparison

between our findings and previous studies may not
always be possible, mainly due to the species used (mouse
vs rat) and dissection differences, as other authors [35]
analyzed the mucosa and muscle separately without tak-
ing into account the proximodistal subsegmentation of
the GI tract. Our results are however consistent with
the result previously obtained by our group [36]: genes
that had been identified as being expressed along the GI
tract had their expression pattern confirmed, though in
greater detail. Examples of these genes include GPR133,
GPR124, GPR125 and all members of Group III. In line
with the earlier report, we did not detect GPR112,
GPR126 or GPR128 in the stomach. Even so, there are
some discrepancies, for example CELSR2 (in contrast to
CELSR1) was not detected by Haitina and coworkers,
whereas herein we detected both CELSR receptors, iden-
tifying a very similar pattern (Figure 3). This can be
explained by considering that a relatively low gene
expression in the GI tract relative to other tissue types
could have prompted a conclusion that the expression
level in the gut is negligible. Compared to the findings
by Ito et al., we found no expression of either BAI1 or
GPR126 in the upper intestine – this may be due to the
different species used [35]. It should be emphasized,
however, that for many other GPCRs such as BAI2, BAI3,
CD97, GPR111 and GPR112, our results confirm and
refine the expression patterns found by the aforemen-
tioned group. The results might have been somewhat
affected by the timing of the experiments or other condi-
tions, such as an overnight fast. Furthermore, mRNA
expression does not always correspond to protein expres-
sion [64,65]. Finally, GPCRs are known to undergo
extensive alternative splicing [3] that generates multiple
transcripts including soluble forms: primers used in this
study are located in the 7TM regions and thus might not
cover the entire transcript population.

Conclusions
Taken together these results indicate that, compared to
solute carriers, Adhesion GPCRs display more restricted
expression patterns in the GI tract [29], suggesting that
Adhesion GPCRs play a more specific role in the GI tract,
a role that could be important both for physiological or
pathological conditions. This notion is further strength-
ened by the fact that Adhesion GPCRs are known to be
restricted to certain cell types and to be highly regulated
in their expression, likely serving distinct physiological
functions [6]. We should therefore consider that GPCRs
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represent an unexploited potential for drug targeting [66].
However, given that GPCRs constitute the most common
drug target (36%), but less than 82 distinct GPCRs are tar-
geted, this clearly highlights the importance of exploring
Adhesion GPCRs as potential drug targets.
In summary, our study shows that about 70% of the rat

Adhesion GPCRs display a widespread or ubiquitous distri-
bution while about a quarter of the studied receptors had
limited expression in the GI tract. Their extensive distribu-
tion suggests a fundamental role of this receptor family.
Additional files

Additional file 1: Primers used for real-time PCR analysis. The table
includes gene names for rat (r) Adhesion GPCRs and house-keeping
genes (*), GenBank accession numbers, primer sequences and the
expected size of the PCR products . NA – not available.

Additional file 2: Summary of relative expression of all Adhesion
GPCR members. Expression levels relative for each gene (maximal level
of expression set to 1; n.d., not detected after 40 cycles of the PCR). The
phylogenetic grouping is based on the 7TM regions [3]. GPR111, GPR113,
GPR115 were only expressed in one sub-segment: the expression value
was arbitrarily set to 1 to indicate the presence of expression. GPR133
and CELSR3 could not be detected in any segment.
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