
BioMed CentralBMC Gastroenterology
BMC Gastroenterology 2001, 1 :10Research article
Ileal mucosal bile acid absorption is increased in Cftr knockout mice
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Abstract
Background: Excessive loss of bile acids in stool has been reported in patients with cystic fibrosis.
Some data suggest that a defect in mucosal bile acid transport may be the mechanism of bile acid
malabsorption in these individuals. However, the molecular basis of this defect is unknown. This
study examines the expression of the ileal bile acid transporter protein (IBAT) and rates of
diffusional (sodium independent) and active (sodium dependent) uptake of the radiolabeled bile acid
taurocholate in mice with targeted disruption of the cftr gene.

Methods: Wild-type, heterozygous cftr (+/-) and homozygous cftr (-/-) mice were studied. Five
one-cm segments of terminal ileum were excised, everted and mounted onto thin stainless steel
rods and incubated in buffer containing tracer 3H-taurocholate. Simultaneously, adjacent segments
of terminal ileum were taken and processed for immunohistochemistry and Western blots using
an antibody against the IBAT protein.

Results: In all ileal segments, taurocholate uptake rates were fourfold higher in cftr (-/-) and two-
fold higher in cftr (+/-) mice compared to wild-type mice. Passive uptake was not significantly higher
in cftr (-/-) mice than in controls. IBAT protein was comparably increased. Immuno-staining
revealed that the greatest increases occurred in the crypts of cftr (-/-) animals.

Conclusions: In the ileum, IBAT protein densities and taurocholate uptake rates are elevated in
cftr (-/-) mice > cftr (+/-) > wild-type mice. These findings indicate that bile acid malabsorption in
cystic fibrosis is not caused by a decrease in IBAT activity at the brush border. Alternative
mechanisms are proposed, such as impaired bile acid uptake caused by the thick mucus barrier in
the distal small bowel, coupled with a direct negative regulatory role for cftr in IBAT function.

Introduction
Cystic fibrosis (CF) is an autosomal recessive disease
caused by mutations in the gene encoding the CFTR
chloride channel [1]. CFTR is known to possess multiple

cellular functions beyond its role as an apical membrane
chloride channel [2]. For example, regulation of other
ion channels, such as the epithelial sodium channel and
the outwardly rectified chloride channel, are well-de-
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scribed functions of CFTR [3,4]. Numerous other func-
tions, such as regulation of intracellular vesicular pH,
regulation of membrane recycling, and regulation of mu-
cin exocytosis are less firmly established. Phenotypic ex-
pression in CF is variable, with multiple organs affected.
The disease is commonly but variably expressed in the
lungs, the exocrine pancreas, and the gastrointestinal
mucosa [5,6].

Significant intestinal malabsorption of various sub-
strates, including bile acids, is a consistent finding in CF
patients. The total bile acid pool is contracted unless sup-
plementation with pancreatic enzymes is provided. In
children, bile acid losses can be so severe that a deficien-
cy of the amino acid taurine can occur due to excessive
losses of taurine-conjugated bile acids [7,8].

Bile acid malabsorption in CF has been attributed to an
inhibitory effect of un-hydrolyzed, intraluminal triglyc-
erides on the intestinal absorption of bile acids. Howev-
er, in several studies the correlation between fecal fat
excretion and fecal bile acid loss could not be demon-
strated, suggesting that additional factors are responsi-
ble for bile acid malabsorption in cystic fibrosis [9,10]. In
vitro studies using brush border membrane vesicles or
bathed tissue samples from patients with cystic fibrosis
have shown that total ileal bile acid uptake is diminished
[11,12].

The present study was designed to determine if the activ-
ity and density of the ileal bile acid transporter IBAT is
diminished in heterozygous and homozygous cftr knock-
out mice. The results indicate that bile acid malabsorp-
tion in CF is not caused by a defect in sodium-dependent
bile acid transport at the brush border membrane sug-
gesting another mechanism is operative.

Materials and Methods
Animals
Cftr knockout mice, with targeted disruption of the cftr
gene created at the University of North Carolina [13],
were maintained at the University of Washington Animal
Care Facility under the auspices of the UW Cystic Fibro-
sis Research Center. Thirty-five post-weanling mice
more than 20 days old (strain V129Xl/SvJ) were used,
including 6 homozygous cftr (-/-), 23 heterozygous cftr
(+/-) and 6 wild-type cftr (+/+) mice. All mice had been
kept on a standard liquid diet (Peptamen®, Nestle Deer-
field, IL)- for 3 weeks until immediately prior to sacrifice.
On this diet, the mice showed no evidence of obstruction.
Mice underwent inhalation anesthesia with 1.5% meth-
oxyflurane (Metophane®, Mallinckrodt, Mundelein, IL)
for the harvest of the intestines and were sacrificed sub-
sequently by cervical dislocation under a protocol ap-
proved by the Institutional Animal Use Committee.

Geno-typing was performed using DNA isolated from the
mouse tails. Following isolation of genomic DNA by
standard techniques, PCR was performed using primers
specific for wild-type mice and for cftr knockout mice.
The primer sets used and the expected size products
were as follows:

WT: CAGTGAAGCTGAGACTGTGA/GCATAATCCAA-
GAAAATTGAG(1.1 kb) CF: CGGTTCTTTTTGTCAAGAC/
ATCCTCGCCGTCGGGCATGC (400 bp). Wild-type mice
expressed cftr protein by immunoblotting, while cftr (-/-
) did not [14]. All chemicals were from Sigma unless
otherwise stated (Sigma-Aldrich, St. Louis, MO). The in-
vestigators performing the uptake and immunohisto-
chemistry experiments were blinded to the results of the
geno-typing.

Preparation of intestinal segments
Mice were anesthetized and the abdomen opened. A one-
cm segment of jejunum was resected at the ligament of
Treitz. The terminal 8 cm segment of ileum was removed
and immediately transferred into 2°C cold mammalian
Ringer solution (128 mM NaCl, 4.7 mM KCl, 2.5 mM
CaCl2, 1.2 mM NaH2PO4 1.2 mM MgSO4, and 20 mM
NaHCO3, pH at 37°C = 7.30 - 7.40, 290 mosm, gassed
continuously with 95% O2/5% CO2). The intestinal
length was measured and the tissue cut into 2 one-cm
segments, 1 five-cm segment and another one-cm seg-
ment beginning distally. The five-cm gut segment locat-
ed 2 cm to 7 cm proximal to ileocecal valve was used for
uptake experiments. The segment was cut into five one-
cm pieces. These specimens were everted and the intes-
tinal sleeves secured onto 1 mm diameter stainless steel
rods using 3–0 silk ties as described previously [15]. The
distal ileal segments from 1–2 cm proximal to the ileoce-
cal valve (immediately adjacent to the tissue used in the
uptake experiments) and the jejunal segments were used
for immunohistochemistry studies. The ileal segments
from 7–8 cm and 0–1 cm proximal to the ileocecal valve,
respectively, from each animal were pooled and used for
Western blots.

Uptake measurements
All uptake measurements were performed between 1 and
2 hours after excision. Samples were randomized into 2
groups. Intestines from the first group were exposed to
an identical radioactive taurocholate solution containing
sodium. Samples from the second group were exposed to
a sodium-free taurocholate solution. Mounted tissues
were preincubated for 5 min. in 37°C warm, oxygenated
Ringer's solution. Then rods were suspended with the
tissue positioned 5 mm above stirring bars rotating at
1,200 rpm and uptake was measured for 2 min. in 37°C
warm, oxygenated Ringer's solution with 1 mM tauro-
cholate. To the uptake solutions tracer amounts of radi-
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olabeled sodium taurocholate (3H-(G) sodium
taurocholate, 74 GBq/mmol, NEN Research Products,
Boston, MA) were added. 1,2-14C polyethylene glycol
(MW 4000 Dalton; 9.3 MBq/mmol, NEN Research
Products, Boston, MA), a marker substance not subject
to carrier-mediated transport and with a very low diffu-
sion coefficient, was added to these solutions to account
for 3H-radiotracer in the adherent fluid. The incubation
time was chosen based on validation experiments that
showed that PEG equilibrated in the unstirred layer after
two minutes. In contrast, taurocholate uptake rates re-
mained linear for at least four minutes (data not shown).

To measure Na-independent uptake, Na-free Ringer's
solution was prepared by replacing NaCl with Choline-Cl
and NaHCO3 with KHCO3. In the Na-free solutions, tau-
rocholate was added as a potassium salt. Potassium-tau-
rocholate was prepared by ion exchange of a 1 M solution
Na-taurocholate with potassium-loaded AmberLyte
(Biorad, Hercules, CA). The potassium salt was subse-
quently recrystallized. Absence of sodium ions following
the ion exchange was confirmed by flame-photometry.

After incubation, tissues were removed from the rods,
placed in scintillation vials and solubilized in TS-2 tissue
solubilizer (Research Products International, Mount
Prospect, IL). Then 5 ml Safety-Solve scintillation cock-
tail (Research Products International) were added. Beta
emissions (in disintegrations per minute {DPM}) from
tritium and 14C were calculated from CPM counted in a
dual channel liquid scintillation counter (Tricarb 2200
CA, Packard Instrument Co., Downers Grove, IL) based
on appropriate standard spectra and quench curves for
the dual-labeled samples. Calculations of uptake rates
were performed as described previously [15,16].

Immunohistochemistry studies
Polyclonal rabbit antibodies were obtained from a com-
mercial source (Research Genetics, Huntsville, AL)
against a C-terminal 14 amino acid oligopeptide frag-
ment of IBAT and purified by immuno-affinity chroma-
tography as described [17]. The ileal tissue segments
were snap-frozen in -70°C cold isopentane and then
stored in -70°C until the tissues were processed. Frozen
sequential 10 micron cross-sections were cut in the cryo-
stat at -25°C. The cryo-sections were air-dried at room
temperature, fixed in acetone for 5 min., washed for 15
min in Tris-buffered saline (TBS; 20 mM Tris-HCl, 500
mM NaCl, pH 7.4) and incubated for 1 hour with 1% pu-
rified milk protein blocking solution (Boehringer-Man-
nheim, Indianapolis, IN) in TBS to reduce background
staining. A 1:20 dilution of anti-IBAT protein antibodies
was applied for one hour. Pre-immune serum served as a
negative control. Sections were washed and incubated
for one hour with a 1:200 dilution of a secondary goat

anti-rabbit Cy3-IgG antibody (Jackson Immuno-Re-
search Laboratories, West Grove, PA), then washed in 1
× TBS for 2 × 10 min. Slides were mounted using an aque-
ous medium containing Hoechst 33258 dye as a nuclear
stain (Sigma, St. Louis, MO). The distribution of the flu-
orescence signal was evaluated under a fluorescence mi-
croscope (Zeiss, Jena, Germany) with photometer
electronic multiplier (Hamamatsu, Billerica, MA)
equipped with an intensity measuring program for fluo-
rescence. The signal density was quantified as fluores-
cence intensity over background in circular image fields
extending from the villus tip to the crypt base using an
MS2 image analysis system (Imaging Research, St. Cath-
erines, Ontario, Canada).

Western blots
Brush border membrane vesicles were prepared as de-
scribed by deRooij [11]. Briefly, frozen ileal tissue frag-
ments (20–25 mg) were thawed and homogenized in 100

Figure 1
Sodium-Dependent Taurocholate Uptake Rates by Ileal Seg-
ments from Wild-Type, Heterozygous and Cystic Fibrosis
Mice. An increase in active taurocholate uptake was
observed in all examined sections of the terminal ileum of
knock-out mice. Uptakes rates approximately doubled in het-
erozygous knock-out mice (CFTR +/-; n = 23) and quadru-
pled in homozygous mutants (CFTR -/-; n = 6) compared to
wild-type controls (WT; n = 6). Differences were statistically
significant in the 2 cm and 3 cm groups (# = significant differ-
ence when comparing this group to the wild-type group at p
< 0.05; ** = significant difference when comparing this group
to the heterozygous group at p < 0.05). The axial distribution
curves of taurocholate uptake were similar and had peaks at
3–4 cm before the ileocecal valve in all three groups.
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µl of isotonic buffer (300 mM mannitol, 12 mM Tris-HCl,
pH 7.1) using a Polytron homogenizer (Kinematica AG,
Littau, Switzerland). This suspension was cleared form
debris and diluted with five volumes of ice cold water and
MgCl

2
 was added to a final concentration of 10 mM. After

40 minutes this suspension was centrifuged at 3,000 × g
for 15 min. The supernatant was decanted into another
vial and stored at 4°C. The pellet was resuspended in
buffer and after 40 minutes this suspension was centri-
fuged as before. The two supernatant fractions were
combined and centrifuged for 30 min at 27,000 × g to
spin down the brush border membrane vesicles. 10 µl of
the brush border membrane preparation was diluted in
90 µl of Laemmli buffer, boiled for 5 min and separated
on a denaturing polyacrylamide gel (5 % stacking gel/10
% resolving gel) at 120 V over 2 hours [18]. The separated
proteins were transferred onto nitrocellulose membrane
using a Trans-blot instrument (Biorad, Hercules, CA) in
glycine-methanol buffer following the manufacturer's
suggestions. Blots were developed using a 1:100 dilution
of the rabbit anti-hamster IBAT antibodies and an am-
plified alkaline phosphatase goat-anti-rabbit immunob-
lot assay kit (Biorad, Hercules, CA) as recommended by
the manufacturer.

Statistical Analysis
All data were collected from individual tissues and proc-
essed as independent data points as well as grouped by
their origin (2 cm, 3 cm from the ileocecal valve, etc.) Re-
sults were expressed as mean +/- standard error of the
mean (SEM). Comparisons were made between multiple
groups using ANOVA and the unpaired student t-test as
a post-hoc test. Significance was assumed at p < 0.05.

Results
Active rates of taurocholate uptake were twice as high in
the heterozygous cftr (+/-) mice (n = 23) compared to
wild-type mice (n = 6) (average of all data points in the
terminal ileum 109 ± 8 vs. 64 ± 13 cm pmol/mm2; p <
0.05) and fourfold higher in the homozygous cftr (-/-)
mice (n = 6) (212 ± 32 pmol/mm2; p < 0.05 vs. wild-
type). Increases occurred similarly at different sites in
the terminal ileum in locations from 2 cm to 7 cm from
the ileocecal valve (Fig. 1a). However, only differences in
the section at 2 and 3 cm reached a level of significance
of p < 0.05. Differences in rates of passive uptake of tau-
rocholate were not statistically significant among groups
(Fig. 1b). Microscopic morphology of the mucosa was
similar in the different study groups.

Prior to use for Western blotting, brush border mem-
brane vesicle suspensions were tested for enrichment of
brush border enzymes and showed a 4 – 5-fold increase
of alkaline phosphatase and a 10 – 11-fold increase in al-
pha-glucosidase activity using standard methods [19].

On densitometric evaluations of Western blots, IBAT
concentrations were twice as high in heterozygotes as in
controls (17 ± 3 vs. 5 ± 1 density units; p < 0.05) and four
times as high in homozygotes (30 ± 4 vs. 5 ± 1 density
units; p < 0.05) (Fig. 2 and 3). A similar relationship was
found in intensity of IBAT immunostaining on examina-
tions of microscopic sections treated with anti-IBAT an-
tibodies. The highest increases in signal density were
noted at the base of the crypts of cftr (-/-) animals (arrow
in Fig. 4). These unusual changes were never found in
any jejunal samples and occurred only occasionally as
weak signals in ileal samples from wild-type animals.

Discussion
Untreated children and adults with cystic fibrosis excrete
amounts of fecal bile acids similar to patients with ileal
resections [20,21]. Based on kinetic studies, this in-
creased fecal loss appears to be secondary to an inter-
rupted enterohepatic circulation of bile acids [20,21].
Bile acid malabsorption in cystic fibrosis appears to be
due in part to diminished secretion of pancreatic en-
zymes and the presence of un-hydrolyzed triglycerides.
Supplementation with pancreatic enzymes and a low-fat
diet can markedly reduce the fecal excretion of bile acids
[9,10,20,23]. Other evidence, however, suggests that a
diminished capacity of the ileal mucosa for bile acid up-
take plays a significant role in bile acid malabsorption as-
sociated with cystic fibrosis that is independent of
triglyceride concentrations. Findings supporting this no-
tion include: 1. The absence of a correlation between fe-
cal fat excretion and fecal bile acid loss; 2. The normal
fecal bile acid losses in patients with liver disease com-
pared to excessive losses in those without liver disease
despite similar fecal fat excretion; and 3. The finding that

Figure 2
Western Blot of Ileal Brush Border Proteins from Wild-
Type, Heterozygous and Cystic Fibrosis Mice. An increase in
IBAT protein concentration was observed in all examined
brush border membrane vesicle preparations of the terminal
ileum in knock-out mice. IBAT content approximately dou-
bled in heterozygous knock-out mice and quadrupled in
homozygous mutants compared to wild-type controls.

Wild-type CFTR (+/-) CFTR (-/-)
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patients with almost normal fat excretion continue to
lose large amounts of bile acids.

Based on these findings, a defect in ileal bile acid trans-
port mechanisms in cystic fibrosis has been suspected.
Data in support of this hypothesis are contradictory.
Fondacaro et al. bathed ileal biopsies from CF patients in
taurocholate solutions. They found a decrease in total
(apical + basolateral) bile acid uptake compared to nor-
mal controls [12] and hypothesized that bile acid malab-
sorption in cystic fibrosis was due to a primary mucosal
defect although they had not specifically studied apical,
Na+-dependent absorption. De Rooij et al. found signifi-
cant decreases in active bile acid uptake when examining
ileal brush border membrane vesicles [11] and proposed
that altered viscosity of the ileal mucus was likely not a
factor in ileal bile acid malabsorption associated with
cystic fibrosis. In another study using marker perfusions
with taurocholate and glycocholate in three infants, how-
ever, the bile acid uptake rates with cystic fibrosis were
similar to control subjects [24].

The results from our study stand in contrast to these ear-
lier studies. We found a significant increase in bile acid
transport in cftr (-/-) and cftr (+/-) mice. This increase in
IBAT function was paralleled by increases in IBAT pro-
tein concentrations. Similar discrepancies between
measurements of solute uptake with brush border mem-
brane vesicles or tissue biopsies and in vivo experiments
have been observed in studies examining sodium/glu-
cose cotransport in cystic fibrosis. Jejunal glucose ab-
sorption was enhanced in patients with cystic fibrosis

when measured with catheter perfusion techniques [25].
Ussing chamber studies of intact CF biopsy specimens
suggest that glucose and alanine uptake rates are mark-
edly increased in cystic fibrosis [26]. Taylor also studied
intact jejunal biopsies and found that the rate of active
sodium/glucose transport approximately doubled in CF
compared to normal jejunum [27].

Contrary to these findings, other investigations have
been unable to demonstrate any changes in sodium/glu-
cose co-transport when examining brush border mem-
brane vesicles [28]. The up-regulation of intestinal
sodium-linked nutrient absorption by cftr may occur via
a mechanism that does not involve changes of the brush
border membrane but rather intracellular components
[28]. Intestinal sodium-linked nutrient absorption
would then be undetectable in brush border membrane
vesicle studies. However, a number of studies using bi-
opsies in Ussing chambers have also been unable to dem-
onstrate enhanced glucose absorption in cystic fibrosis
[29–31].

Phenotypic expression is variable in patients carrying
homozygous or heterozygous mutations of the CFTR
gene. The ∆F508 mutation is the most common genetic
disturbance affecting the CFTR gene. ∆F508 heterozy-
gotes are affected to a lesser degree than are homozy-
gotes. In heterozygous infants with the WT/∆F508
genotype, sweat chloride excretion is elevated 1.5-fold
over normal values compared to a tenfold increase in ho-
mozygous patients with the ∆F508/∆F508 genotype
[32]. Adult heterozygous patients have fewer problems
with respiratory infections compared to homozygotes
[5]. Our findings that bile acid absorption was moderate-
ly increased in heterozygotes and markedly increased in
homozygotes were therefore not unexpected. Heterozy-
gotes are able to produce a limited number of intact, cor-
rectly localized CFTR protein molecules resulting in
partial phenotypic expression. The correlation between
zygosity and level of IBAT protein expression suggests a
close relationship between the function of the CFTR
chloride channel and the sodium-dependent ileal bile
acid transporter.

Our study is the first that correlates changes in function
of another intestinal solute transporter with the expres-
sion level of CFTR. Increased bile acid transport in cftr (-
/-) mice is associated with an increase in the abundance
of IBAT protein in the brush border membrane. Similar
associations exist in normal rodents. In hamsters, rats
and mice, increases and decreases in bile acid absorption
at the brush border membrane are mediated by an up- or
down-regulation in IBAT gene transcription [33,34]. In
several rodent species including mice, regulation of IBAT
is clearly dependent on intraluminal bile acid concentra-

Figure 3
Quantification of Western Blot for IBAT in Figure 3 from
Wild-Type, Heterozygous and Cystic Fibrosis Mice. IBAT
band density approximately doubled in heterozygous knock-
out mice (n = 23) and quadrupled in homozygous mutants (n
= 6) compared to wild-type controls (n = 6) (# = significant
difference when comparing this group to the wild-type group
at p < 0.05; ** = significant difference when comparing this
group to the heterozygous group at p < 0.05).
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tions and occurs via a negative feedback mechanism
[33–35]. Feeding of bile acids suppresses transcription
of IBAT mRNA and reduces IBAT protein abundance;
feeding of the bile acid binder cholestyramine has the op-
posite effect. In normal animals, this negative feedback
mechanism keeps the enterohepatic bile acid pool in
equilibrium. As bile acids are lost, increased absorption
by a greater number of transporters, in combination with
increased hepatic bile acid synthesis from cholesterol,
helps restore normal bile acid levels. In contrast, cftr (-/
-) mice may experience bile acid malabsorption even
though their ileal mucosal cells express four-fold more
IBAT transporters than normal cells. This apparently
paradoxical finding would suggest a luminal factor that
prevents bile acids from entering the mucosal cells in the
ileum.

Based on this evidence, we postulate that the more vis-
cous mucus layer in the ileal crypts of individuals with
cystic fibrosis limits access of luminal bile acids and mi-

celles to the ileal crypt cells. This may result in an altered
programming of ileal stem cells and transit cells that give
rise to absorptive enterocytes over-expressing IBAT pro-
tein.

Further investigations are needed to corroborate this hy-
pothesis. Additional studies should examine changes in
mucus layer thickness, mucus viscosity and permeability
for bile acids associated with hetero- and homozygosity
for CFTR mutations. An alternative mechanism for the
upregulation of IBAT in cystic fibrosis is that CFTR acts
as a negative regulator of IBAT, as it does for the epithe-
lial sodium channel [36]. As IBAT is a sodium-depend-
ent apical membrane transporter, it might be regulated
by CFTR, as is the epithelial sodium channel (ENaC)
present in the apical membrane of the ileal enterocyte.
CFTR regulation of ENaC has been described in the co-
lon in humans [37] and in cftr knockout mice [37]. Co-lo-
calization of CFTR and ENaC suggests that direct
protein-protein interactions allow CFTR to closely regu-
late the activity of this channel [39,40]. Our results sug-
gest that knockout of CFTR leads to an analogous
increase in expression and function of IBAT. Of course, a
more widespread perturbation of ion channel regulation
in the absence of CFTR is also a possibility, as CFTR has
been demonstrated to be a master regulator of such di-
verse proteins as the Na/K pump [41], the basolateral
Na/K/2Cl co-transporter [42], and the inducible nitric
oxide synthase [43].

Conclusions
In summary, in the widely studied cftr knockout mouse
model (which clearly demonstrates intestinal patholo-
gy), the apical sodium dependent ileal bile acid trans-
porter is expressed and functions at higher levels than in
wild-type animals, with intermediate levels of IBAT ex-
pression and function in heterozygous cftr (+/-) mice.
The results of this study open up further avenues of in-
vestigation with respect to the role of the mucus layer in
causing a secondary up-regulation of IBAT expression
and function. In addition, IBAT may be yet another api-
cal membrane transport protein that is regulated by
CFTR.
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Figure 4
Staining of IBAT protein in the Ileal Mucosal Brush Border
from Wild-Type, Heterozygous and Cystic Fibrosis Mice. An
increase in IBAT protein staining intensity was observed in
microscopic sections of the terminal ileum of knock-out
mice. IBAT signal intensities were higher in heterozygous
knock-out mice and still higher in homozygous mutants com-
pared to wild-type controls. Jejunal mucosa showed no IBAT
signals.
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