Skip to main content

Association between PPARGC1A polymorphisms and the occurrence of nonalcoholic fatty liver disease (NAFLD)

Abstract

Background

Genetic factors as well as environmental factors are important in the development of NAFLD and in this study we investigated associations between polymorphisms of peroxisome proliferators-activated receptor γ coactivator 1α polymorphism (PPARGC1A) and NAFLD.

Aims

We recruited 115 patients with biopsy-proven NAFLD, 65 with NASH and 50 with simple steatosis, and 441 healthy control subjects and investigated 15 SNPs of PPARGC1A.

Results

SNP rs2290602 had the lowest p value in the dominant mode (p = 0.00095), and the odds ratio for NAFLD (95% CI) was 2.73 (1.48 – 5.06). rs2290602 was significantly associated with NAFLD even when the most conservative Bonferroni's correction was applied (p = 0.0143). The frequency of the T allele of rs2290602 was significantly higher in the NASH patients than in the control subjects (p = 0.00093, allele frequency mode), and its frequency in the NASH patients tended to be higher than in the simple steatosis patients (p = 0.09). The results of the real-time RT-PCR study showed that intrahepatic mRNA expression of PPARGC1A was lower in the TT group than in the GG or GT group at SNP rs2290602 (p = 0.0454).

Conclusion

This is the first study to demonstrate a significant association between genetic variations in PPARGC1A and NAFLD. This finding suggested that PPARGC1A polymorphism and lower expression of PPARGC1A mRNA in the liver are an important genetic contribution to etiology of NAFLD.

Peer Review reports

Background

Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver injury in many countries in the world [1, 2], and epidemiological studies have shown that its prevalence ranges from 17% to 33% of the general population. NAFLD represents a spectrum of conditions that are histologically characterized by macrovesicular hepatic steatosis, and the diagnosis is made in patients who have not consumed alcohol in amounts sufficient to be considered to be harmful to the liver. The histological changes range over a wide spectrum, extending from simple steatosis, which is generally non-progressive, to nonalcoholic steatohepatitis (NASH), liver cirrhosis, liver failure, and sometimes even hepatocellular carcinoma [3, 4].

Genetic factors as well as environmental factors are important to the development of NAFLD [5–8], and the gene for peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A) is a candidate gene for susceptibility to NAFLD, since it is involved in insulin resistance, mitochondrial biogenesis, and oxidative phosphorylation, which are key factors in the development of NAFLD [9–11]. Recent evidence also implicates PPARGC1A in the homeostatic control of systemic energy metabolism, and PPARGC1A knockout mice have been reported to develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and increased expression of lipogenic genes [12]. Single nucleotide polymorphisms (SNPs) are useful tools in the search for genetic factors responsible for disease and are being intensively investigated in various common diseases, such as obesity, diabetes, and hypertension. Expression of PPARGC1A has been reported to be associated with metabolic factors, such as type 2 diabetes, hypertension, obesity [13–18].

In this study we investigated associations between SNPs of PPARGC1A and NAFLD in the Japanese subjects.

Methods

Subjects

A total of 115 Japanese NAFLD patients, 65 with NASH and 50 with simple steatosis, and 441 healthy control subjects were recruited to participate in this study at Yokohama City University Hospital. All control subjects were confirmed to have normal liver function, not to have viral hepatitis, and not to be alcoholics. The control subjects all had a BMI < 25 kg/m2, normal fasting glucose (<110 mg/dl), serum triglycerides (<150 mg/dl), and serum HDL cholesterol (>40 mg/dl) levels, and normal systolic (<130 mmHg) and diastolic blood pressure (<85 mmHg). Liver biopsy was performed in all 115 NAFLD patients, and the liver biopsy tissue obtained was stained with hematoxylin-eosin, reticulin stain, and Masson trichrome stain. The histological criterion used to make the diagnosis of NAFLD was the presence of macrovesicular fatty change in hepatocytes with displacement of the nucleus to the edge of the cell [19]. When more than 5% of hepatocytes were affected by macrovesicular steatosis, the patient was diagnosed as having either steatosis or steatohepatitis. The criteria used to make the diagnosis of steatohepatitis were the presence of lobular inflammation and the presence of either ballooning cells or perisinusoidal/pericellular fibrosis in zone 3 of the hepatic acinus, in addition to steatosis [20, 21]. Patients with any of the following diseases were excluded from participation in this study: infectious hepatitis (chronic hepatitis C infection or concurrent active hepatitis B virus), autoimmune hepatitis, primary biliary cirrhosis (PBC), sclerosing cholangitis, hemochromatosis, α1-antitrypsin deficiency, Wilson's disease, drug-induced hepatitis, and alcoholic hepatitis, and heavy alcohol consumers (current or past daily consumption of more than 20 g alcohol per day). No patients had clinical evidence of hepatic decompensation, such as hepatic encephalopathy, ascites, variceal bleeding, or a serum billirubin level greater than twice the upper limit of normal.

Written informed consent was obtained from all subjects before their entry into this study. The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki and was approved by the Research Committee of Yokohama City Hospital.

Physical and laboratory evaluation

The body weight and height of the patients were measured with a calibrated scale after requesting them to remove their shoes and any heavy clothing. A venous blood sample was obtained from the patients after an overnight fast (12 hours) to measure their serum AST, ALT, glucose, immunoreactive insulin (IRI), hemoglobin A1c (HbA1c), total cholesterol, HDL cholesterol, and triglyceride levels. All laboratory biochemical parameters were measured with a conventional automated analyzer. Visceral fat area (VFA) and subcutaneous fat area (SFA) were measured by computed tomography (CT).

DNA preparation and SNP genotyping

Genomic DNA was prepared from each blood sample by using a commercial genomic DNA extraction kit (TALENT s.r.l., Trieste, Italy). The PPARGC1A SNPs were selected from the IMS-JST (Institute of Medical Science-Japan Science and Technology Agency) SNP database [22]. We selected the 15 SNPs with a minor allele frequency greater than 0.2 and whose expected allele frequencies did not widely diverge from Hardy-Weinberg equilibrium (p > 0.001). Invader probes (Third Wave Technologies, Madison, WI) were synthesized for these SNPs, and the SNPs were genotyped in the cases and controls by a combination of multiplex PCR and the Invader assay, as described previously [23].

Real-time RT-PCR for measurement of PPARGCA1 mRNA expression

Total RNA was isolated from samples of liver biopsy specimens by using an RNeasy Mini Kit (Quiagen, Hilden, Germany) according to the manufacturer's instructions. The protocol included a DNase treatment step to remove genomic DNA. The RNA was assessed quantitatively by measuring relative absorbance at 260 nm and 280 nm, and qualitatively by ethidium bromide agarose-gel electrophoresis. Reverse transcription to produce cDNA was performed by using a TaqMan Reverse Transcription Reagents (Applied Biosystems, Foster City, CA, USA), according to the manufacturer's instructions. The reaction mixtures (100 μl) contained 2.5 μg of total RNA, and after allowing the reaction to proceed for 50 minutes at 48°C, the reverse transcriptase was inactivated by heating the samples to 95°C for 5 minutes.

Real-time quantitative RT-PCR was performed in triplicate by using an ABI Prism 7700 sequence detection system (Applied Biosystems, Foster City, CA, USA) and SYBR Green PCR Master Mix according to the manufacturer's protocol. The following primers were used: PPARGC1A (F, 5'-TCTGACGTGACCATGGTGTT-3'; R, 5'-CATTCCAGGGACTCCACACT-3'). The primers were designed with Primer Express software (Applied Biosystems, Foster City, CA, USA) based on the sequence data obtained from the GenBank database. β-actin (Applied Biosystems, Foster City, CA, USA) was used as a reference; i.e., each sample was normalized on the basis of its β-actin content. Thermal cycling was performed as follows: initial denaturation at 95°C for 10 minutes, followed by 40 cycles of 95°C for 15seconds and 60°C for 1 minute.

Statistical analysis

For each case-control study, the frequencies of the genotypes or the alleles were compared between cases and controls in three different modes by means of the χ2 test. In the first mode (allele frequency mode), allele frequencies were compared between cases and controls by means of a 2 × 2 contingency table. In the second mode (recessive mode), the frequencies of the subjects who were homozygous for allele 1 were compared with the rest by means of a 2 × 2 contingency table, while in the third mode (dominant mode) the frequencies of the subjects who had allele 1 (allele 1 homozygotes and heterozygotes) were compared with the rest by means of a 2 × 2 contingency table. The odds ratio (OR) and its 95% confidence interval (CI) were calculated by Woolf's method. Conformity to the Hardy-Weinberg equilibrium was assessed by the χ2 test [24]. Haplotype blocks were calculated using Haploview 3.2 software [25]. Physical and laboratory data are reported as means ± standard deviation (SD).

Results

Case-control association study

The characteristics of NAFLD groups and control group are compared in Table 1. We selected the 15 SNPs of the PPARG1A gene in the IMS-JST SNP database that had a minor allele frequency greater than 0.2. The information on SNP location has been added in Table 2 and Fig. 1. The rs2290602 SNP had the lowest p value in the dominant mode (p = 0.00095, Table 2), and rs2290602 was significantly associated with NAFLD even when the most conservative Bonferroni's correction was applied (p = 0.00095 × 15 × 3 = 0.04275). The OR (95% CI) was 2.73 (1.48 – 5.06) in the dominant mode, and thus the relative risk of developing NAFLD of the subjects with the T allele was 2.73 fold higher than among the subjects without the T allele. All SNPs except rs2290602 were in Hardy-Weinberg equilibrium (p > 0.1). The departure of rs2290602 from the Hardy-Weinberg equilibrium was detected in the NAFLD group (p = 0.02), because this SNP is associated with NAFLD and the cases were selected for the phenotype. Case may be biased compared to the general population. Thus, it is not unexpected that case was not in Hardy-Weinberg equilibrium. Linkage disequilibrium (LD) analysis revealed the presence of two blocks in the PPARG1A gene. SNP rs2290602 and 11 other SNPs (rs2290604, rs3774907, rs3774908, rs2290603, rs2970849, rs2932968, rs3755863, rs3736265, rs3774920, rs768695, and rs3774923) were in the same block (Fig. 1).

Table 1 Characteristics of the NAFLD patients and control subjects.
Table 2 Genotype frequencies and association tests of SNPs PPARGC1A gene using NAFLD and control
Figure 1
figure 1

LD mapping around the PPARGC1A gene. LD coefficients (d) were calculated for every pair of PPARGC1A SNPs. LD coefficients (D') were calculated for every pair of SNPs and are shown as the strand of the LD blocks. The minor allele frequencies of all SNPs used in this analysis were >20%. Each SNP is labeled with its rs number.

Next, we divided the NAFLD group into the NASH and the steatosis group and used rs2290602 to perform case-control association studies. Although it was not conclusive because of the small number of data, the frequency of T allele was significantly higher in the NASH group than in the control group (p = 0.00093, allele frequency mode). When the frequency of the T allele in the NASH group was compared to its frequency in the steatosis group, its frequency was found to tend to be higher than in the steatosis group (p = 0.09). Thus, rs2290602 was significantly more closely associated with NASH than with simple steatosis (Table 3).

Table 3 Results of testing for differences in SNP rs2290602 frequency between NAFLD group and control group, NASH group and contol group, NASH group and simple steatosis group.

To investigate whether the genotype of rs2290602 SNP were associated with the clinical parameters, we compared age, BMI, and the fasting plasma glucose, immunoreacrive insulin, HbA1c, total cholesterol, triglyceride, HDL cholesterol, AST, ALT, VFA, and SFA between the NAFLD patients with different genotypes (GG vs. GT + TT, or TT vs. GT + GG) by Student's t-test. The results showed that serum AST and ALT values of the NAFLD patients with the TT allele were significantly higher than those of the NAFLD patients with the GT or GG allele at SNP rs2290602 (Table 4). When the subjects were limited to the NASH patients, the serum AST and ALT values were also significantly higher in the TT genotype group than in the GT group or GG group at SNP rs2290602 (p = 0.0177, p = 0.0140, respectively).

Table 4 Comparison between various quantitative phenotypes in groups of NAFLD patients with different SNP genotypes at rs2290602

mRNA expression of PPARGC1A in the liver

Expression of PPARGC1A mRNA in the liver biopsy specimens of NAFLD patients was evaluated by real-time RT-PCR. The results obtained by real-time RT-PCR in the GG or GT group (n = 10) were compared with the results in the TT group (n = 8) at SNP rs2290602. As shown in Fig. 2, the expression of PPARGC1A mRNA transcripts in the liver was significantly lower in the TT group than in the GG or GT group (p = 0.0454).

Figure 2
figure 2

The expression of mRNA for PPARGC1A in the liver. Significant difference in intrahepatic mRNA expression of PPARGC1A between the TT group (n = 8) and the GG or GT group (n = 10) at SNP rs2290602 (p = 0.0454).

Discussion

Genetic factors are important to the development of NAFLD, and recent advantages in SNP genotyping methods have enabled the detection of genetic the variations associated with increased susceptibility to NAFLD. There have been a few reports of genetic variations that are associated with NAFLD, and they have been in the genes for TNF receptor 2 (TNFR-2), TNF-α, micorosomal triglyceride transfer protein (MTP), and methylenetetrahydrofolate reductase (MTHFR) genes [6, 7, 26]. All of these genes are related to inflammation, lipid metabolism, and oxidation. We examined the 15 SNPs in PPARGC1A and found that rs2290602 was significantly associated with NAFLD, especially with NASH, and the frequency of the T allele of rs2290602 was significantly higher in the NASH patients than in the control subjects. We also found that intrahepatic PPARGC1A mRNA expression was significantly lower in the TT group than in the GG or GT group at SNP rs2290602.

PPARGC1A interacts with peroxisome proliferators-activated receptors (PPARs) and has various functions, including as integrator of the molecular regulatory circuitry involved in the transcriptional control of cellular energy metabolism, including mitochondrial function and biogenesis [27, 28], and regulation of gene expression involved in lipid and glucose metabolism. The PPARGC1A Gly482Ser polymorphism is also associated with obesity, hypertension, and diabetes [14–18, 29]. NAFLD is often accompanied by obesity, hypertriglyceridemia, type 2 diabetes, and insulin resistance [30], and PPARGC1A knockout mice develop hepatic steatosis [12]. Thus, variations in rs2290602 in the PPARGC1A gene would be expected to affect lipid and glucose metabolism, and result in the development of NAFLD and NASH.

Recent evidence also implicates PPARGC1A in the homeostatic control of systemic energy metabolism, and PPARGC1A has been shown to regulate several key hepatic gluconeogenic genes [31–34]. Recent studies have also shown altered expression of PPARGC1A and downstream mitochondrial target pathways in the skeletal muscle of humans with insulin resistance and diabetes [35–37].

This study had a limitation in regard to the control subjects. The number of the patients was too small for a polymorphism study. Although none of the control subjects had abnormal liver function or was obese, we cannot completely rule out the possibility that the control group included patients with mild steatosis, since we did not perform liver biopsies in the control subjects.

Conclusion

In conclusion, this is the first study to demonstrate a significant association between genetic variations in PPARGC1A and NAFLD. This finding suggested that PPARGC1A polymorphism and lower expression of PPARGC1A mRNA in the liver are an important genetic contribution to the etiology of NAFLD.

Abbreviations

BMI:

body mass index

NAFLD:

nonalcoholic fatty liver disease

NASH:

nonalcoholic steatohepatitis

SNPs:

single nucleotide polymorphisms

VFA:

visceral fat area

SFA:

subcutaneous fat area

AST:

aspartate aminotransferase

ALT:

alanine aminotransferase.

References

  1. Angulo P: Nonalcoholic fatty liver disease. N Engl J Med. 2002, 18: 1221-31. 10.1056/NEJMra011775.

    Article  Google Scholar 

  2. Farrell GC: Non-alcoholic steatohepatitis: what is it, and why is it important in the Asia-Pacific region?. J Gastroenterol Hepatol. 2003, 18: 124-38. 10.1046/j.1440-1746.2003.02989.x.

    Article  PubMed  Google Scholar 

  3. Diehl AM, Goodman Z, Ishak KG: Alcohol-like liver disease in nonalcoholics. A clinical and histologic comparison with alcohol-induced liver injury. Gastroenterology. 1988, 95: 1056-62.

    Article  CAS  PubMed  Google Scholar 

  4. Ludwig J, Viggiano TR, McGill DB, Oh BJ: Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc. 1980, 55: 434-8.

    CAS  PubMed  Google Scholar 

  5. Nozaki Y, Nemoto Y, Ono M, Akisawa N, Saibara T, Hiroi M, Enzan H, Onishi S: Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis.

  6. Gambino R, Cassader M, Pagano G, Furazzo M, Musso G: Polymorphism in microsomal triglyceride transfer protein: a link between liver disease and atherogenic postprandial lipid profile in NASH?. Hepatology. 2007, 45: 1097-107. 10.1002/hep.21631.

    Article  CAS  PubMed  Google Scholar 

  7. Tokushige K, Takakura M, Tsuchiya-Matsushita N, Taniai M, Hashimoto E, Shiratori K: Influence of TNF gene polymorphisms in Japanese patients with NASH and simple steatosis. J Hepatol. 2007, 46: 1104-10. 10.1016/j.jhep.2007.01.028.

    Article  CAS  PubMed  Google Scholar 

  8. Merriman RB, Aouizerat BE, Bass NM: Genetic influences in nonalcoholic fatty liver disease. J Clin Gastroenterol. 2006, 40: S30-3.

    CAS  PubMed  Google Scholar 

  9. Chitturi S, Abeygunasekera S, Farrell GC, Holmes-Walker J, Hui JM, Fung C, Karim R, Lin R, Samarasinghe D, Liddle C, Weltman M, George J: NASH and insulin resistance: Insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology. 2002, 35: 373-9. 10.1053/jhep.2002.30692.

    Article  CAS  PubMed  Google Scholar 

  10. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA, Shiffman ML, Clore JN: Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001, 120: 1183-92. 10.1053/gast.2001.23256.

    Article  CAS  PubMed  Google Scholar 

  11. Cortez-Pinto H, Chatham J, Chacko VP, Arnold C, Rashid A, Diehl AM: Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study. JAMA. 1999, 282: 1659-64. 10.1001/jama.282.17.1659.

    Article  CAS  PubMed  Google Scholar 

  12. Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP: PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005, 3: e101-10.1371/journal.pbio.0030101.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Oberkofler H, Linnemayr V, Weitgasser R, Klein K, Xie M, Iglseder B, Krempler F, Paulweber B, Patsch W: Complex haplotypes of the PGC-1alpha gene are associated with carbohydrate metabolism and type 2 diabetes. Diabetes. 2004, 53: 1385-93. 10.2337/diabetes.53.5.1385.

    Article  CAS  PubMed  Google Scholar 

  14. Ek J, Andersen G, Urhammer SA, Gaede PH, Drivsholm T, Borch-Johnsen K, Hansen T, Pedersen O: Mutation analysis of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetes mellitus. 2001, 44: 2220-6.

    Google Scholar 

  15. Esterbauer H, Oberkofler H, Linnemayr V, Iglseder B, Hedegger M, Wolfsgruber P, Paulweber B, Fastner G, Krempler F, Patsch W: Peroxisome proliferator-activated receptor-gamma coactivator-1 gene locus: associations with obesity indices in middle-aged women. Diabetes. 2002, 51: 1281-6. 10.2337/diabetes.51.4.1281.

    Article  CAS  PubMed  Google Scholar 

  16. Hara K, Tobe K, Okada T, Kadowaki H, Akanuma Y, Ito C, Kimura S, Kadowaki T: A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to Type II diabetes. Diabetologia. 2002, 45: 740-743. 10.1007/s00125-002-0803-z.

    Article  CAS  PubMed  Google Scholar 

  17. Ridderstrale M, Johansson LE, Rastam L, Lindblad U: Increased risk of obesity associated with the variant allele of the PPARGC1A Gly482Ser polymorphism in physically inactive elderly men. Diabetologia. 2006, 49: 496-500. 10.1007/s00125-005-0129-8.

    Article  CAS  PubMed  Google Scholar 

  18. Xie G, Guo D, Li Y, Liang S, Wu Y: The impact of severity of hypertension on association of PGC-1a Gene with blood pressure and risk of hypertension. BMC Cardiovasular Disorders. 2007, 7: 33-10.1186/1471-2261-7-33.

    Article  Google Scholar 

  19. Sanyal AJ: AGA technical review on nonalcoholic fatty liver disease. Gastroenterol. 2002, 123: 1705-25. 10.1053/gast.2002.36572.

    Article  Google Scholar 

  20. Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ: Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999, 116: 1413-9. 10.1016/S0016-5085(99)70506-8.

    Article  CAS  PubMed  Google Scholar 

  21. Teli MR, James OF, Burt AD, Bennett MK, Day CP: The natural history of nonalcoholic fatty liver: a follow-up study. Hepatology. 1995, 22: 1714-9.

    Article  CAS  PubMed  Google Scholar 

  22. Hirakawa M, Tanaka T, Hashimoto Y, Kuroda M, Takagi T, Nakamura Y: JSNP: a database of common gene variations in the Japanese population. Nucleic Acids Res. 2002, 30: 158-62. 10.1093/nar/30.1.158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4: P3-10.1186/gb-2003-4-5-p3.

    Article  PubMed  Google Scholar 

  24. Nielsen DM, Ehm MG, Weir BS: Detecting marker-disease association by testing for Hardy-Weinberg disequilibrium at a marker locus. Am J Hum Genet. 1998, 63: 1531-40. 10.1086/302114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005, 21: 263-5. 10.1093/bioinformatics/bth457.

    Article  CAS  PubMed  Google Scholar 

  26. Serin E, Güçlü M, Ataç FB, Verdi H, Kayaselçuk F, Ozer B, Bilezikçi B, Yilmaz U: Methylenetetrahydrofolate reductase C677T mutation and nonalcoholic fatty liver disease. Dig Dis Sci. 2007, 52: 1183-6. 10.1007/s10620-006-9565-7.

    Article  CAS  PubMed  Google Scholar 

  27. Kelly DP, Scarpulla RC: Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 18: 357-368. 10.1101/gad.1177604.

    Article  CAS  PubMed  Google Scholar 

  28. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM: A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998, 92: 829-839. 10.1016/S0092-8674(00)81410-5.

    Article  CAS  PubMed  Google Scholar 

  29. Ambye L, Rasmussen S, Fenger M, Jørgensen T, Borch-Johnsen K, Madsbad S, Urhammer SA: Studies of the Gly482Ser polymorphism of the peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) gene in Danish subjects with the metabolic syndrome. Diabetes Res Clin Pract. 2005, 67: 175-9. 10.1016/j.diabres.2004.06.013.

    Article  CAS  PubMed  Google Scholar 

  30. Younossi ZM, Diehl AM, Ong JP: Nonalcoholic fatty liver disease: an agenda for clinical research. Hepatology. 2002, 35: 746-752. 10.1053/jhep.2002.32483.

    Article  PubMed  Google Scholar 

  31. Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M: CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. 2001

    Google Scholar 

  32. Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM: Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001, 413: 131-8. 10.1038/35093050.

    Article  CAS  PubMed  Google Scholar 

  33. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM: Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003, 423: 550-5. 10.1038/nature01667.

    Article  CAS  PubMed  Google Scholar 

  34. Herzig S, Lee CH, Hedrick S, Kulkarni R, Evans RM, Olefsky J, Montminy M: PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. 2004

    Google Scholar 

  35. Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. 2003, 34: 267-73.

    Google Scholar 

  36. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ: Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. 2003, 100: 846671-

    Google Scholar 

  37. Dufour S, Befroy D, Garcia R, Shulman GI: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Eng J Med. 2004, 350: 664-71. 10.1056/NEJMoa031314.

    Article  Google Scholar 

Pre-publication history

Download references

Acknowledgements

Special thanks to the staff of the SNP Research Center of RIKEN for their contribution to our study. This work was supported in part by a Grant-in-Aid for research on the Third Comprehensive Control Research for Cancer from the Ministry of Health, Labor and Welfare of Japan to A.N., a grant from the National Institute of Biomedical Innovation (NBIO) to A.N., a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan (KIBAN-B) to A.N., and a research grant of the Princess Takamatsu Cancer Research Fund to A.N. This work was supported by a grant from the Japanese Millennium Project (K. H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Nakajima.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MY performed the literature review, collected the clinical data, and drafted the manuscript, with contributions from YN, HE, and KH. KF and KH organized the field survey for data collection. SK, HM, KY, HT, HK, MI, YA, KK, SS, and WK collected the clinical data. SM analyzed the liver pathology. HI, KH, TU, and NK revised the manuscript. AN was responsible for the design of the study. All authors read and approved the final manuscript.

Masato Yoneda, Kikuko Hotta contributed equally to this work.

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Authors’ original file for figure 2

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Yoneda, M., Hotta, K., Nozaki, Y. et al. Association between PPARGC1A polymorphisms and the occurrence of nonalcoholic fatty liver disease (NAFLD). BMC Gastroenterol 8, 27 (2008). https://doi.org/10.1186/1471-230X-8-27

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1471-230X-8-27

Keywords